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INTRODUCTION 

This collection of papers reflects the problems that I have worked on over the 
years. With hindsight, it might appear that there had been a grand and premedi- 
tated design to address the outstanding problems concerning the origin and evolution 
of the universe. But it was not really like that. I did not have a master plan; rather 
I followed my nose and did whatever looked interesting and possible at the time. 

There has been a b e a t  change in the status of general relativity and cosmology 
in the last thirty years. When I began research in the Department of Applied 
Mathematics and Theoretical Physics (DAMTP) at Cambridge in 1962, general 
relativity waa regarded as a beautiful but impossibly complicated theory that had 
practically no contact with the real world. Cosmology was thought of as a pseudo- 
science where wild speculation was unconstrained by any possible observations. That 
their standing today is very different is partly due to the great expansion in the range 
of observations made possible by modern technology. But it is also because we have 
made tremendous progress on the theoretical side, and this is where I can claim to 
have made a modest contribution. 

Before 1960, nearly all work on general relativity had been concerned with solv- 
ing the Einstein equations in particular coordinate systems. One imposed enough 
symmetry assumptions to reduce the field equations either to ordinary differen- 
tial equations or to the Laplacian in three dimensions. It was regarded as a great 
achievement to find any closed form solution of the Einstein equations. Whether it 
had any physical significance was a secondary consideration. However a more geo- 
metric approach began to appear in the early 1960s in the work of Roger Penrose 
and others. Penrose introduced global concepts and showed how they could be used 
to establish results about spacetime singularities that did not depend on any exact 
symmetries or details of the matter content of the universe. I extended Penrose’s 
methods and applied them to cosmology. This phase of work on global properties 
came to an end in about 1972 when we had solved most of the qualitative problems 
in classical general relativity. The major problem that remains outstanding is the 
Cosmic Censorship Conjecture. This is very difficult to prove, but all attempts to 
find genuine counter-examples have failed, so it is probably true. 

This global classical phase of my work is represented by the first three papers in 
this volume. They deal with the classical properties of the two themes that recur 
throughout my work: the Big Bang and black holes. Nowadays everyone accepts it 
as natural that the universe had a beginning about 15 billion years ago and that, 
before that, time simply was not defined. But opinions were very different in the 
early 1960s. The Steady State school believed that the universe had existed forever 
more or less as we see it today. Even among those who thought the universe was 
evolving with time, there was a general feeling that one could not extrapolate back to 
the extreme conditions near the initial singularity of the Fkiedmann models and that 
it was probably just an artifact of the high degree of symmetry of these solutions. 
Indeed in 1963 Lifshitz and Khalatnikov claimed to have shown that singularities 
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would not occur in fully general solutions of the Einstein equations without exact 
symmetries. Presumably this would have implied that the universe had a contracting 
phase and some sort of bounce before the present expansion. 

The discovery of the microwave background in 1964 ruled out the Steady State 
Theory and showed that the universe must have been very hot and dense at some 
time in the past. But the observations themselves did not exclude the possibility 
th‘at the universe bounced at some fairly large but not extremely high density. This 
was ruled out on theoretical grounds by the singularity theorems that Penrose and 
I proved. The first singularity theorems involved the assumption that the universe 
had a Cauchy surface. Thus they proved either that a singularity would occur or 
that a Cauchy horizon would develop. But in 1970 Penrose and I published “The 
Singularities of Gravitational Collapse and Cosmology” [l]. This was an all purpose 
singularity theorem that did not assume the existence of a Cauchy horizon. It 
showed that the classicd concept of time must have a beginning at  a singularity in 
the past (the Big Bang) and that time would come to an end for at  least part of 
spacetime when a star collapsed. Most of my work since then has been concerned 
with the consequences and implications of these results. 

Up to 1970, my work had been concerned with cosmology and in particular with 
the question of whether the universe had a beginning at a singularity in the past. But 
in that year I realized that one could also apply the global methods that Penrose and 
I had developed for the singularity theorems to study the black holes that formed 
around the singularities that the theorems predicted would occur in gravitational 
collapse. This was what Kip Thorne has called “The Golden Age of Black Holes”, 
two or three years in which the concept of a black hole as an entity distinct from 
the collapsing star was established and its main classical properties were deduced. 
This was a case where theory definitely had the lead over observation. Black holes 
were predicted theoretically some time before possible black hole candidates were 
detected observationally. 

My two most important contributions to the classical theory of black holes were 
probably the Area Theorem, which stated that the total area of black hole event 
horizons can never decrease, and the part I played in proving the No Hair Theorem, 
which states that black holes settle down to a stationary state that depends only 
on the mass, angular momentum and charge of the black hole. Most of my work on 
classical black holes was described in “The Event Horizon” [2], my lectures given at 
the 1972 Les Houches Summer School on black holes, which was the culmination of 
the Golden Age. One important part that was not in these lecture notes because it 
was work carried out actually at  Les Houches was a paper on “The Four Laws of 
Black Hole Mechanics” [3] with J. Bardeen and B. Carter. In it we pointed out that 
the area of the event horizon and a quantity we called the surface gravity behaved 
very much like entropy and temperature in thermodynamics. However, they could 
not be regarded as the actual physical entropy and temperature as Bekenstein had 
suggested. This was because a black hole could not be in equilibrium with thermal 
radiation since it would absorb radiation but, as everyone thought at that time, a 
black hole could not emit anything. 
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The situation was completely changed however when I discovered that quantum 
mechanics would cause a black hole to emit thermal radiation with a temperature 
proportiond to the surface gravity. I announced this first in a letter in Natuw 
and then wrote a longer paper, "Particle Creation by Black Holes" [4], which I 
submitted to Communications in Mathematical Physics in March 1974. I did not 
hear anything from them for a year, so I wrote to enquire what was happening. 
They confeesed they had lost the paper and asked me to send another copy. They 
then added insult to injury by publishing it with a submission date of April 1975, 
which would have made it later than some of the great flood of papers my discovery 
led to on the quantum mechanics of black holes. I myself have written a number of 
further papers on the subject, the most significant of which are "Action Integrals 
and Partition Functions in Quantum Gravity" [5] with G. W. Gibbons in which we 
derived the temperature and entropy of a black hole from a Euclidean path integral, 
and "Breakdown of Predicitability in Gravitational Collapse" [6] in which I showed 
that the evaporation of black holes seemed to introduce a loss of quantum coherence 
in that an initial pure quantum state would appear to decay into a mixed state. 
Interest in this possibility of a non-unitary evolution from initial to final quantum 
states has recently been reinvigorated by the study of gravitational collapse in two- 
dimensional field theories in which one can consistently take into account the back 
reaction to the particle creation. I have therefore included a recent paper of mine, 
"Evaporation of Two Dimensional Black Holes" [7], as an example. 

Event horizons occur in exponentially expanding universes as well as in black 
holes. G. W. Gibbons and I used Euclidean methods in "CosmologicaJ Event Hori- 
zons, Thermodynamics and Particle Creation" [8] to show that de Sitter space had 
a temperature and entropy like a black hole. The physical significance of this tem- 
perature waa realized a few years later when the inflationary model of the universe 
was introduced. It led to the prediction that small density perturbations would be 
generated in the expanding universe; see "The Development of Irregularities in a 
Single Bubble Inflationary Universe" [9]. This was the first paper on the subject 
but it was soon followed by a number of others, all predicting an almost-scale-free 
spectrum of density perturbations. The detection of fluctuations in the cosmic mi- 
crowave background by the COBE satellite has confirmed these predictions and can 
claim to be the first observation of a quantum gravitational process. 

In "Zeta F'unction Regularization of Path Integrals in Curved Spacetime" [lo], I 
introduced to physics what was then a new technique for regularizing determinants of 
differential operators on a curved background. This was used in "The Path Integral 
Approach to Quantum Gravity" [ll] to develop a Euclidean approach to quantum 
gravity. This in turn led to a possible answer to the problem that my early work on 
singularitiss had raised: How can physics predict how the universe will begin because 
all the laws will break down in the Big Bang? In "Wave Function of the Universe" 
[12], J. B. Hartle and I put forward the No Boundary Proposal: The quantum state 
of the universe is determined by a path integral over all compact positive definite 
(Euclidean) metrics. In other words, even though spacetime has boundaries at 
singularitiee in real Lorentzian time, it has no boundaries in the imaginary direction 
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of time. The action of spacetime is therefore well defined, so the path integral 
can predict the expectation values of physical quantities without any assumption 
about initial conditions. In “Quantum Cosmology” [13], another set of Les Houches 
lectures, I showed that the No Boundary Proposal would imply that the universe 
would expand in an inflationary manner and in “Origin of Structure in the Universe” 
[14], J. J. Halliwell and I showed that it would imply that the universe would contain 
gravitational and density perturbations with an almost-scale-free spectrum. These 
density perturbations are just what is required to explain the formation of galaxies 
and other structures in the universe and they agree with the COBE observations. 
Thus the N o  Boundary Proposal can explain why the universe is the way it is. 

In “Arrow of Time in Cosmology” [15], I pointed out that the results of the 
“Origin of Structure” paper implied that the universe would have started out in a 
smooth and ordered state, and would have evolved to  a more irregular and disordered 
state as it expanded. Thus the No Boundary Proposal would explain the existence 
of a Thermodynamic Arrow of Time that pointed in the direction in which the 
universe was expanding. However I also claimed that if the universe were to reach 
a point of maximum size and start to recontract, the Thermodynamic Arrow would 
reverse. Shortly after writing this paper, I realized that the Thermodynamic Arrow 
would not in fact reverse in a contracting phase. I added a note to the proofs of the 
“Arrow of Time” paper but did not get round to writing a fuller explanation until 
“The No Boundary Proposal and the Arrow of Time” [16]. 

Another important outcome of the Euclidean approach to  quantum gravity was 
“The Cosmological Constant is Probably Zero” [17]. In it I showed that if the cos- 
mological constant could take a range of values, then zero would be overwhelmingly 
the most probable. In my opinion this is the only plausible mechanism that has 
been advanced to account for the extremely low observational upper limits on the 
cosmological constant. This explanation received fresh impetus when, in “Worm- 
holes in Spacetime” [18], I put forward the idea that there might be thin tubes or 
wormholes connecting different regions of spacetime. Sydney Coleman showed that 
such wormholes would change the values of physical constants and could therefore 
implement this mechanism to make the cosmological constant zero. Coleman went 
on to suggest that it might determine all the other constants of physics as well. My 
doubts on this latter claim were expressed in “DO Wormholes Fix the Constants of 
Nature?” [19]. 

Recently my interest in the global structure of the universe led me to consider 
whether the macroscopic topology of spacetime could change. In “Selection Rules 
for Topology Change” [20], G. W. Gibbons and I showed that there was an im- 
portant restriction if there was to be a Lorentz metric which allowed spinors to be 
defined consistently. Roughly speaking, wormholes or handles could be added to the 
topology of spatial sections only in pairs. However, any topology change necessar- 
ily requires the existence of closed time-like curves which in turn implies that one 
might be able to go back into the past and change it with all the paradoxes that this 
could lead to. In “Chronology Protection Conjecture” (211, I examined how closed 
time-like curves might appear in spacetimes that did not contain them initially and 
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I presented evidence that the laws of physics would conspire to prevent them. This 
would seem to rule out time machines. 

I can claim that my work so far has shed light (maybe an unfortunate metaphor) 
on the Big Bang and black holes. But there are many problems remaining, like 
the formulation of a consistent theory of quantum gravity and understanding what 
happens in black hole evaporation. Still, that is all to the good: the really satisfying 
feeling is when you find the answer to part of Nature's puzzle. There is plenty left 
to be discovered. 

Stephen Hawking 
14 January 1993 
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Proc. Rw. 600. Lad. A. 314,620448 (1970) 
P r i d  C U r d  Britain 

The singularities of gravitational collapse and cosmology 

BY S. W. HAWKING 
Inalilufe of Themdkal Aalrononry, Univcrdty of Cantbridge 

A N D  n. P E N R O S l n  

Deprlonent of Mallbemalics, Birkbeck College, London 

(Communicuted by H. Bondi, F.R.B.-Receiued 30 April 1909) 

A new thoorem on epoar-time rhgularitios ir p m n M  whioh lsrgely incorporates and 
gonerolissrr the previously known d b .  The theorem impliw that upme-time stngularities 
old to be expotad if &her the univerm b upatidly olooed or there u an 'objeob' undergoing 
relativirtio gravitational aollap (existenoe of a trapped rurfws) or them is e point p whom 
porb null oono encountom rumoient matter that the divorgenoe of the null myr through p 
o h m  r i p  romewliere to the pssb ofp (1.e. there in o m h u m  appnrent rolid angle, rn viewed 
from p for mall objecta of given eke). The theorem applieo if the following four phyaid 
aooumptionr are made: (i) Einrtoin'r equetionm hold (with or negative ooamologid oon- 
stoat). (ii) tho enorgy d m i t y  ir nowhore 1- than minw each principal pnwsuro nor l a g  
than minus the rum of the throo prinoipal preenurea (the 'enegy oondition'), (iii) there are 
no olomd tinlolike ourvee, (iv) every timolike or will geodedo materr a region where the ourvw 
turo iu not spoololly dined with tho georlsslo. (Thir laat oondibion would hold in any rumoiently 
gonorel phyaioally roalirtio model.) In  oommon with earlier multa, timelike or null geodedo 
inoornpletonolu ir uued hero M tho indioation of the precwnce of rpaoo-time ringiilaritien. 
No wumption oonoorning axirrtenoe of a global Couohy bypersurfmoo ir required for Cho 
pzwonb thoorem. 

1. INTRODUOTION 
hi important feature of gravitation, for vory large concentrations of inaas, is that 
it is essentially umkble. This is due, in the fist inatance, to its t-* attractive 
oharaoter. But, in addition, when general relativity begins to play a rrignifioant 
role, other inetabilitiea may also arise (cf. Chandraaekhar 1964). The instability 
of gravitation is not manifeat under normal conditions owing to tho extreme 
smallnesa of tho gravitational oonatant. Tho pull of gravity is readily counteracted 
by 0 t h  forces. Howevor, this inatability does play an important dynamical role 
when Iclrge enough aoiioentrationa of ma98 ere present, In  partiaulor, as the work 
of C!hmk.aeekhnr (1935) showed, a star of maBB greater than about 1.3 times that 
of the Sun, whioli hae exhausted its reaouroa of thermal and nuoIear energy, 
oannot austain itself against its own gravitational pull, so a gruuifu:iona2 wl&puu 
ensuea. It has eometimea been suggested also that, on a somewhat larger soale, 
some form of gravitational oollapse may bo taking place in quaaara, or perhaps in 
tlie centres of (some?) galaxies. Finally, on the soale of the universe aa a whole, 
this inatabilitiy shorn up again in those models for which tho expansion eventually 
rovemu, and the ontire universe beoomes involved in agravitational collrtpse. In the 
roveme dirootiou. in time thoro is a h  tho 'big bang' initial pliase which is oommon 
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ti30 S. W. Hawking and R. Penrose 
to most rolativistic oxpanding modds. This again may bo regarded as a manifcstn- 
tion of tho instability of gravitation (in reverse). 

But what is tho ultimate fate of ib systoin in gravitatioiial col’~pso1 Is tho picturo 
that is presentad by symmetrical exact inodols accurate, ac :ding to which a 
singularity in space-time would ciisuo? Or may it  not bo that any aaymmotrios 
present miglit cause tlie different parts of tlie collapsing matarial to mias oacli 
othor, so possibly to load to sorno form of Bouitce? It seems that until aompcrrativcly 
recciitly niuiiy pooplo lind bolioved that such an asymmnotrical bouiico miglit 
itidcod l o  yossiblo to iwliiovo, in u, in~inicr consistolit with goneral rolativity (cf. 
particulurly, Lindytiist & Wheolor 1957; Lifsliitz & IChalatnilcov 1963). However, 
soino recent theoreinst (Ponroso 1 9 6 5 ~ ;  Hawking 196Ga, b ;  H; Goroch 1966) have 
rulod out a largo i i ~ i i i b ~ r  of possibilities of this kind. Tlio presont papor carries 
tlioso rosults further, and considorubly strengtheile tlio implication that R singu- 
Inrity-free bouiice (of tho typo rcquirod) docs not seein to be roalizable within the 
framework of goiioral relativity. 

In tho first theorem (referred to as I; see l’onrose 1 9 6 5 ~ ;  of. also Ponrose 1966; 
P; Hawking 1966c) tho colicopt of tho existence of a trapped surlace$ W~LB uaed as a 
cliaractorixatioii of a gravitational collapso which lma passed a ‘point of uo ltduru’. 
On tho basis of a wcuk energy condition,$ Llio inteiition wua to establish the oxistoiiw 
of space-time singularities from tho exiebnce of a trapped surfaco. Unfortunatdy, 
Iiowever, tlicowni I required, a~ an additional hypotliesia, the existence of a non- 
compact global Caucliy hyporsurfaco. Although ‘roaaonable from the point of 
view of clnssical Layh ian  dotor.niinism, tho assumption of tho existeiloe of 8 

global Caucliy hyporsurfacs is hard to justify from the standpoint of goneral 
relativity. Also, it is violatad in a iiuinber of exact models. Furthermore, the nou- 
conipactnoss assumption used in thoorom I applies only if tho universe is ‘open’. 

The second tlioorem (Hawking 1 9 6 6 ~ ) ~  and its improved version (referred to as 
11, see H; cf. also lIaivlcing ( 1 9 6 6 ~ )  and P), required the existence of a compact 
spacelike hypersurface with evorywlioro diverging norinals. Thus it applios to 
‘ olosod I, everywhere oxpanding, univorso niodols. For such models I1 implies the 
existence of an iiiitial (0.g. ‘big bang typo) eiiigularity. Howevor, this condition 
on tlio normals may well not be applicablo to tlio aatual univorso (particularly if 
tlicro ore local collapaiiig regions), even if the univorso is ‘ closed I. Also, the con- 
dition is virtually uuvcrifiablo by observation. 

Tlio third and fourLli resulta (reforrod to aa 111 and IV; see Gcrocb (19G6) and 
lfawking (1 966b), rcspctivoly) again apply to ‘closcd ’ uiiiverso modela (ile. 
containing a compact, spacelilco hylmrsurfuco), but wliicli do not hcrve to bo 
nssumcd to bo everywliero oxpanding. HOSVOVO~, I11 roquircd tho somowliat 
unniiturd nssumption of tho non-eristenco of ‘ horizons I, whilo I V  requirod tlint 
tlio givcn coinpact hypersurface be o global Cauchy liyporsurface. Thus, 111 and 
IV could bo objectod to on grounds similar to tlioao of I. 

t W o  URO I1 for Ix\fCW;llg to Htrwkiiig (1967) niid P Tor mforriiig to foiiroso ( ~ 9 6 8 ) .  
$ ‘i’ho lwociso inmiiii1gs of LlrcMo torme will bo givoir iii 53. 
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‘l‘lio fifth theorem (rofcrrod to aa V; see H, also Hawking (1966~) and P) docs 
not sufbr from objections of this kind, but the requirement on wliich it was 
baacd-namely that the divergence of all timoliko and null geodoaica through some 
point p changes sign somewhere to the pa& of p i s  somewhat stronger than one 
would wish. Theorem V would be coiisidorably more useful in application if tho 
above requirement referred only to null geodesice. 

In this paper we establish a new tlieorem, which, with two reservations, cffec- 
tivoly inoorporates all of I, 11, 111, IV and V while avoiding each of the abovo 
oljoctions. In its pliysiml implications, our theorem falls short of completely 
superseding these previous rosults only in the following two main respects. In tho 
fist instance we ehall require the non-exishnce of oloaed time like ourves. Theorem I1 
(and I1 alone) did not rcquire suoli an aasumption. Secondly, in common with 11, 
111, IV  and V, we sliall require the slightly stronger energy condition given iii 
(3.4), than tliat used in I. This means that our theorem cannot be direotly applied 
when a positive cosmological constant h is present. However, in a collapse, or ‘big 
bang’, situation we cxpect large curvatures to occur, and the larger tlic curva- 
tures prosont the smallor is the aignifioanoo of tho value of A. Thus, it is hard to 
imagine that the valuo of A should qualitively d o o t  the singularity discussioii, 
except in regions wherc curvatures are still small enough to be comparable with A. 
We may tdte I as a further indimtion (though not a proof) of this. In a aimilar way, 
I1 may be taken aa a strong indication that the development of closed timelike 
ourves is not the ‘answer’ to the aingularity problem. Of course, such causality 
violation would carry with it other vory serious probloms, in any cam. 

The energy condition (3.4) used here (and in 11, 111, I V  and V) has a very direct 
physical interpretation. It states, in effect, tliat ‘gravitation is always nttraotive 
(in the sense that neighbouring geodosica near any one point accelerate, on the 
average, towards each other). Our theorem will apply, in fact, in theories other 
than classical general relativity provided gravitation remains attractive. In  par- 
ticular, we can apply our results in the theory of Brans & Dicke (1961), using the 
metric for whioh the field equations resemble Einstein’s (of. Dioke 1962). The 
gravitatioiial constant could, in principle, change sign in this theory, but only via 
a region at whioh it bocomee infinite. Such a region could reasonably be called a 
‘singularity’ in any w e .  On the other hand, gravitation does not always remain 
attractive in tho theory of Hoyle & Narlilcor (1963) (owing to tho effectivo negative 
energy of tlio C-field) so our theorem is not direotly applicable in this thcory. We 
note, finally, that in Einstein’s theory (with ‘reasonable’ sources) it is only h > 0 
which a n  prevent gravitation from being always attractivo, the h term rcprosent- 
ing a ‘ ooamio repulsion ’. 

In common with all the previous results I,. . . , V, our theorem will not give very 
much information as to the nature of tho space-time singularitiea that are to be 
inferred on tho basis of Einstein’s theory. If we accept that ‘ causality brenltdoivn’ 
is unlikely to oacur (beoause of philosopl~ical difficiilties encountered with alosd 
titnel&o ciirvos and booaueo tlieorem I1 suggests tlicit s~ich curve8 probably do not 
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lioly in tlio singularity probloiti in uiiy cwo), tlion we aro lcd to tlio view that the 
iiisbbility of gravitatioii procluiiiablyt rmulta in regions of enorniously large 
curvature occurring in our universo. Tlicso curvatures would have to be so large 
that our prosent concepts of local pliysics would become drastically modified. 
While the quantum effocts of gravitation aro normally thought to be significant 
only wlioon curvaturos approach CI&, all our looal pliysics is Lased on tlie 
Yoincur6 group being a good approxiination of a local symmotry group a t  dimoil- 
sioiis groator than 10-’3 om. ‘l‘lius, if curvatures ever even approaoh 1013 cm-1, 
thore can bo little doubt but tliat oxtraordinary local offoots aro likely to tako place. 

JVlicn a singularity reaults from a collapse situation in which a trapped surface 
lias dovolopcd, tlion any such local ofhots would not bo obsorvablo outsido the 
collapse rcgion. It is an o p i i  quostion wliotlier pliysioally roalistio collapae situa- 
tions, rosultiiig in singularitios, will sonietinics arise witlwut trapped surfaces 
devolopiiig (cf. Ponroso 1969). If tlioy do, it is lilcely tliat such singularitice 
could (in principle) bo obsorvcd froin outsido. Of courso, tho initial ‘big bang’ 
singularity of tho Robortsoii-Wallcor modols is an oxamplo of a singularity of 
tilo obscrvable type. IIowovor, our tlieoroin yiolds no information aa to tho 
obsorvability of singularities in gcnoral. We cuiinot evoii rigorously infer wliother 
tlio inipliod singularitios are to bo oxpocted in the ‘past’ or tlio ‘future’. (In this 
rospoot our proseiit tlicorom yiolds soiriowliat loss iiiforinatioii than I ,  11, or V.) 

Our theorom will be directly applicable to uny o m  of tho following three situo- 
tioiis. Yirst, to tlio oxistoiico of (L trappod surfaco; socondly, to tlio oxiatonoe of 
of a coiupct spaco-lilto Iiyporswfiwo; thirdly, to tho oxisLoiice of a poiiit whose 
iiull-cone bcgins to ‘ converge again’ somnowliore to tlm paat of tho point. We nasume 
the energy condition and tlio noii-existonco of closod tiinelilce curvcs. On the basis 
of this (and anotlior vory minor assuinption wliicli moroly rules out somo highly 
special modols) we dcduco that siiigularitios will devolop in fully general situations 
involving a collapsing star, or in a spatially closod univerge, or (taking the point 
h question in the third caae to be tlio eartli a t  tho preaoiit time) if tho apparent 
solid angle subtenclod by an objoct of a givon intriiisio size rcaclios somo minimum 
wlioii tlio objcct is nt a cwrhiii distanco from 11s. W o  show, in an appondix, that 
tliis last condition is iiidcod lilcoly to bo aatisficd in our univorso, assutning the 
correctiicss of tho iiorinul intcrprotation of tlio 2.7 1C buckground radiation. A 
similar discussion was given earlier by €Iawlcing & allis (1968) in coiinoxioii with 
thoorem V. Since wo iiow liavo a stroiigor thoorom, wo can uso somewliat weaker 
pliysical assumptions concerning tlio radiation. 

In $2 we give a number of lominaa and definitions that will be necded for our 
thoorom. Tlio preoise statomont of the thoorem mill bo given in $3. This statemoiit 

t Wo must always boor in mind that a local ‘onorgy-oondition’ (of, (3.4)) is being wsumed 
lioro, wliioli might be violotod not only in n modiRod Eiilatoin tlioory (0.g. ‘C:fiold’), but also 
in tho stnndard tlieory if ~ v o  wore nllowod to have vory ‘poouliar’ matter uiidor extreme 
conditions. The quantum Gold-tlioorotio roquiromont of positive-dofiiiteneee of onorgy (in 
odor tlmt tho voouuni remain stablo) is of groat rolovniioe Iioro, but its statue is perhaps not 
oomplstcly olcor (of. 80x1 L Urlmitko 1967 for oxamplo). 
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is premiited in a rather general form, which is somewhat removed from the actual 
applioations. The main applioations (Is8 given in a oorollary to the theorem. One 
slight advantage of the form of statement that we have ohosen will be that it 
enables a small amount of information to be extraated about the aotual nature of 
the singularitiee. Thia is that (at least) one timelike or null geodesio must enter 
(or leave) the singularity not only in a h i t 0  propor (or afEno) time, but also in 
such (L way that none of the neighbouring initially pardel geodesics has time to 
be fooueed towards it before the singularity ia encountered. 

2. DBPINITIONS AND LBMMAS 

A four-dimensional differentiable (Hausdorff and paraoompaott) manifold M 
will be oalled a space-time if it possesses a pseudo-Riemannian metrio of hyperbolio 
normal signature (+ , - , - , - ) and a time-orientation, (In faot the following 
arguments will apply equally well if M has any dimension 2 3; alao, the time- 
orientability of dl noed not really be assumed if we are prepared to apply the 
arguments to a twofold covering of M.) There will be no real loss of gonorality in 
pliysioctl applications if we asume that d f  and ita motrio are both C". However, 
the arguments we we actually only require the metrio to be Os. 

We shall be ooncornod with timelike curves and cawd curues on Af. (When we 
s l ~ a l c  of a 'curve', we shall, aooording to context, mean either a continuous map 
into M of a oonnooted olosed portion of the real line, or else the image in M of suoh 
a map.) Bor dofiniteness we clioose our timelilce ourves to be m o l f i ,  with future- 
dirooted tangent vectors everywhore atriotly timolilo, including at its end-pointa. 
A causal ourve ia a ourvo obtainable aa a limiting oase of timelike ourvost (of. 
Siofort 1967; Cartor 1967); it is continuous but not necessarily everywhere smooth; 
wliero smooth, its tangont vectors are either tiluolike or null. A timelike or causal 
ourve will require end-points if it oan be extended as a causal curve eithor into the 
past or the future (cf. P, p. 187). If i t  continues indefinitely into the past [resp. 
future] it will be called past-ineztedihle [resp. future-inedendibZe]. If both p a t -  
and futuiw-inextoiidiblo i t  is oallod inezle.lendilrZe. 

Ifp, q E M, we writo p 4 q if there is a timelike ourve with past end-point p 
aid futuro end-point q ;  wo writ0 p q if oithor p P q or tliore is a causal ourvo 
from p to q (of. Ihonlieimer & Penrose 1967). I f p  < q but not p Q  9, thon there is 
a null geodesio fromp to q, or elsep = q. If p 4 q and g < r, or ifp 4 q and g Q r, 
then p 4 r. We do not have p 4 p uniess M oontains closed timelike curve8. A 
subset of M is oalled achronul if it contains no pair of points p, q with p 4 q. 

t aemoh (xgG8b) 110s ahown that the wumption of parocompoctnega ia not aotually neoes- 
aery for a spm-time, boing a oonsequenoe of the other ollaumptiona for a apace-time manifold. 

$ Exoopt for very minor park of our dkouasion, the faot that WB we allowing o w  0 ~ ~ ~ 0 1  
ourvoa not to be moot11 plays no significant role in thin paper. but it is uaoful for the general 
theory, A continuous map of tho oonnooted olosed interval F E S, into M, oan be charooterizd 
ae m oaural mrvo by the faot that if [a, b] e I' and if A ,  13 and U are neiglibourhoodn in M of 
tho imogoo of a, b and [a, 61, rocrpoctivoly, thon tliore extta s timelike curve lying in U with 
one end-point in A and another end-point in B. 
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Wo shall, for tho most part, urn tartninology, defuiitions and some basio resulk 
aa givoii in P. (Howovor wo us0 ‘ cuusal’ for curves reforrod to in P as ‘noiispaco- 
like’ and ‘aclironal’ for s o h  roforrod to in P as ‘soinisyncolilco’; cf. Curtcr 1967.) 
As in Kronlieimor & Ponroso (1967), wo write I + ( p )  for the opcn futuro of a point 
p E ill, i.0. I + ( p )  = { x : p  -4 x} and I+[SJ for tho opon futuro of a sot Sc 111, i.0. 
I+[&’] = U3,,sI+(p) .  (Tho sots I+[S] aro opon in tho inanifold topology for N.) 
Similarly, J + ( p )  = { z : p  < 3; J+[S] = U,,8J+(p) .  Tlicso aro not always closed 

E’ (S) = J+[S] - I+[S]. (2.1) 
sets.) We dcfino 

Tlioii W ( S )  is part of tho bouitdary ]-I[S] of .Z+[S] but not iiocessarily all of it, Tho 
sets I - ( p ) ,  I-lS], J - (p) ,  J-[S] and E-(S) aro doiincd similarly, but with future and 
past intorchanged. 

For any sot S E N  wo can clofino tho (future) domain of tlepeadence D+(S) and 
Caucky horizoii II+(S) by 

(2.2) D+(S) = {z: every past-inoxtondiblo tiinelilre curve through z moots S} 

and Il+(S) = {x:z E D+(S), I+(z) n I)+(S) = 0) 

The sots I)-(S) and H-(S) are correspondingly definod. (Tlieso dofiiiitioiis aro 
clioson to  agree with P; t h y  diffor somowliat from those of H.) We shall bo coii- 
coriiod only with tlio cmos whon S is an aclwoiial closed set. Tlieri D+(S) is n closed 
sat and If+(&’) is an acAroiuxZ closed set. Olio casily vcrilics: 

= D+(S)-I-[D+(S)]. (2.3) 

I+[II+(S)] = I+[S] -B*(S). 12.4) 

Dofuio tho edge of an achronal closod sot S to be the sot of points p E S such 
tha t t  if r 4 p q ,  with y a tiinolilro curve from r to q, containing y, theii every 
neiglibourliood of y contains a timolilco curvo from r to  q not meeting S. It follows 
that edge (8) is in fact tho sot of poiiits in wlioso vicinity S fuils to be a Co-inani- 

odgo(S) = odgo (II+(S)).) Ji’urlliorinoro : 

LiocniMn (25 ) .  Xvety p i i i t  of II I-(J’)-odgo(S) is tlie j d u r c  ewd-point o j  u ~ u l l  
geodesic OIL II+(S) wl&k can be exleiulcd iwlo tAe 2 ~ ~ 1  OIL II+(S) either ii~dcJ~~ilelIJ, or 
uiilil it iticels odgo(S). 

fold (8 acl1ronal and closod). w o  liavo (cf. P, p. 101) cdgo ( S ) c H + ( S ) .  (In fact 

For the proof, sce f, 1). 217 (compare H). 
A siinilur rcsult (wliicli follows at onco from P, p. 21G; 11) is (with S closod wid 

acliroiial). 

LEnxnrn (2.ti). Every poiitt p E b[SJ -S is lhe fulutc end-point of a null geodesic 
on f+[S] which caii be extended iillo the past on f + [ S ]  either iwdejinitely (v 
p E I+[S] -,?i’+(S)) or until it nieets edgc(S) (whe?ice p E E+(S)). 

We say that strong causality holds at p if arbitrarily small neiglibourliooda of p 
exist, each intorsocting no timolilco ourvo in a disconnoctcd set. (ltouglily spoalting, 

t TliiR roplnccs tho dofinition of eclp (8) givoii in P, wliioli mns not quit0 oorroctly etnlcd. 
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this means that timelice curve8 cannot bavo the vicinity of p aiid then return to 
i t ;  i.e. 31 does not ‘ almost’ contain closed timolilce ourves.) We inust say ‘ arbitrarily 
sinall’, ratlior tliuii ‘every’, in the above dofinition because of the existonce of 
‘liour-glass slisped’ (or oven ‘ball shaped’) iiciglibourhoods of any point in an9 
space-time, which are left aiid re-ontered by a timeliko curvo. To avoid this feature, 
let 11s call an open set Q causaZZ2/ conuex (P, p. 224) if Q intorseats 110 timeliko curve 
in a clisconnectod sot. Thus, strong causality holds at  p if and only if p possesses 
arbitrarily small oausally convex neighbourhoods (in which case, the ‘Alexandrov 
iioiglibourlioods’ I+&) n I - @ )  will sufice, with q 4 p 4 Y ) .  A causally convex 
o p n  set which lies inside a convex iiormal coordinate ball with compact closurot 
wiil be called a local Causality neighbourhood ( H ,  p. 102). Strong causality holds at 
overy point of a Iood causality neiglibourhood. The only properties of a local 
causality neiglibourliood that we ~liull in faot use, are that it is opon and causally 
coiivex, that i t  oontains no past- (or futuro) -inexteiidible null geodesic aiid that 
aiiy point a t  which strong causality holds possesses aucli a neighbourhood. 

A property of P ( 8 )  we sliall require is the following. Again, S is to be achronal 
and olosod. 

LEMMA (2 .7) .  If p E hit D+(h’), 11~eit J - ( p )  n J+[8] i s  compact. 
This follows from €I. (See also P, p. 227: if edgo(8) P 0, and strong causality 

liolde nt each point$ of 8, we have the stronger result’that int of(&) is procisely 
tho set of p E I+[&] for which J-(p)  n J + [ q  is both compact mid contains no 
point a t  which strong causality fails. Lemma (2.7) follows by similar reasoning,) 

We sliall require tho concept of coitjugalo poinb on a causal (i.e. timelilce or null) 
geodesic. Two poiiits p aiid q on a causal geodesic y are said to bo coiljvgde if a 
geodesio ‘neighbouring’ to y ‘ meeta’ y a t p  and at  q. Somewhat more precisely, the 
congruence of geodesics through p in the neighbourhood of y has q aa a f o a l  point, 
that is, a point where the divergence of the coiigrueiice becomes infinite. (This focal 
point will in genoral be an ‘astigmatio’ focal point. It is a point of the ‘caustic’ 
of tho congruonco. Prcciso dofinitions of conjugate points will bo found in Milnor 
(1963), I-Iiclrs ( X ~ G S ) ,  Hawlriiig ( I ~ G G c z ) . )  The rollttion of coiijugacy is symmotrical 
in p uiid 9. Tho abovo dohiition still holds if tho rolca of p and p aro rovorsed. Tho 
proporty of conjugato poiiita that wo sliall require is tho following (for tho tiinolike 
cma, me Boyor (1964)’ Ilaivkillg (1966a, c) ,  cf. Mihor (1963); for tho null cam ace 
Hawking (1966~) uiid also P, p. 215, for an equivalent result). 

Licnrm (2.8). If a causal geodesic y froinp to q colrtains apair of coi$yate points 
lctwecnp mil q, then tlwe mists a limelike curvejrmnp to q whose length exceed9 that 

We use tho torm ‘length’ for a causal curvo to denote its proper time integral. 
A tinielike goodosic is locally a ourve of inaxiinum longtli. Rs a corollary of lemiiia 
(2.8) we Iiavvo: 

of Y. 

t Tliie ooiiclitioti WRB not explioitly iticlnded in tho dohit-ion given in H. 
$ ‘Illiia aotditioii sliould Iiaw boon inoluded in the conditions on if in lotiinin I’ of P. 
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theit y caititot contain a pair of conjugate poiJs  except possiblg at its edpoints .  

S. W. Hawking a id  1%. Penrose 

Lmmm (2.0). If y is a m 1 1  geodesic lgi?tg on I+[#] or on II+(#) ,for some B c d l ,  

Anotlior consequonco of lommu (2.8) is tho following result : 
Lmnm (2.10). If Jl contaiits it0 closed timelilce curves and if every iirextedible 

itull geodesic in M possesses a pair of conjugate points, then strong causalily holds 
throughout M .  

Proof. Tlio result lias becn givoii in I-Iawlting ( 1 9 6 6 ~ ) .  Wo ropeat the argument 
liere since this rofcroiico is not readily available. Suppose strong causality fails 
at p .  Lct ’B bo a normal coordiiiato ncigliboidiood of p and Qi a iiested soquolico 
of neiglibourhoods of p convcrgiiig on p .  Now tliero is a timolilce curve orighiating 
in Qc wliicli loaves 13 at a point qi E I), ro-ontors 13 and returns to Qt. Aa i -P 00 the 
qt liavo an accurnulation point q on & (I) bcing compaot). The geodesio pq in U 
cannot bo tiiiiolilro (sinco otlierwiso I - (q)  would contain soino Or, so closed timelilte 
curves would result), nor spacelilro. It must tlicrcfore bo null. li’urtliermore, strong 
causality must also fail at q. ltopcatiiig tlio argument with q in placo of p ,  we 
obtain a iiew null goodosio qr. In fact this must be tlie continuation of pq, since 
otliorwiso olosod timelilco ourvcs would rosult. Continuing tlio process indofinitely 
both into tho future and into tho past wo got an inextondiblo hull geodeaio y at 
every point of wbicli strong causality must fail. By liypotliesis y contains a pair 
of conjugate points. Thus by lemma (2.8) two of its poiiits ouii bo connectod by a 
tiiuolilro ourve. It follows that each point of soino noiglibourliood of one of these 
poiiit can bo joined by a timolilro curve to each point of some neiglibourliood of 
the 0 t h .  This loads a t  once to tho oxistonco of closed timolilco curves (becauso of 
strong causality violation), contrary to hypothesis. This ostablishos tlie lemma. 
hi important consoqucnce of strong causality is the following rosult. 
Lmnu (2.1 1). Let p < q Be such tlcat the set J+(p )  n J-(q) is compact and contains 

it0 points at which slrong causality fails. Theit there is a tiinelike geodesic from p to 
q w?ticA attains the nrmintum length for tiinelike curves comectiitg p to q. 

Tliis result ivvas proved by Siefert (1967). Tlie result is, in effect, also contained 
in tlie carlior work of Avoz (1963). (Uiifortunatoly Avoz’s analysis contailis aomo 
errors owing to tho fact that tho possibility of strong causality breakdown is not 
duly talreii into account.) hmrno (2.11) follows also from loinma V in P (p. 227) 
in conjunction with V I  of P (p. 228), as applied to tho closcd adironal sot I-@). 
In  fact, loinma (2.11) caii bo goiioralizod: if C is a compact subsot of ill containing 
no points at wliicli strong causality fails, tlion tlio niclxiinuin lcngth for all timolilce 
curves coiitaiiiod in C is atlaitled (tliougli not iioccssarily by ~1 gcodosio). The osson- 
tial fcaturo of tliis situuLioii is tliut the space of causal curves contaiiicd in C is 
compact, the length of a causal curvo boiiig an upper somi-coatinuous function of 
tlie ourvo. Vor tliis, wo ncod tlio appropriato topology 011 tlie spaco of oausal 
curves. (Sco Soifert (1967); of. also Avez (1963)).  But it will not bo necessary to  
entcr into tho general disoussion Iicro, 0s lcinrnt~ (21.1) is all we sliall ncod. 

Wo dcfuio n fitlure-trapped [resp. pat-trapped] sot to be n noii-ompty achronai 
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olosodt net Scdi for whioh B+(S) [rmp. I - (S)]  is compact. (Note that E+(S) 
[reap. I$-(&')] muat then be a olosed. aolironal aot.) Any future-trapped set S must 
itself be compact, since B c E+(S).) An example of a future-trapped set is illustrated 
in figure 1. We now come to our main lemma. 

LEMMA (2.12). If 8 is a fufure-trapped set for which strong causality lwl& at 
every poiitt of I+[&'], tllea there exists a julure-iwlendible timelike curve 
y c int O+(E+(S)). 

identify dong --))--))- 

delete 

------- 
H = H+(E) w n  - 

FIOUIU 1. A future-trapped set 8, together with the aesooiated aohronel sets E = E+(S), 
B = IyS], H+(B'), H = H+(IE). (For the proof of lemma (2.12)J The figure is drawn 
aooording to tho oonventions whereby null linen are inolined at  45'. The diagonally s h d d  
portions are exaludod from the spaoe-the and some identieoations are made. The symbol 
co indicates regions 'at infinity' with reapeat to the metrio. A future-inextendible timelike 
oupve 7 6 D + ( E )  is depioted, in agrwment with the aonolwion of lemme (2.12). 

Proof.$ We fmst make some remarlrs concerning tho relation between E - E+(S) 
and P II i+[S] = &El, and between tlioir domains of dependence and their 
Cuuoliy horizons. We have BcY, whence D+(E) c D + ( P ) .  We have edge(P) = 0, 
80 it followa from lemma (2.6) that each point of F-I lies on a pest-inoxtendible 
null geodeaio on P-g. (Them null geodeeica extend into the future, while remaining 

t The oondition that S be aloeed oould be omitted from this definition if desired. For, if S 
is nolmnnl With B+(S) oompaot, then B+(S) =: a+(& Another apparent weakening of the 
dofitlition of 'future-trappwl' for D oloeed aoluod non-empty net 8 would be to ray that 
B+(S) l i ~  oompoct olosuro. (a+@) is not always a olosed set, for general 8.) This dedhitioii 
would bo equivalont to tho one we use, provided strong onusality holds. 

$ 'l'liis argument follows, to soma oxtont, one given in H (pp. 1084). It mny also mrve 
ae a replcrooinont for tho firial argument given in P (on p. !HO) whiah WM not stated cormtly. 
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oil P-B, pcrliaps reaching a future ond-point on odge(E). We rcadily obtain 
D+(P) - U+(E) = II+(F) - f .+(B) = P- E,  so int D+(B) = int I)+($').) 

Wo shall show that II = II+(El is non-aoinpact or empty. For, suppose I. is 
coinpact. Tlicii wo cun covcr 11 with a fiiiiL0 iiuinbor of local causality iirrig ibour- 
hoods B,. If IZ is non-empty, tlicii ,?I+(,!#) $ I+[S]. Let p E I+[S] -D+(E) i 4th p 
iiear N and supposo p E Bk. Siiico p E I+[S], a tiinolilce curve 7 oxists coiiiiecting 
S to p. Siiico p 4 D+(E), it follows that 7 meots If at a point p,, say. We wish to 
coiistruct a point Q E I+[S] -D+(E) with q < p ,  q 4 uk and q E B,, say. If p, 4 Bk 
we can acliiovo this by talcing Q just  to tho future of po on 7. I f  p , ~ B k  we follow 
tho past-inextondildo null goodcsic 5 through po 011 ZI+(P) (cf. (2.5)). Now y iiiust 
leave B k  (since Bk is compact) uiid so contains a point p l  4 i& on N+(P). We have 
p ,  < p ,  < p ,  so pI < p. Clioosing q now yl, with pl < q 4 p ,  wo liavo q 4 13, and 
q E B,, say, wbcre q E I t (pJ t I~[f f+-(J ' )]  = It[&] -D+(B) as required (of. (2.4)). 
ltopoating the proccduro, we can iiiid r E I+[S]  - D+(E) with r 4 q, r 4 B, and r E U,,, , 
say, otc. Since the B, are finito in nunibcr, thore inust be two of p ,  q, r ,  . . . , in the 
saind B,, liorice violating causal convoxity. Thus, fl if non-empty, must be non- 
coinpact, as required. 

Now by a well lriiown tlieorom (cf. Stoenrod 1951, p. 201) we can choose a 
sniootli (fiiture-dirccted) tinieliko vector ficld on M. Form the integraI curves {p] 
of this vector field. Tlicii each / I  wliicli ineets II inust also mcot E(sinco H c D+(E)), 
but there must bc some / I  = /lo wliicli meets B but 7wt H. Otlierwise the p'a ivould 
establish n, hoineomorphisin bctwecn B and If, which is impossible since 33 is 
compact and non-empty, wliilo 11 is noii-compact or empty. Chooso y = p0 n I+[Ej.  
Tlion y c int D+(E) and is futur~-iiicxteiidible as required. 

3. TIIB  TlI lcOREM 

We sliall begin by giving a precise statement of our theorem. 'l'lie form of state- 
ment \vo adopt is made primarily for the sake of generality and for certain 
matlieinntical advantagos. But in ordor that the theorem may be directly applied 
to physical situations, we single out tlio main spcial cases of interest in a corollary, 
This rccasts our main result in a inucli more suggestive and immediately usable form. 
Howover, tlio gciioruliLy of tlic stu,t,tuincnt given in tlio tliooroin will also yiold some 
advantagos as regards applications. It will enable a sinall amount of information 
to be extractod as to tho actual nature of tlio space-time singularities. Also, it is by 
1x0 means inipossiblo that tlio theorem, a~ stated, may Iinve relovanco h physical 
situations 0 t h  than ~~rociscly tlioso mliich we liavo coiiaidorcd hcro. We sliall follow 
tho statotneiit of tlio tlicoroin with somc oxpluiiotioiie arid iiitorprotatione. 

THEOREhI. No space-time M can satisjy all of the jollowi7y t h e e  requirements 
together: 

(3.1) 111 confai?u 110 closed Lin2ctik.e cztrvea, 
(3.2) every inezctedible causal geodesic iiL M contains a puir of conjugale poiids, 
(3.3) there p.a:is/s CG f d t t r e -  (or pnst-) trapped set S c M. 
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Lot us examine each of these three conditions in turn. With regard to (3.1), the 
exishnce of closed timelike o w e s  in any space-time model leads to very severe 
interpretative dificultios. It might perhaps be argued that the presence of a olosed 
tiiiielilre world-line could be admissable, provided tho world-line entored a region 
of sucli extroino physical conditions, or involved such large accelerations, that no 
physical observer could 'survive' making this trip into his own past, so tliat any 
'memory' of events would necessarily be destroyed in the course of the trip. 
However, it smms highly unlikely that tlie physical consequences of closed time- 
like curves can be eliminated by considerations of this kind. The existence of 
such curves can imply serious global consistency conditions on the solutions of 
hyperbolic differential equations.t We are reassurod by the tlieorem referred to 
as I1 in f 1 (cf. H) tliat the singularity problem of goncral relativity is not forcing 
us into considoration of closed timelike curves. 

Condition (3.2) of the thoorem-namely that for any timolike or null geodesic, 
tliero is a 'neighbouring geodeeic' which meets i t  a t  two distinct points-may, a t  
j h t  sigl. appear to be a strong one. However, this is not so. The condition is in 
fact one tliat could be expected to hold in an3 physically realistio non-singular 
space-time. It is a consequenw of three requirements: causal geodesic completeness, 
tlie energy condition and a ge~terality assumption. 

The requirement of causal geodesic completeness is simply that every timelike 
and null geodesio can be extended to arbitrarily large affie parameter value both 
into tlie future and into the past. (In the case of timelike geodesics we can use the 
proper time aa such a parameter.) In  crude term8 we could interpret this condition 
as saying: 'photons and freely moving particles cannot just appear or disappear 
off the odge of tlie universe'. A completeness condition of this kind is sometimes 
usod as virtually a &$nition of what is moant by a non-singular space-time (cf. 
Gerocli 1968a). Since one must normally 'delete' any aotual singular points from 
consideration as part of the space-time manifold, it is by some criterion such a8 
'incompleteness' that the 'holes' left by the removal of tho singularitios may be 
datocted. 

Tlie energy conrlitioii may be expressed aa 

tata E 1 i9ttpkS Rabl"tb < 0. (3.4) 

(We use a + - - - signature, with Riemann and Ricci tensor signs fixed by 
2v,,,V ', k,, = kdRfab, nab = h&.) with Einstein's equation8 

(3.4) beoomes ~ t ,  P 1 implies Tab fatb 3 fT,E. (3.6) 

(We have K > 0. To incorporate a cosmological conatnnt A, we would have to 
replacs !& in the above by Tab+hK"gab. Thus, (3.0), aa it stands, would still 

t For examplo, d, = connt. is tho only eolution of P4/W - S#/aZs = 0, on the (x, t)-torrls, 
for wliioh (t, 2) is idoiitificd with ( t+n,  =+win) for eaoh pair of intogore n, n~. 
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iaiply (3.4) so long as h Q 0.) [If, in an eigentetrad of Tab, 1 donotea the eitetgy 
deiuity mid pl ,  pa, pa  denote tho three principal pressures, then (3.6) can be written 
as 

a++pt  2 0, (3.7) 

togotlicr with a + p ‘  2 0, (3.8) 
wlioro i = 1, 2, 3. 

Tlie weak eiiergy condition is 

lala = 0 iniylios Babla16 Q 0, (3.0) 

wliicli is a coiisequoiico of (3.4) (as follows by a limiting argument). Tliis is oquiva- 
lent, assuming Einstein’s equations, t o  (3.8) (withut (3.7)) and follows fiom the 
pos i t ive-dc~dtc i~ess  of tlio onorgy oxpression Tabta16, for tata = 1. (Tliis is now 
irrcspoctive of tho value of h.) 

The assumption of generalily wo roquiro (oompare Hawking 196Gb) is that every 
cnusal gcoclosic y coiitriiiis soino poitit for wliicli 

(3.10) 

wlioro k,, is tangent to  y. If y is tinioldro, we can rowrik (3.10) as 

f i a b c d k b k  9 0. (3.11) 

(To sco this, traiisvoct (3.10) with kalcf.) 
ln any physically roulisLic ‘genoric’ modol, wo would oxpoct (3.10) to liold for 

euch y. For oxaiuplo, tlio coliclition can fuil for a tiinolilro goodosio y only if R,,,kakb 
vanislics at every point on y, and tlion only if the Weyl tensor is related in a vory 
particular way to  y (i.0. Ca6cdkbl& = 0) a t  every point on y. (For a geiierio space- 
titno this would not even occur a t  any point of any y !) Tho condition can fail for 
a null geodesic y only if Rtt6 lcakb vanislies at every point of y and tlio Woyl tensor 
lias tlio tangoiit direction to  y as a priiicipal null cliroction a t  every point of y 
(cf, P, p. 102). (In a gonoric space-tiino, tliore would not ho any null g~odssio y 
which is directed along a priiicipul null direction at siz or more of its points. 
Tliis is because null gcodosics €win a five-dimensional system. It is n conditions 
on a null goodosic that it bo diroctod along a principal iiull diroctioii at n of its 
poiiits, so such null gcodcsics €orm a (G -n)-&inensiond system in a gonorio spam- 
t h o . )  Wo can tlius ronsoiinbly suy that i t  is only in very ‘spcciul’ (and tlioraforo 
pliysicully unrcalisLic) inodele that  tlio condition will fuil. 

Wc must now ahow why tlicsc tlircc conditions togctlicr imply (3.2). Tlio fuct 
Lliut tlioy do i8 cssoiitiully ~1 coiisoquoiico of tlio Ra3chawlhuri olroct (1955 , cf. also 
P, p. 160; coinpro also Myors 1941). Tlio icloa licro is to proccod so fur along tlio 
causal gcodosic y that we gct Loyoiid tlio focal longtli of the offeotive ‘lens system ’ 
duo to tl1o curvuLurc alot~g y (coinpuro l’oiiro8o 1965b). Considor a cnusnl goodosic 
y boloiigiiig to a Iiyporsurlico orLliogoiin1 coiigruonco 1’ of causal goodosics. Wo 
aro inhrostctl in tlio mcmbors of r only in tho iiumcdiato nciglibourhood of y. 
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When y is a null geodesio, we shall, for oonvenience, apeoify that all the other 
members of r shall dso be null. In this oase we shall, in faot, be interested only in 
those members of P, near y, whioh generate E null hypersurface oontaining y. 
When y is time-like we define the veotor fiold 10 to be the unit future-&otd 
tangenta to the oui~ea of P. When y is null, we ohoose a veotor field P to be 
smoothly varying future-directed tangents to the ourvea of r, where F is pardlelly 
propagated along eaoli curve. We have 

Vatb = Vbta, tat, = 1, DP = 0, with D - taVu (3.12) 
and 

ZteValbi = 0, Ea& p 0, DP = 0, with D p IoVo (3.13) 

respeotively. 
Let us first consider the timelike case. Riooi identities give, with (3.12), 

&adtbLd D(veto)+(vefld) (3.14) 

Now &,,,dt*~(' and V0td eaoli auniliilato to wlion transveoted with it on any froe 
index. Introduce en ortlionormal baeis frame, with ta aa one of the basis elemente. 
Let Qua mid U,, donoto the symmetrio (3 x 3) matrices of spatial oomponente of 
Robod&d and V o t b ,  reSPt3OtiV0lJ'. Then (3.14) beoomea 

(3.16) 

The matrix Qafl defines the podesio deviation (relative acceleration) of r; the trace- 
frco part o€ Uaa defines the shear of r. W e  clohie the divergence 8 of r to be 

e vats 3: - uea. (3.16) 

Taking the trace of (3.16), we get 

D'fV 4 ( U a p ~ / 8 p p r ' p ~ - ~ $ 8 a $ U ~ ~ ~ f - Q y y  0 (3.17) 

by Soliwarz's inequality and the energy condition (3.4) (whioli asserts Q,, 2 0). 
Equality holds only when Q,, = 0 aid U,,,, is proportional to Ssp (so that the 
would liavo to vanish). 

Suppose R,,,tbld 9 0 at some point z of y,  in acoordanoe with (3.11). Then 
Qap + 0 at z. We dial1 sliow, f i t ,  that this implies that the strict inequality holda 
in (3.17) at  Boino point y on y with z 4 y. For if it turns out that QaP E &,, at x 
(for solnap), then olearly .I. 0 at z impliw Q,, 9 0 at %,so that strict inequality 
holds at y = m. On the other hand, suppose Qaab ie not of this form at z. Then by 
(3.16) Uar cannot bo proportiolial to Sap throughout any opon segment of y whose 
closuro iiioludos z. Tlius, tlie expression in parentheses in (3.17) must fail to vanhli 
nt somo point y E B with z 4 y, so the strict inequality in (3.17) must hold at y. 

Lot tho rod qunntity W bo defiiiod along y na a non-zoro solution of 

DW = jUlV (3.18) 
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(so tliut IVJ measures a spucelilro 3-volume elemoiit ortliogonal to y and Lie 
trnnsportcd along tho curves o f f ) .  Then (3.17) givest 

DaW < 0 (3.10) 

along y, providcd 1V remains positive. Furtlierinore tho strict inoquaiity holds at 
y, Choosing IV > 0 at x ,  we see from (3.18) and (3.19) tlint if 0 Q 0 at r, tlicn IV 
becomes zero a t  80me point q on y with x 4 q. Furthermore, if 0 > 0 a t  x ,  tlion IY 
becomes zoro at somo p E y with p < r. This is provided wo assume tliat y is a 
complete geodesic. (By (3.12), wo can interpret tlie 'D' in (3.17), (3.18), (3.10) as 
d/ds, wliero s is 8 propor time parameter on y. Tlio compIeteiiess condition eneuros 
tliat tlio rango of s is unbounded.) Wlion W bocomos mro, wo liave afocal point 
of I' (point of the caustic) at wliicli 0 bocoines infinite (siiico 0 = 3D In IV). 

Now fix tlio causal goodesic y und fix a point z on it ut wliioh (3.1 1) holds: tlieii 
allow tlie congruonco I' to  vary. Tlius, wo considor solutions of (3.16), where tho 
matrix Q U p  is a givcii function of s. We elinll be intorcstcd, in tho fist instance, in 
solutions for wliicli 0 2 0 at x .  'L'hun by tlio abovo discussion tliore will bo a fist 
focal point on y, for cadi 1' (wit11 x 4 qr). Each solution of (3.lG) is fixed onw 
tho valuo of Uup I= Uup is fixed at z (with u,, 2 0). Thus, qris  a function of the 
nine Uap, Eurtliermoro, i t  must bc a continuous function. We noto that if any com- 
ponoat of &a is vory largc, tlicn qr. is vcry iioar z (sinco, in tlio limit Qup becotnos 
irrelevunt and tho solution resoniLlcs tho ilat spaco-timo cuse). It folloms that tlie 
qr's must lio in a boundod portion 6 of y. (The ono-point compactificatioii of tlio 
spuco of UUp, witli U,, 2 O is niappod continuously into y, with tlio point at 
infinity bcing niappod to  x itsclf. Thus, the image must be compuct.) Choose a 
point q ~ y ,  to tlie future of c[ and lot Tcoiisist of tile tiinolilto goodesics (near y )  
througli 8. If tlioro were HO conjugato pohit to q on y, then tho r congruence would 
bo non-singular to  the pest of q. Wo cannot liave 0 6 0 at x ,  since this would 
imply q E c[. But wo liave seen tliut 0 > 0 iinplics anothcr focal poiiit to tho past of 
z. 'l'liis ostublislics tho existciico of a pair of conjugato points on y in tho timclilre 

Wlien y is null, tlio argumont is essoiitially similar. 111 phcc of (3.14) w o  can 
1180 tlio Saclie oquutions (cf. P, p. 1G7) wliich liavo a matrix form similar to (3.16). 
The components of tlie curvaturo tensor wliicli oiitor iiito tlieso oquations aro just 
tlie four indopondcnt real (or two independent complex) components of 
Z,nAb,ed,cl,,PZ~~. Tho analoguo of 0 is - 2p = V,P. In  pluco of I Y  wo have t~ 'lumino- 
sity l>arnrneter' L, satisfying DL = -pL and DaL 2 0. The conclusion is tlio 
samo : If (3.10) holds a t  so~no point on y, if y is coinplcto and if tho oiiergy coiiditioii 
holds (in this caso tho woalr energy condition (3.0) will suffico), tlien y contains u 
pair of conjugate points. 

t Eqiintioti (3.19). wliioh follows From R,,kaEb < 0, i R  ossciitinlly the stntoinont, tlint 
'gravitntion is alwnye attrective' (of. $1). I t  tolls us tlint tlio geoduaios of r, ~ioiglibociritig to 
y. linvo a tciidoticy to oocelerato to\vnrda y-iti tho sonee tlint frooly fnlliiig 3-voluines aooolortlto 
iiiwnrds. 

0 0 

0 

0 

0 0 

C M 0 .  
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We now come to (3.3), the final condition of tlie theorem. A drawback of this 

conditiai, mlien it coines to appliocltions, is that we may require considerable 
inforniatioii of a global character concerning the space-time A¶, in ordor to decido 
tvlietlior or not a givoii sot S is future-trapped. However, in certain special cwes, 
wo can iiivoke tlio weak energy condition and null-completeness, to oilable us to 
infer, on the baais of these two properties, that a certain set should bo future- 
traypod. Aii example of such a set S is a trapped surface (Penrose 1965 a ;  P, p. 211), 
defined &R a compact spacolilce %surface with tlio property that both systems of 
null goodosics which intersect S ortliogonaIIy converge a t  S, as wo proceed into tho 
future. (For simplicity, suppose S to be achronal.) We oxpeot trapped surfaces to 
arise wlien a gruvitutional collapse of a localized body (e.g. a star) to *ithin its 
Schwarzachild radius talros place, which does not deviate too much from spherical 
symmetry. Tho sigiiificant foature of a trapped surface arises from the fact that 
tlio iiull geodosica iueeting i t  ortliogonally are the gcnerators of E+(S).  If these 
null geodesics start out by converging { p  > 0)  then by the earlier discussion 
(Raychaudliuri cffcct in tlio iiull cam-wouk onergy condition aiid null complota- 
iicss aesumed), tlioy must continuo to converge until thoy encouiit6r a focal point. 
Eithor then, or bofore then, tlioy must leavo E+(S) (cf. P, p. 218). Since S is coni- 
pact and since tlie focal points must inovo continuously with the geodesic (being 
obtaiiiablo via integration of curvature), it follows that the geodesic segments 
joining S to the focul poiiits must sweop out a compact set. Thus E+(S), being the 
iiitorsectioii of this compact set with the closed set l+[S] ,  must also be coinpacG 
so S is futurc-trappod aiid tlie thcorom applies. 

Prooieely the same argument will apply in more general situations. For example, 
if S ia any coinpuct acliroiial set whose edge is smooth and at  which the null 
geodesios wliich forin tho local boundary of its future (tlieese will be orthogonal 
to odge(5)) coitwcrge at  edge(8) as wo proceod into the future, then (again assuming 
iiull coniploteiioss and tlio weak energy condition) S will be futuro-trapped. More 
gonorally still, we need not require that the null geodcsics which forin the local 
bouiidury of tho fiiture of S actually converge at edge(S). It is only necessary that 
we should have somo re8won for believing that they converge somewhere to the 
futura of S. In particular, S might contain but a single point p ,  located somewhere 
mar tlie cciitre of a collapsing body, but at a time bofore the collapse liaa drusticully 
aHected the geometry at  p. Then, under suitable ciroumstances the future null 
coiio of y cun encountor sufficient collnpsing mattor that it (locally) stnrta con- 
verging again. Tlius every null geodesic through p mill encounter a point conjugate 
to p in the futim (assuming null coinplote~ie~~ and the weak energy condition), so 
again theso null goodosio segmeiits sweep out a compact set. Ita intersection with 
f + ( p )  ia B+({p)>, implying that E+(&}) is coinpact, so b) is future-trapped and 
tho theoroin applies. 

In  its tiino-roversod furiii, this last exaiiiplo has rolevance to cosmology. If tho 
point p refers to tlio earth at tlie present epoch, tho riuli goodesictr into the pmt, 
tlirough p swcep out a region which can bo talcen to roprcseiit that portioii of tho 
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univorso which is visiblo to  11s now. If sumciont mattor (or curvature in general) 
olicountors tlicso null geodesics, tlien tho divorgenco ( - p )  of tho geodosica may be 
oxpochd to cliungo sign somowliore to  tho paat of p. This sign change occurs whore 
an  object of givon size iiitercopting the null ray snbtonds its inwin~uiit solid axgle 
nt p .  Tlius, tho ezislence of sucli a inaxiinuin solid aiiglo for oLjccLs in oaoli clircc- 
tion, inay bo tukcn aa tlio physical interpretation of this typo of pust-trapped set 
{p } .  Again tlie tliooroin applics. In an appondix we give an argumoiit to  sliow that 
tlie royuired conditioii on p sconis iiidcod to be snt ishd in our univorso. 

A~iotlicr exaniplc of a futurc- (or past-) trapped sot is any achronal sot ivliich is 
a cotitpact spacelike h3persurface. (If we do not asauine that  tho Iiypersurfaoo is 
aclironnl, wo can produco a ‘copy’ of it which i s  aclironal by talring a euitablo 
oovcring manilold of tlio ontiro spacc-tiino, of. €I. Thus, wo uctuully loso 110 

goiioraliLy by uasuiniiig that S is uclirond.) In this caso, sinco odgo(S) a 0,  we 
liavo E+(S) = S, so E+(S) is compact. Honco tho tlioorcm applies to ‘closod 
miivorso ’ modela. It ia possibla that still otliocr situstioils of physical intorest might 
arise in whiclr a fuLuro- (or pust-) truppod sot S would Lo inforrod aa existing 
(perhaps on tlio basis of complobnoss or snorgy aasumptions). 

COBOLLARY. A space-tinte ill caitiiot satisfy causul geodcsic coiiipletencss if, together 
with Eiiuteiii’s cquatioiis ( 3 4 ,  the followiiq four co?ulitioiu I~old: 
(3.20) ill wiitaiils 1u) closed tivielike curves. 

(3.21) lhe c w q p ~  coriditioic (3.6) i s  satisfied ul cvcrg poi& 

(3.22) tlbe gc7rerality condilioii (3.10) is satisfied for every causal geodcsic, 

(3.23) ill coizlaiirs either 

Wo aro now in a positioii to state tho corollary to  our tlieorom. 

(i) a k.appcd surjacc, 

(ii) a point p for which the convergence of all the irull geodesics tlmugh p 
clmrges sign somewhere to the past of p ,  

(iii) a coiupact spacelike hypersurface. 

or 

or 

We may interpret failure of tho causal goodosio completeness condition in our 
corollary aa virtually a statoinont that  any spaco-tho satisfying (3.20)-(3.23) 
‘ possosscs a singularity ’ (cf. Gorocli 1 9 6 8 ~  and our earlior romarlts). However, 
ono cannot concludo, on tlio batlis of tho corollary, that  such a singularity ncod 
iiocossarily be of tho ‘infinite ciirvaturo’ typo. Altliorigli ono might infor that  in 
some S C ~ L , ~  a ‘maxiinally orlondod’ space-timo satisfyiiig (3.20)-(3.23) should 
obtain arbitrurily largo curvatures, there aro, ~iovortholcss, otlior possibilitios t o  
considor (cf. 14). In fact, very littlo is ltnown about tlio nature of tlio spaco-time 
siiigularitius urisiiig in goncrul rolutivity otlior t11c1.n in Iiiglily symmotrioal situa- 
tions. For this roaaoii, i t  is wortli pointing out tho ininor inforonco tliut cnii bo 
iiindo t&out tho iiiLtiiro of tlioso singulariLiofl if wo rovort baclt to our origiiinl 
etaturuont ol‘ Llio tlioororii. Ylio irnplicution is, virtudly, tliut tIq)iwo-tliiiio scJisJying 
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(3.20)-(3.23) must contain a causal goodesio which possesses no pair of conjugate 
points. At a first guess, one might have imagined that causal geodesice entering 
very large curvature regions would be inclined to possess many pains of conjugate 
points. Instead, we 808 that our theorem implies that BOW causal goodeaio 'enters 
(I singularity' (i.0. is conqdsd to be goodoeimlly inconiplote) hforo any rcpated 
focusing has time to teke place. 

Proof of the theorem: 
Tale S as futuro-trapped. Then, by leinma (2.12), thero is a futuro-inoxtondible 

timelilce curve y c int D+(rC+(Sj). (That strong causality holds for 64 follows from 
lomma (%lo).) Define T = I-[y]  n E+(S).  We shall show that T is past-trapped. 
('l'hat T is closod and aohronal follows at  oiico sinco I-[yJ is closed and B+(S) is 
closed and aohronal.) Now, shce y c D+(E(S)),  every past-inextendible timelike 
curve with future end-point on y must cross A!+(&'). More partioularly, it must 
cross T. Also, 13" c I-[y] .  Thus P [ T ]  is simply a portion of I-[y] 'out off' by T .  
Examining the boundaria of them sets, we seok[T]  c T U I-[?]. We are interested 
in B-(IP) - T. This is gonerated by null geodesics {/?} on l - [T]  with future end-point 
on T fat edge(T)). These null geodesics can be oontinued on I-[?] inextendibly 
into the future. (For, by lemma (24, each point of I-[?] is the past end-point of 
a null geodesio on &[y] whioli continues future-inextendibly unless it meob y. 
But i t  oloarly cminot moot y, sinco y is timeliko and futuro-hextondible.) But, by 
(3.2), every gonerator /? of f-[TI must, whon maximally extonded, contain a pair 
of conjugate pointa p, q, with p 4 q, say. By lemma (2.9), p cannot lie 011 k [ y ]  
(so p E I-[yJ). Thus j3 must contain a paat ohd-point either a t  p ,  or to the future 
of p .  Now T and edgo(T) are compaot (being closed subsets of the  compaot set 
I$+(&)). Since f i  meets edge(T) and since conjagate poinlte vary continuously, 
(boing obtainablo RE intograls of curvature, of. Hioks 1964, H) we can choose p 
and q, for eaoli j3, so that the segment of the extension of /? from p to q sweeps out 
a compact region. Thus, the negment of the extension of /9 from p to edge(T) ale0 
R W V O O ~ S  out some compaot region C of N. We have E-(T) = f-[T] n (0 u T), 
showing that E-(T) is a closed subset of the compaot set C u T and is therefore 
itself compact. Thus, T is past-trapped, as required. 

int D-(E-(2'). 
Choose a point a, E a. We have a, E I-[y] ,  so we find c, E y with a, 4 c,,. Choose 
tho soquonco a,, a,, an, . . . , e y ,  recoditig intolthe past iudefinitdy (i.e. with no limit 
point). Similarly choose co,cl,c~, . . . E y proweding into the futureindoflnitoly. We 
have at 4 ct for all i. Now a{ E int U-(E-(T)) and C{E int D+(E+(S)). Thudby 
loinma (2.7) J+(at) n J-[TI is compact (with strong causality holding throughout) 
and so is J-(ct) n J+[S].  It is easily soon that J+(ac) n J-(c,), is a closod subsot of 
{J-(ct) n J+[ls]} u {J+(ai) n J - [ ! Q  and so is also compact with strong culusality 
holdiag throughout. Tlius, by lomma (2.11) thoro is a maximal causal podcsia 
froin ccI to cl. Now pi miiRt incot Z', wliicli i R  oompct, nt qt, any. As i+m, tlicro will 
Lo mi ~ccciitiulation point in 2' niid uii acculnrilntion cnuacd direotion at  q. 

By lemma (2.12) there exists a past-inextendible timelike curve 
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546 
Clioosc tliu ciiusul gcudwio 11, tlirough T, in this diroction, so 11 is approaclicd 
by ,I+ By (3.2), p contains a pair of conjugate poiiitu, u arid v,  say, with u < u. 
Siiico ooiijugulo points vary continuously, wo must liavo u as a liiuit point of soine 
{u,} aiid v as a liinit point of soino {v,} whore u, aiid vt aro conjugate pointa on the 
inaxiinul oxhiision of p,, tho OL,} boiiig choson to convorgo on p. But {us} and {c~} 
caiinot ncouniuluto at any poiiit of tlie sogmcnt uv of / I .  HOJ~CO, for some large 
onough j, ‘I/ will lio to tliu past of u, in p, and c, to tho future of u, on p,. Tliis 
contradicts leiniiia (2.5) aiicl tlie inarimality of p,, Tho tlicorom is thus ostclblisliod. 

s. w. I-II-Iewl&1g a11d It. l’enroso 

Tlio authors ~ r o  gruteful to C. W. Misiicr a.nd to 1%. I?. Gerocli for valuablo 
discussions. 
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APPENDIX 

We wish to show that there is onougli matter on tlio pnst light-cone of our 
presoiit location p l;o imply that tho divergence of this cono changea sign some- 
wliore to the past of p .  A suffioiont condition for tliie to be so is that thore should 
be (&fine) distancw R, and R, such that dong every paat-directed null geodesic 
froin ’P. 

(This formula can bo obtaincd by using a variational approacli similar to that 
used in Halvkiilg (1966a).) As iii ( 3 4 ,  IC = 8nQ, where Q (= 7.41 x 10-80 cm g-1) 
is the gravitational constant. (Length and time units are related via c = 1, 
i.e. 3 x 10‘0 om - 18.) 
In this integral, tlio vector la is a future-directad tangent to the null geodesic 

and r is s corresponding sffie parameter (lavat = - 1). Here Za is pmallelly pro- 
pagated dong the null geodosio and is such that t = 0 at  p.and lava = 1, whom 
Ua is bho future-daectod unit timeliko vector reprosenting the loml standard of 
rest at p .  
In a recent paper (Ha~vlung & ElJis 1968) it was liown that, with certain 

wsumptiona, obsorvations of tho inicrowavo background radiation indicate that 
not only do the paat dirocted null geodesica from ua start ‘ converging again ’ but 
so also do tho timolilce ones. As we are ooncerned only with the null geodesics, 
the assumptions w e  shall need will be weaker. 
The obeorvatGons sliow that between the wavelengths of 20 om and 2 mm the 

background radiation is iaotropio to within 1 % and has a spectrum close to that of 
a black body at 2.7 I<. Wo shall assumo that this spectrum and its isotropy indicate 
not that tho radiation was necessarily creatod with this form, but that it has 
undorgone repeated scattering. (We do not w u m e  that the radiation is necessarily 
primoval.) Thus there must be suf6cient mattor on each past directed null geodcsio 
from p to malo tho option1 doptli large in that direction. We sliall show that this 
ninttor will bo sufliciont to cause tho inoquality (A 1) to bo satisfied. 

Tho ernalloat ratio of donsity to opacity a t  them wavelongtha will l o  obtclinod 
if the mattor consists of ioiiised hydrogcn in which case there would bo scattoring 
by free oloctrons. Tho optical doptli to diataiico R would bo 

where u is the Tliomson scattering cross-section, m the moss of a hydrogen atom, 
p the density, inoasured in g cm-s, of tho ionised gaa and Va the local volooity of 
the gas. The red-shift 2 of the gar, is given by (Wa- 1). We w u m e  that this in- 
creme8 down our past-light cone. ks gahxies are observed with red-shifts of 0.40 
most of tho soattoring must occur at red-shifts greater thnn this (in fact if tho 
qt~ascrrs really are at cosmological distmces, the scattering must occur fit red-ehifta 
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of groubr tliaii 2). Witli a Hubblo constaiit of 100 km 8-1 Mpc-1, a red-shift of 
0.4 corrcsponds to  a distance of about 3 x l o 2 7  am. Taking R, to be thii distance, 
tho coiitributioii of tho gas density to tho integral in (Al) is 

wliilc tlio optical doptli of gas a t  rod-shifta greater than 0.4 is 

hs lW,, will bc grcutcr tliaii 1.4 for r > R, it can bo 80811 tliat the inequality 
(Al)  will bc satisfiod ut an optical doptli of about 0.1. I f  tlio optical depth of the 
Univorse wore loss tlian this, one would not expoot oithor o blaclc body spectrum 
or a high dcgroe of isotropy, as tho yliotons would not suffer sufficient collisioiis. 
Xvon if tho radiation aroso from an isotropio distribution of black-body emitters 
at a Iiiglior tomporuture but covoriiig lorn than & of the sky, what ono would see 
would tlion bo a dilutn ‘grey ’ body spctruiriwliicli could agroowitli tlio observations 
botwecn 20 and 2 ciii but which would iiot fit tlioso at  9 and 2 inm. Thus wo oan be 
fairly certain tliat tho roquired condition is satisfied in tho observed Universe. 
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Introduction 

We know from observations during eclipses and radio measurements of quasars pass- 
ing behind the sun that light is deflected by gravitational fields. One would therefore 
imagine that if there were a sufficient amount of matter in a certain region of space, 
it  would produce such a strong gravitational field that light from the region would 
not be able to escape to infinity but would be “dragged back”. However one can- 
not really talk about things being dragged back in general relativity since there are 
not in general any well defined frames of reference against which to measure their 
progress. To overcome this difficulty one can use the following idea of Roger Pen- 
rose. Imagine that the matter is transparent and consider a flash of light emitted at 
some point near the centre of the region. As time passes, a wavefront will spread out 
from the point (Fig. 1). At first this wavefront will be nearly spherical and its area 
will be proportional to the square of the time since the flash was emitted. However 
the gravitational attraction of the matter through which the light is passing will de- 
flect neighbouring rays towards each other and so reduce the rate a t  which they are 
diverging from each other. In other words, the light is being focused by the gravita- 
tional effect of the matter. If there is a sufficient amount of matter, the divergence 
of neighbouring rays will be reduced to zero and then turned into a convergence. 
The area of the wavefront will reach a maximum and start to decrease. The effect 
of passing through any more matter is further to step up the rate of decrease of the 
area of the wavefront. The wavefront therefore will not expand and reach infinity 
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I 
+TRAPPED SURFACE AREA 

OF WAVEFRONT DECREASING 

*AREA OF WAVEFRONT 
REACHES A MAXIMUM 

TIME 

I S P A C E  FLASH OF LIGHT EMITTED 

d-AREA OF WAVEFRONT ---- ----_ 
INCREASING 

Fig. 1.  The wavefront from a flash of light being focused and dragged back by a strong gravitational 
field. 

since, if it were to do so, its area would have to become arbitrarily large. Instead, 
it is “trapped” by the gravitational field of the matter in the region. 

We shall take this existence of a wavefront which is moving outward yet de- 
creasing in area as our criterion that light is being “dragged back”. In fact it  does 
not matter whether or not the wavefront originated at a single point. All that is 
important is that it should be a closed (i.e. compact) surface, that it should be 
outgoing and that a t  each point of the wavefront neighbouring rays should be con- 
verging on each other. In more technical language, such a wavefront is a compact 
space like 2-surface [without edges] such that the family of outgoing future-directed 
null geodesics orthogonal to it is converging at each point of the surface. I shall 
call this an outer tmpped surface (or simply, a trapped surface). This differs from 
Penrose’s definition (Penrose, 1965a) in that he required the ingoing future-directed 
null geodesics orthogonal to the surface to be converging as well. The behaviour of 
the ingoing null geodesics is of importance in proving the occurrence of a spacetime 
singularity in the trapped region. However, in this course we are primarily interested 
in what can be seen by observers at  a safe distance. Modulo certain reservations 
which will be discussed in Sec. 2, the existence of a closed outgoing wavefront (or 
null hypersurface) which is decreasing in area implies that information about what 
happens behind the wavefront cannot reach such observers. In other words, there 
is a region of spacetime from which it is not possible to escape to infinity. This is a 
black hole. The boundary of this region is formed by a wavefront or null hypersur- 
face which just does not escape to infinity; its rays are asymptotically parallel and 
its area is asymptotically constant. This is the event horizon. 

To show how event horizon and black holes can occur 1 shall now discuss the one 
situation that we can treat exactly, spherical symmetry. 

1. Spherically Symmetric Collapse 

Consider a non-rotating star. After its formation from an interstellar gas cloud, there 
will be along period (109-101* years) in which it will be in an almost stationary state 
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burning hydrogen into helium. During this period the star will be supported against 
its own gravity by thermal pressure and will be spherically symmetric. The metric 
outside the star will be the Schwarzschild solution - the only empty spherically 
symmetric solution 

-1 
dr2 - r2(d8' + sina8d& ( 1 . 1 )  

This is the form of the metric for r greater than some value rg corresponding to the 
surface of the star. For r < ro the metric has some different forms depending on 
the distribution of density in the star. The details do not concern us here. 

When the star has exhausted its nuclear fuel, it begins to lose its thermal energy 
and to contract. If the mass M is less than about 1.5-2M0, this contraction can 
be halted by degeneracy pressure of electrons or neutrons resulting in a white dwarf 
or neutron star respectively. If, on the other hand, M is greater than this limit, 
contraction cannot be halted. During this spherical contraction the metric outside 
the star remains of the form (1.1) since this is the only spherically symmetric empty 
solution. There is an apparent difficulty when the surface of the star gets down 
to the Schwarzschild radius r = 2M since the metric (1.1) is singular there. This 
however is simply because the coordinate system goes wrong here. If one introduces 
an advanced time coordinate v defined by 

v = t + r + 2Mlog(r - 2M) (1.2) 

the metric takes the Eddington-Finkelstein form 

2M ds2 = ( 1  - --) dv2 - 2dvdr - r2(d02 + sin2 8d42) 

This metric is perfectly regular at r = 2M but still has a singularity of infinite 
curvature at t = 0 which cannot be removed by coordinate transformation. The 
orientation of the light-cones in this metric is shown in Fig. 2. At large values 
of r they are like the light-cones in Minkowski space and they allow a particle or 
photon following a nonspacelike (i,e., timelike or null) curve to move outwards or 
inwards. As r decreases the light-cones tilt over until for r < 2M all nonspacelike 
curves necessarily move inwards and hit the singularity at r = 0. At r = 2M all 
nonspacelike curves except one move inwards. The exception is the null geodesic 
r, 8, q5 constant which neither moves inwards nor outwards. From the behaviour it 
follows that light emitted from points with r > 2M can escape to infinity whereas 
that from r 5 2M cannot. In particular the singularity at  r = 0 cannot be seen by 
observers who remain outside r = 2 M .  This is an important feature about which I 
shall have more to say later. 

The metric (1 .3)  holds only outside the surface of the star which will be repre- 
sented by a timelike surface which crosses r = 2M and hits the singularity at r = 0. 
Inside the star the metric will be different but the details again do not matter. One 
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Fig. 2. The collapse of a spherical star leading to the formation of trapped surfaces, event horizon 
and spacetime singularity. 

can analyse the important qualitative features by considering the behaviour of a 
series of flashes of light emitted from the centre of the star which again is taken to 
be transparent. In the early stage of the collapse when the density is still low, the 
divergence of the outgoing light rays or null geodesics will not be reduced much by 
the focusing effect of the matter. The wavefront will therefore continue to increase 
in area and will reach infinity. As the collapse continues and the density increases, 
the focusing effect will get bigger until there will be a critical wavefront whose rays 
emerge from the surface of the star with zero divergence. Outside the star the area 
of this wavefront will remain constant and it will be the surface r = 2M in the 
metric (1.3). Wavefronts corresponding to flashes of light emitted after this critical 
time will be focused so much by the matter that their rays will begin to converge 
and their area to decrease. They will then form tmpped surfaces. Their area will 
continue to decrease, reaching zero when they hit the singularity at r = 0. 

The critical wavefront which just avoids being converged is the event horizon, 
the boundary of the region of spacetime from which it is not possible to escape 
to infinity along a future directed nonspacelike curve. It is worth noting certain 
properties of the event horizon for future reference. 

30 



(1) The event horizon is a null hypersurface which is generated by null geodesic 
segments which have no future end-points but which do have past end-points 
(at the point of emission of the flash). 

(2) The divergence of these null geodesic generators is positive during the collapse 
phase and is zero in the final time-independent state. It is never negative. 

(3) The area of a 2-dimensional cross-section of the horizon increases monotoni- 
cally from zero to a final value of 161rM’. 

We shall see that the event horizon in the general case without spherical sym- 
metry will also have these properties with a couple of small modifications. The first 
modification is that in general the null geodesic generators will not all have their 
past end-points at the same point but will have them on some caustic or crossing 
surface. The second modification is that if the collapsing star is rotating, the final 
areas of the event horizon will be 

8a[M’ + (M‘ - L a ) 4 ]  

where L is the final angular momentum of the black hole, i.e., that part of the 
original angular momentum of the star that is not carried away by gravitational 
radiation during the collapse. This formula (1.4) will play an important role later 
on. 

In the example we have been considering the event horizon has another property 
in the time-independent region outside the star. It is the boundary of the part 
of spacetime containing trapped surfaces. This is not true however in the time- 
dependent region inside the star. There has in the past been some confusion between 
the event horizon and the boundary of the region containing trapped surfaces, so it 
is worth spending a little time to clarify the distinction. Let us introduce a family of 
spacelike surfaces S( r )  labelled by a parameter r which we shall interpret as some 
sort of time coordinate. In the example we are considering T could be chosen to be 
v - r but the react form is not important. Given a particular surface S(r) ,  one can 
find whether there are any trapped surfaces which lie in S(r). The boundary of the 
region of S(T) containing trapped surfaces lying in S ( r )  will be called the apparent 
horizon in S(r ) .  This is not necessarily the same as the intersection of the event 
horizon with S ( r )  which is the boundary of the region of S ( r )  from which it is not 
possible to escape to infinity. To see the differences consider a situation which is 
similar to the previous example of a collapsing spherical star of mass M but where 
there is also a thin spherical shell of matter of mass 6M which collapses from infinity 
at  some later time and hits the singularity at T = 0 (Fig. 3). Between the surface 
of the star and the shell the metric is of the form (1.3) while outside the shell it 
is of the form (1.3) with M replaced by M + 6M. The apparent horizon in S(r l ) ,  
the boundary of the trapped surfaces in S(r1), will be at T = 2M. It will remain at 
T = 2M until the surface S(r2) when it will suddenly jump out to r = 2(M + 6M). 
On the other hand, the event horizon, the boundary of the points from which it is 
not possible to escape to infinity, will intersect S(r1) just outside T = 2M. It will 
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SINGULARITY 
r = 2 ( M + 6 M )  
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H OR1 ZON 

Fig. 3. The collapse of a star followed by the collapse of a thin shell of matter. The apparent 
horizon moves outwards discontinuously but the event horizon moves in a continuous manner. 

move out continuously reach T = 2(M i- 6M) at the surface S(r2). Thereafter it will 
remain at this radius provided no more shells of matter fall in from infinity. 

The apparent horizon has the practical advantage that one can locate it on a 
given surface S ( r )  knowing the solution only on that surface. On the other hand 
one has to know the solution at  all  times to  locate the event horizon. However, 
the event horizon has the mathematical advantage of being a null hypersurface 
with nice properties like the area always increasing whereas the apparent horizon 
is not in general null and can move discontinuously. In this course I shall therefore 
concentrate on the event horizon. I shall show that it will always coincide with or 
be outside the apparent horizon. During periods when the solution is nearly time 
independent and nothing is just about to fall into the black hole, the two horizons 
will nearly coincide and their areas will be almost equal. If the black hole now 
undergoes some interaction and settles down to another almost stationary state, the 
area of the event horizon will have increased. Thus the area of the apparent horizon 
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will also have increased. I shall show how the area increase can be used to measure 
the amounts of energy and angular momentum which fell into the black hole. 

2. Nonspherical Collapse 

No real star is exactly spherical; they all are rotating a bit and have magnetic fields. 
One must therefore ask whether their collapse will show the same features as the 
spherical cwe we discussed before. One would not expect this necessarily to be 
the case if the departure from spherical symmetry were too large. For example 
a rapidly rotating star would not collapse to within T = 2M but would form a 
thin rotating disc, maintaining itself by centrifugal force against the gravitational 
attraction. However one might hope that the picture would be qualitatively similar 
to the spherical case for departures from spherical symmetry that are small initially. 
One can divide this question of stability under small perturbations of the initial 
conditions into three parts. 

(1) Is the occurrence of a singularity a stable feature? 
(2) Is the form of the singularity stable? 
(3) Is the fact that the singularity cannot be seen from infinity stable? 

The Einstein equations being a well behaved system of differential equations have 
the property of local stability. The solution at  nonsingular points depends continu- 
ously on the initial data (see Hawking and Ellis, 1973. 1 shall refer to this as HE). 
In other words, given a compact nonsingular region V in the Cauchy development 
of an initial surface S, one can find a perturbation of the initial data on S which is 
sufficiently small that the solution on V changes by less than a given amount. One 
can apply this result to show that small initial departure from spherical symmetry 
will not affect the fact that the wavefronts corresponding to flashes of light emitted 
from the centre of the star will be focused and made to start to reconverge. It 
follows from a theorem of Penrose and myself (Hawking and Penrose, 1970) that 
the existence of such a reconverging wavefront implies the occurrence of a spacetime 
singularity provided that certain other reasonable conditions like positive energy 
density and causality are satisfied. Thus the answer to question (1) is “yes”; the 
occurrence of a singularity is a stable feature of gravitational collapse. 

As the local stability result holds only at non-singular points it cannot be used 
to answer question (2): is the form of the singularity stable? In fact the answer 
is “no”. For example adding a small amount of electric charge to the star changes 
the singularity from that in the Schwarzschild solution to that in the Reissner- 
Nordstrom solution which is completely different. It is reasonable to expect that a 
small departure from spherical symmetry would also completely change the singu- 
larity. This makes it very difficult to study singularities since one does not know 
what a “generic” singularity would look like. The work of Liftshitz, Belinsky and 
Khalatnikov suggests that it is probably very complicated. Fortunately we do not 
have to worry about this in this course provided we have an affirmative answer to 
question (3): is the fact that the singularity cannot be seen from infinity stable? 
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One cannot use the local stability result to answer this since it applies only to the 
behaviour of perturbations over a finite interval of time. The question of whether 
the singularities can be seen from infinity depends on the behaviour of the solution 
at  arbitrarily large times and at  such times the perturbations might have grown 
large. In fact this question which is absolutely fundamental to the whole study of 
black holes has not yet been properly answered. However there are grounds for 
optimism. The first of these is that linearized perturbation studies of spherical col- 
lapse by Regge and Wheeler (1957), Doroshkevich, Zeldovich and Novikov (1965), 
Price (1972) and others have shown that all perturbations except one die away with 
time. The one exception corresponds to a rotational perturbation which changes 
the Schwarzschild solution into a linearized Kerr solution. In this the singularities 
are also hidden from infinity. These perturbation calculations do not completely 
answer the stability question since they are only first order: one would need to show 
that the perturbations of the second and higher orders also die away and that the 
perturbation series converged. 

The second ground for believing that the singularities are hidden is that Penrose 
and Gibbons have tried and failed to devise situations in which they are not. The 
idea was to try and obtain a contradiction with the result that the area of the event 
horizon increases which is a consequence of the assumption that the singularities 
are hidden. However they failed. Of course their failure does not prove anything 
but it does strengthen my personal conviction that the singularities in gravitational 
collapse will not be visible from infinity. One has to be slightly careful how one states 
this because one can always devise situations where there are naked singularities of 
a sort. For example, if one has pressure-free matter (dust), one can arrange the 
flow-lines to intersect on caustics which will be three dimensional surfaces of infinite 
density. However such singularities are really trivial in the sense that the addition 
of a small amount of pressure or a slight variation in the initial conditions would 
remove them. I believe that if one starts from a non-singular, asymptotically flat 
initial surface there will not be any non-trivial singularities which can be seen from 
infinity. 

If there are non-trivial singularities which are naked, i.e., which can be seen from 
infinity, we may as well all give up. One cannot predict the future in the presence 
of a spacetime singularity since the Einstein equations and all the known laws of 
physics break down there. This does not matter so much if the singularities are a l l  
safely hidden inside black holes but if they are not we could be in for a shock every 
time a star in the galaxy collapsed. People working in General Relativity have a 
strong vested interest in believing that singularities are hidden. 

In order to investigate this in more detail one needs precise notions of infinity 
and of causality relations. These will be introduced in the next two sections. 

3. Conformal Inanity 

What can be seen from infinity is determined by the light-cone structure of space- 
time. This is unchanged by a conformal transformation of the metric, i.e., gab + 
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a2g,,b where $2 is some suitably smooth positive function of position. It is there- 
fore helpful to make a conformal transformation which squashes everything up near 
infinity and brings infinity up to a finite distance. To see how this can be done 
consider Minkowski space: 

ds' = dt' - dr' - T'(d0' t sin' 84') 

Introduce retarded and advanced time coordinates, w = t - T, v = t t r .  The metric 
then takes the form 

ds' = dvdw - r'(d6' t sin' O d d )  ( 3 4  

Now introduce new coordinates p and q defined by tan p = v ,  tan q = 20, p - q 1 0. 
The metric then becomes 

ds2 = sec2p sec'q sin2(p - q)(de2 t sin' @@')I (3.3) 

This is of the form ds2 = W2ddz where dii2 is the metric within the square brackets. 
In new coordinates t' = b ( p  t q), r' = b(p - q)  the conformal metric dii2 becomes 

1 
4 

dg2 = dt" - dr'' - - sin' 2r'(dB' + sin' edcp') (3.4) 

This is the metric of the Einstein universe, the static spacetime where space sections 
are 3-spheres. Minkowski space is conformal to the region bounded by the null 
surface t' - T' = -7r/2 [this can be regarded i18 the future light-cone of the point 
t' = 0, t' = - (~ /2 ) ]  and the null surface t' + T' = n / 2  (the past light-cone of 
T' = 0, t' = ~ / 2 )  (Fig. 4). Following Penrose (1963, 1965b) these null surfaces 
will be denoted by 2- and Z+ respectively. The point T' = 0, t' = f7r/2 will be 
denoted by t* and the points r' = 7r/2, 2' = 0 will be denoted by io. (It is a point 
because sin'2r' is zero there.) Penrose originally used capital 1's for these points 
but this would cause confusion with the symbol for the timelike future which will 
be introduced in the next section. 

All timelike geodesics in Minkowski space start at i' which represents past 
timelike infinity and end at i t  which represents future timelike infinity. Space- 
like geodesics start and end at  io which represents spacelike infinity. Null geodesics, 
on the other hand, start at some point on the null surface Z- and end at some point 
on Z+ . These surfaces represent past and future null infinity respectively (Fig. 5). 

When one says that spacetime is asymptotically flat one means that near infinity 
it is like Minkowski space in some sense. One would therefore expect the conformal 
structure of its infinity to be similar to that of Minkowski space. In fact it turns 
out that the conformal metric is singular in general at the points corresponding to 
i'i+io. However it is regular on the null surfaces Z'Z+. This led Penrose (1963, 
1965b) to adopt this feature as a definition of asymptotic flatness. A manifold M 
with a metric gab is said to be asymptotically simple if there exists a manifold 
with a metric gib such that 
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E I NSTElN 
UNIVERSE 

i o  M 

Fig. 4. Minkowski space A4 conformally imbedded in the Einstein Static Universe. The conformal 
boundary is formed by the two null surfaces Z+, Z- and the points i+io and i - .  

(1) M can be imbedded in i$ its a manifold with boundary b M  

(3) On d M ,  R = 0, $2; a #  0 
(4) Every null geodesic in M has past and future end-points on dM 
( 5 )  The Einstein equations hold in M which is empty or contains only an electro- 

magnetic field near b M  (Penrose did not actually include this last condition 
in the definition but it is useful really only if this condition holds) 

(2) On M, j o b  = R2ga6 

Condition (3) implies that the conformal boundary dM is at infinity from the 
point of view of someone in the manifold M. Penrose showed that conditions (4) 
and ( 5 )  implied that OM consisted of two disjoint null hypersurfaces, labelled Z- 
and I+, which each had topology R' x S2. An example of an asymptotically simple 
space would be a solution containing a bounded object such as a star which did 
not undergo gravitational collapse. However the definition is too strong to apply 
to solutions containing black holes because condition (4) requires that every null 
geodesic should escape to infinity in both directions. To overcome this difficulty 
Penrose (1968) introduced the notion of a weakly asymptotically simple space. A 
manifold M with a metric gab is said to be weakly asymptotically simple if there 
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Fig. 5. Another picture of Conformal Infinity as two light-cones Z- and Z+ joined by a rim which 
represents the point io. 

exists an asymptotically simple spacetime M', g:,, such that a neighbourhood of Z+ 
and Z- in M' is isometric with a similar neighbourhood in M. This will be the 
definition of asymptotic flatness I shall use to discuss black holes. Since condition 
(4) no longer holds for the whole of M there can be points from which it is not 
possible to reach future null infinity Z+ along a future directed timelike or null 
curve. In other words these points are not in the past of Z+. The boundary of 
these points, the event horizon, is the boundary of the past of I+. I shall discuss 
properties of such boundaries in the next section. 

Exercise 

Show that the Schwarzschild solution is weakly asymptotically simple. 

4. Causality Relations 

I shall assume that one can define a consistent distinction between past and future 
at  each point of spacetime. This is a physically reasonable assumption. Even if it 
did not hold in the actual spacetime manifold M, there would be a covering manifold 
in which i t  did hold (Markus 1955). 

Given a point p, I shall denote by I + ( p )  the timelike o r  chmnoZogicaljutue of 
p, i.e., the set of all points which can be reached from p by future directed timelike 
curves. Similarly I - @ )  will denote the past of p. Many of the definitions I shall 
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give will have duals in which future is replaced by past and plus by minus. I shall 
regard such duals as self-evident. Note that p itself is not contained in I + ( p )  unless 
there is a timelike curve from p which returns to p. Let q be a point in I + ( p )  and 
let X(u) be a future directed timelike curve from p to q. The condition that X(v) is 
timelike is an inequality: 

dx" dxb 
gab-- > O  dv dv 

where is the tangent vector to X(v). One can deform the curve A(v) slightly 
without violating the inequality to obtain a future directed timelike curve from p to 
any point in a small neighbourhood of q. Thus I + ( p )  is an open set. 

The causal futum of p, J + ( p ) ,  is defined as the union of p with the set of points 
that can be reached from p by future directed nonspacelike, i.e., timelike or null 
curves. If one considers only a small neighbourhood of p, then I + ( p )  is the interior 
of the future light-cone of p and J + ( p )  is I + ( p )  with the addition of the future light- 
cone itself including the vertex. Note that the boundary of I + ( p ) ,  which I shall 
denote by i + ( p ) ,  is the same as j + ( p ) ,  the boundary af J + ( p ) ,  and is generated by 
null geodesic segments with past end-points at  p. 

When one is dealing with regions larger than a small neighbourhood, there is 
the possibility that some of the null geodesics through p may reintersect each other 
and the forms of I + ( p )  and J + ( p )  may be more complicated. To see the general 
relationship between them consider a future directed curve from a point p to  some 
point q E J + ( p ) .  If this curve is not a null geodesic from p, one can deform it slightly 
to  obtain a timelike curve from p to q. From this one can deduce the following: 

(a) If q is contained in J + ( p )  and T is contained in I+(q ) ,  then r is contained in 
I + ( p ) .  The same is true if q is in I + ( p )  and r is in J + ( q ) .  

(b) The set E + ( p ) ,  defined as J + ( p )  - I + ( p ) ,  is contained in (not necessarily 
equal to) the set of points lying on future directed null geodesics from p. 

(c) i + ( p )  equals &(p).  It is not necessarily the same as E + ( p ) .  

A simple example of a space in which E+(p)  does not contain the whole of the 
future directed null geodesics from p is provided by a 2-dimensional cylinder with 
the time direction along the a x i s  of the cylinder and the space direction round the 
circumference (Fig. 6). The null geodesics from the point p meet up again at the 
point q. After this they enter I + ( p ) .  An example in which E + ( p )  does not form 
all of i + ( p )  is 2-dimensional Minkowski space with a point T removed (Fig. 7). The 
null geodesic in i + ( p )  beyond r does not pass through p and is not in J + ( p ) .  

The definitions of timelike and causal futures can be extended from points to 
sets: for a set S, I+(S) is defined to be the union of I + ( p )  for all p E S. Similarly for 
J+(S) .  They will have the same properties (a), (b) and (c) as the futures of points. 
Suppose there were two points q, r on the boundary i+(S) of the future of a set S 
with a future directed timelike curve X from q to r. One could deform X slightly to 
give a timelike curve from a point x in I + ( S )  near q to a point y in M - I + ( S )  near 
T .  This would be a contradiction since I+(.)  is contained in I+(S). Thus one has 
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FUTURE END /-I 
POINT OF 
GENERATORS 
OF f ’ ( P )  
WHERE THEY 
INTERSECT 
EACH OTHER- 

P 

Fig. 6. A space in which the future directed null geodesics from a point P have future end-points 
as generators of .I+(P). 

GENERATOR O F  i * ( P )  
WHICH DOES NOT HAVE 

PAST END POINT 

r POINT REMOVED 
FROM SPACE 

P 

Fig. 7. The point r has been removed from two-dimensional Minkowski space. 

(d) i+(S) does not contain any pair of points with timelike separation. In other 

Consider a point q E i+( S). One can introduce normal coordinates x1 , x2, x3, x4 
(x4 timelike) in a small neighbourhood of q. Each timelike curve zi = constant (i = 

words, the boundary i+(S) is null or spacelike at each point. 
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1,2, 3) will intersect i+(S) once and once only. These curves will give a continuous 
map of a small region of i + ( S )  to the 3-plane x4 = 0. Thus 

(e) I + ( S )  is a manifold (not necessarily a differentiable one). 

Now consider a point q in i+(S) but not in S itself, or its topological closure S. 
One can thus find a small convex neighbourhood U of q which does not intersect S. 
In U one can find a sequence {y,} of points in I + ( S )  which converge to the point 
q (Fig. 8). From each y, there will be a past directed timelike curve A, to 5'. The 
intersections of the {A,} with the boundary U of U must have some limit point z 
since iU is compact. Any neighbourhood of z will intersect an infinite number of 
the {A,}. Thus z will be in ft(S). The point z cannot be spacelike separated from 
q since, if it were, it  would not be near timelike curves from points y, near q. It 
cannot be timelike separated from q since if it were one could deform one of the A, 
passing near J to give a timelike curve from S to g which would then have to be 
in the interior of I+(S) and not on boundary. Thus z must lie on a past directed 
null geodesic segment 7 from q. Each point of 7 between q and z will be in i+(S). 
One can now repeat the construction at  z and obtain a past directed null geodesic 
segment p from z which lies in i + ( S ) .  If the direction of p were differed from that of 
7 one could join points of p to points of 7 by timelike curves. This would contradict 
property (d) which says that no two points of i+(S) have timelike separation. Thus 
p will be a continuation of 7. One can continue extending 7 to the past in i+(S) 
unless and until it  intersects S. 

If there are two past directed null geodesic segments 71 and 72 lying in i+(S) 
from a point q E i+(S), there can be no future directed such segment from q since 

U 

Fig. 8. The points gn converge to the point q in the boundary of I+(S) .  From each gn there is past 
directed timelike curve An to S. These curves converge to the past directed dull geodesic segment 
7 through q. 
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if there were, it would be in a different direction to and be timelike separted from, 
either 71 or 72. One therefore has 

(f) i+(S) (and also j+(S)) is generated by null geodesic segments which have 
future end-points where they intersect each other but which can have past 
end-points only if and when they intersect S. 

The example of 2-dimensional Minkowski space with a point removed shows that 
there can be null geodesic generators which do not intersect S and which do not 
have past end-points in the space. 

The region of spacetime from which one can escape to infinity along a future 
directed nonspacelike curve is J'(Z+) the causal past of future null infinity. Thus 
j-(Z+) is the event horizon, the boundary of the region from which one cannot 
escape to infinity (Fig. 9). Interchanging future and past in the results above, 
one sees that the event horizon is a manifold which is generated by null geodesic 
segments which may have past end-points but which could have future end-points 
only if they intersected Z+. Suppose there were some generator 7 of j-(Z+) which 
intereected Z+ at some point q. Let X be the generator of the null surface Z+ which 
passes through q. Since the direction of X would be different from that of y, one 
could join points on X to the future of q by timelike curves to points on 7 the past 
of q. This would contradict the assumption that 7 was in j-(Z+). Thus the null 
geodesic generators of the event horizon have no fiturn end-points. This is one of 
the fundamental properties of the event horizon. The other fundamental property, 
that neighbouring generators are never converging, will be described in Sec. 6. 

Fig. 9. The event horizon j-(Z+) is the boundary of the region from which one cannot escape to 
z+ . 
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6. The Focusing Effect 

The most obvious feature of gravity is that it is attractive rather than repulsive. A 
theoretical statement of this is that gravitational mass is always positive. By the 
principle of equivalence the positive character of gravitational mass is related to the 
positive definiteness of energy density which in turn is normally considered to be a 
consequence of local quantum mechanics. There are possible modifications to this 
positive definiteness in the very strong fields near singularities. However these will 
not worry us if, as we shall assume, the singularities are safely hidden behind an 
event horizon. We shall be concerned, in this course, only with the region outside 
and including the event horizon. 

The fact that gravity is always attractive means that a gravitational field always 
has a net focusing (i.e., converging) effect on light rays. To describe this effect in 
more detail, consider a family of null geodesics. Let 1" = dzo/dv denote the null 
tangent vectors to these geodesics where v is some parameter along the geodesic. 
At each point one can introduce a pair of unit spacelike vectors a" and 6" which are 
orthogonal to each other and to  I " .  It turns out to be more convenient to work with 
the complex conjugate vectors 

These are actually null vectors in the sense that mama = momo = 0, they are 
orthogonal to I " ,  lamo = la?iia = 0 and they satisfy mama = -1. These conditions 
determine ma up to a spatial rotation 

and up to the addition of a complex multiple of I" 

ma + mo -k cl" (5.2) 

where c is a complex number. This is called a null rotation. Given ma there is a 
unique real null vector n" such that l"na = 1, nama = namo = 0. The vectors 
(la, n", ma, ma) form what is called a null tetrad or vierbein (Fig. 10). 

Using this null tetrad one can express the fact that the curves of the family are 
geodesics as 

1,;bm"lb 5 0 (5.3) 

where semi-colon indicates covariant derivative. 
quantities p and c as 

One can also define complex 

(5.4) p = lo;bm a - b  m , o = la;bmam b 

The imaginary part of p measures the twist or rate of rotation of neighbouring 
null geodesics. It is zero if and only if the null geodesics lie in 3-dimensional null 
hypersurfaces. This will always be the case in what follows so I shall henceforth take 
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Fig. 10. The null vector I" lies along the null geodesic. The null vector no is such that lano = 1. 
The null vector mo is complex combination of two spacelike vectors orthogonal to la, na and to 
each other. 

p to be red. The red part of p measures the average rate of convergence of nearby 
null geodesics. To see what this means consider a null hypersurface N generated by 
null geodesics with tangent vectors la.  Let AT be a small element of a spacelike 
2-surface in N (Fig. 11). One can move each point of AT a parameter distance Sv 
up the null geodesics. As one does so the area of AT changes by an amount 

6A = -2Ap6~ (5.5) 

The quantity u measures the rate of distortion or shear of the null geodesics, that 
is, the difference between the rates of convergence of neighbouring geodesics in the 
two spacelike directions orthogonal to l a .  The effect of shear is to make a small 
2-surface which was spatially circular, become elliptical as it is moved up the null 
geodesic. 

The rate of change of the quantities p and t~ along the null geodesics is given by 
two of the Newman-Penrose (1962) equations 

dP - = p2 t ua t ( 6  t s) p t &lo d v  
dU 
d v  
- = 2pu + (3€ - s) 0 t $0 

where 

(5.7) 
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[ULL GEODESIS 

Fig. 11. The area A of two surface element AT increases by an amount -2pA6u when AT is moved 
a parameter distance 6u along the null geodesics. 

(Note that my definitions of the Ricci and Weyl tensors have the opposite sign to 
those of Newman and Penrose.) 

The imaginary part of E is the rate of spatial rotation of the vectors ma and 
fia relative to a parallelly transported frame as one moves dong the null geodesics. 
In what follows ma will always be chosen so that c - 7 = 0. The real part of e 
measures the rate a t  which the tangent vector I" changes in magnitude compared 
to a parallelly transported vector as one moves along the null geodesics. It is zero 
if I" = dza/dv where v is an affine parameter. I t  is convenient however in some 
situations to choose 'u not to be an f i n e  parameter. 

The Ricci tensor term 400 in equation (5.6) represents the focusing effect of the 
matter. By the Einstein equations 

it is equal to  4~T,,bl"l~. The local energy density of matter (i.e., non-gravitational) 
fields measured by an observer with velocity vector va is Tabt+%b. It seems reasonable 
from local quantum mechanics to assume that this is always non-negative. It then 
follows from continuity that Tabwow* 1 0 for any null vector wa. I shall call this the 
weak energy condition (Penrose 1965a, Hawking and Penrose 1970, HE) and shall 
assume it in what follows. With this assumption one can see from equation (5.6) 
that the effect of matter is always to increase the average convergence p, i.e., to 
focus the null geodesic. 

The Weyl tensor term $0 can be thought of as representing, in a sense, the 
gravitational radiation crossing the null hypersurface N. One can see from equation 
(5.7) that it has the effect of inducing shear in the null geodesic. This shear then 
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induces convergence by equation (5.6). Thus both matter and pure gravitational 
fields have a focusing effect on null geodesics. 

To see the significance of this, consider the boundary i+(S) of the future of a set 
S. As I showed in the last section this will be generated by null geodesic segments. 
Suppose that the convergence of neighbouring segments has some positive value po 
at a point Q E i + ( S )  on a generator y. Then choosing v to be an f i n e  parameter, 
one can see from equation (5.6) that p will increase and become infinite at a point 
r on the null geodesic y within an affine distance of l/po to the future of q. The 
point T will be a fwaZ point where neighbouring null geodesics intersect. We saw 
in the last section that the generators of i + ( S )  have future end-points where they 
intersect other generators. Strictly speaking, this was shown only for generators 
which intersect each other at a finite angle but it is true also for neighbouring 
generators which intersect at infinitesimal angles (see HE for proof). Thus the 
generator y through q will have an end-point at or before the point r.  (It may be 
before T because y may intersect some other generator at a finite angle.) In other 
words, once the generators of i+(S) start converging, they are destined to have 
future end-points within a finite atline distance. They may not, however, attain this 
distance because they may run into a singularity first. 

The importance of this result will be seen in the next section. 

8. Predictability 

A 3-dimensional spacelike surface S without edges will be said to be a partial Cauchy 
surface if it does not intersect any nonspacelike curve more than once. Given suitable 
data on such a surface one can solve the Cauchy problem and predict the solution on 
a region denoted by the D + ( S )  and called the future Cauchy development of S. This 
can be defined as the set of all points q such that every past directed nonspacelike 
curve from q intersects S if continuted far enough. Note that this definition is not 
the same as the one used in Penrose (1968) and Hawking and Penrose (1970) where 
nonspacelike is replaced by timelike. However the difference affects only whether 
points on the boundary of D + ( S )  are considered to be in D + ( S )  or not. 

When one is dealing with the gravitational collapse of a local object such as a star 
or even a galaxy, it is reasonable to neglect the curvature of the universe and the "big- 
bang" singularity 10'" years ago and to consider spacetime to be asymptotically flat 
and initially nonsingular. As I said earlier in Sec. 4, I shall take asymptotically flat 
to mean that the spacetime manifold M and metric gab are weakly asymptotically 
simple. This means that there are well-defined past and future null infinities Z- and 
I+. The assumption that we are implicitly making in this Summer School that one 
can predict the future, at  least in the region far away from the collapsing object, 
can now be expressed as the assumption that there is a partial Cauchy surface S 
such that points near Z+ lie in D + ( S )  (Fig. 12). (Z+ cannot lie actually in D + ( S )  
since its null geodesic generators do not intersect S. However the solution on @(S) 
determines the conformal structure of Z+ by continuity.) I shall say that a weakly 
asymptotically simple spacetime M, gab which admits such a partial Cauchy surface 
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S is (future) asymptotically przdictable. This definition, and a slightly stronger 
version which I shall introduce shortly, will form the basis of my course. Asymptotic 
predictability implies that every past directed nonspacelike curve from points near 
Z+ continues back to  S and does not run into a singularity on the way. One can 
think of this as a precise statement to the effect that there are no singularities to 
the future of S which are naked, i.e., visible from Z+. 

SINGULARITY 

Fig. 12. A space with a partial Cauchy surface S such that the points near Z+ are contained in 
the future Cauchy development D + ( S ) .  

Asymptotic predictability implies that the future Cauchy development D+( S) 
contains J+(S) n J’(Z+), i.e., it contains all points to the future of S which are 
outside the event horizon. Suppose there were a point p on the event horizon to 
the future of S which was not contained in Df(S). Then there would be a past 
directed nonspacelike curve X (in fact a null geodesic) from p which did not intersect 
S but ran into some sort of singularity instead. This singularity would be “nearly 
naked” in that the slightest variation of the metric could result in it being visible 
from Z+. Since we are assuming that the non-existence of naked singularities is a 
stable property, we would wish to rule out such an unstable situation. One can also 
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argue that the metric of spacetime is some classical limit of an underlying quantum 
reality. This would mean that the metric could not be defined so exactly as to distin- 
guish between nearly naked singularities and those which are actually naked. These 
considerations motivate a slightly stronger version of asymptotic predictability. I 
shall say that a weakly asymptotically simple spacetime M, gab is strongly (future) 
asymptotically pwdictable if there is a partial Cauchy surface S such that 

(a) Z+ lies in the boundary of D+(S) ,  
(b) J + ( S )  n j-(Z+) is contained in D+(S) .  

Suppose that at some time after the initial surface S, a star starts collapsing 
and gives rise to a trapped surface T in D+(S). Recall that a trapped surface is 
defined to be a compact spacelike 2-surface such that the future directed outgoing 
null geodesics orthogonal to it have positive convergence p. This definition assumes 
that one can define which direction is outgoing. I shall assume that the 2-surface is 
orientable and shall require that the initial surface S has the property: 

(a) S is simply connected. 

Physically, one is interested only in black holes which develop from non-singular 
situations. In such cases the partial Cauchy surface S can be chosen to be R3 and 
so will be simply connected. It is however convenient to frame the definitions so 
that they can be applied also to spaces like the Schwarzschild and Kerr solutions 
which are not initially non-singular but which may approximate the form of initially 
non-singular solutions a t  late times. In these solutions also one can find partial 
Cauchy surfaces S which are simply connected. 

Given a compact orientable spacelike 2-surface T in the future Cauchy develop- 
ment D + ( S )  one can define which direction is outwards. To do this one uses the 
fact that on any manifold M with a metric gab of Lorentz signature one can find a 
vector field Xu which is everywhere nonzero and timelike. Using the integral curves 
of this vector field, one can map the 2-surface T onto a 2-surface f' in S. Since S is 
simply connected, this 2-surface f' separates S into two regions. One can label the 
region which contains the part of S near infinity in the asymptotically flat space as 
the outer region and the other as the inner region. The side of f facing the outer 
region is then the outer side and carrying this up the integral curves of the vector 
field X" one can define which is the outgoing direction on T. 

Now suppose that one could escape from a point on T to infinity, i.e., suppose 
that T intersected J - (Z+)  (Fig. 13). Then there would be some point q E Z+ which 
was in J+(T) .  Proceeding to the past along the null geodesic generator X of Z+ 
through q one would eventually leave J+(T).  Thus X must countain a point T of 
j + ( T ) .  The null geodesic generator y of j + ( T )  through r would enter the physical 
manifold M. If it did not have a past end-point it would intersect the partial Cauchy 
surface S. This is impossible since it lies in the boundary of the future of T and T is 
to the future of S. Thus it would have to have a past end-point which, from Sec. 4, 
would have to be on T. It would have to intersect T orthogonally as otherwise one 
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could join points of T to points of 7 by timelike curves. However the outgoing null 
geodesics orthogonal to T are converging because T is a trapped surface. As we 
saw in the last section, this implies that neighbouring null geodesics would intersect 
y within a finite affine distance. This means that the generator 7 of j + ( T )  would 
have a future end-point and would not remain in j + ( T )  all the way out to I+. 
This establishes a contradiction which shows that the supposition that T intersects 
J - ( Z + )  must be false. In other words, every point on or inside a trapped surface 
really is trapped: one cannot escape to Z+ along a future directed nonspacelike 
curve. 

Fig. 13. If a trapped surface T intersected J- (2+) ,  there would be a null geodesic generator of 
j+(T)  from T to Z+. This would be impossible as all null geodesics orthogonal to T contain a 
conjugate point within a finite affine distance of T .  

The same applies to a compact orientable 2-surface T which is marginally trapped, 
i.e., which is such that the outgoing future directed null geodesics orthogonal to T 
have zero convergence p at T. For suppose T intersected J-(Zt), then j f ( T )  would 
intersect It. The area of this intersection would be infinite since it is at infinity. 
However the generators of j + ( T )  start off with zero convergence and therefore can- 
not ever be diverging. Thus the area of j+(T) n Z+ could not be greater than that 
of T. This shows that the marginally trapped surfaces in Dt(S) cannot intersect 
J - (Z+ ) . 



What has been shown is that a trapped surface implies either a breakdown of 
asymptotic predictability (i.e., the occurrence of naked singularities) or the existence 
of an event horizon. I shall assume that the first alternative does not occur and 
shall concentrate on the second. As was shown in Sec. 4, the event horizon will 
be generated by null geodesic segments which have no future end-points. If one 
assumed that these generators were geodesically complete in future directions it 
would follow that the convergence of neighbouring generators could not be positive 
anywhere on the horizon since, if it were, neighbouring generators would intersect 
and have future end-points within a finite affine distance. In examples such as 
the Kerr solution, the generators are geodesically complete in the future direction 
but there does not seem to be any a priori reason why this should always be the 
case. I shall now show, however, that asymptotic predictability itself without any 
assumption of completeness of the horizon is sufficient to prove that p is non-positive. 

Consider a spacelike 2-surface F lying in the event horizon to the future of S. The 
null geodesic generators of the horizon will intersect F orthogonally. Suppose their 
convergence p was positive at some point p E F. In a small neighbourhood of p one 
could deform the 2-surface F slightly outwards into J-(Z+) so that the convergence 
p of the outgoing null geodesics orthogonal to F was still positive (Fig. 14). This 
would lead to a contradiction similar to the one we have just considered. The null 
geodesics in J - (Z+)  which are orthogonal to F would intersect each other within a 

Fig. 14. If the null geodesics orthogonal to a two surface F in the event horizon were converging, 
one could deform F outwards slightly and obtain a contradiction similar to that in Fig. 13. 
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finite affine distance and hence could not be generators of j + ( F )  all the way out to 
Z+, which being at infinity is at an infinite a f h e  distance. 

This shows that the convergence p of neighbouring generators of the event hori- 
zon cannot be positive anywhere to the future of S. Together with the result that 
the generators of the event horizon do not have future end-points, this implies that 
the area of a two-dimensional cross section of the horizon must increase with time. 
This will be discussed further in the next section. 

7. Black Holes 

In order to describe the formation and evolution of black holes, one needs a suitable 
time coordinate. The usual coordinate t in the Schwarzschild and Kerr solutions is 
no good because all the surfaces of constant t intersect the horizon at  the same place 
(see Carter's lectures). What one wants is a coordinate 7 such that the surfaces of 
constant T cover the future Cauchy development D+(S).  By the assumption of 
strong future asymptotic predictability the event horizon to the future of S will be 
contained in D+(S)  and so will be covered by the surfaces of constant T .  I shall 
denote the surface T = TO by S(TO) with S(0)  = S. Near infinity the surfaces S(7) 
for 7 > 0 could be chosen to be asymptotically flat spacelike surfaces like S which 
approached spacelike infinity io and which were such that Z+ lay in the boundary 

Fig. 15. The surface S(s )  of constant s intersect Z+ in the two-spheres Q(s).  
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of D+(S(T)) for each T 2 0. However it is somewhat more convenient to choose 
the surface S(T)  for T > 0 so that they intersect Z+ (Fig. 15). This means that 
asymptotically they tend to null surfaces of constant retarded time. The advantage 
of such a choice of surfaces S(T)  is that the gravitational radiation emitted during 
the formation and interaction of black holes will escape to Z+ and will not intersect 
the surfaces S(T)  for T sufficiently large. When the solution settles down to a nearly 
stationary state, one can relate the properties of the event horizon at the time T to 
the values of the mass and angular momentum measured on the intersection of Z+ 
and S(T). There is no unique choice of the surface S(T) and of the correspondence 
between points on the horizon and points on Z+ at the same values of T .  This 
arbitrariness does not matter provided one relates the properties of the event horizon 
to the mass and angular momentum measured on Z+ only during periods when the 
system is nearly stationary. I shall be concerned with relations between initial and 
final quasi-stationary states. 

It turns out that one can always find such a time coordinate 7 if the solution is 
strongly asymptotically predictable, i.e., if there exists a partial Cauchy surface S 
such that 

(a) Z+ lies in the boundary of D+(S),  
(b) J+(S) n k ( Z + )  lies in D+(S).  

More precisely, one can find a function T 2 0 on D+(S) such that the surfaces S(T)  
of constant T are spacelike surfaces without edges in M and satisfy 

(i) S(0)  = S, 
(ii) S(Q) lies to the future of $ ( T I )  for 72 > T I ,  

(iii) Each S(T)  for T > 0 intersects I+ in a 2-sphere &(T) .  The {&(T)}  for T > 0 
cover Z+, 

(iv) Every future directed nonspacelike curve from any point in the region of 
D + ( S )  between S and S ( T )  intersects either Z+ or S ( T )  if continued far 
enough, 

(v) S(T)  minus the boundary 2-sphere Q ( T )  is topologically equivalent to S. 
The point that one can find such a time function T is somewhat technical so 

I shall just give an outline here. Full details are in HE. It is based on an idea of 
Geroch (1968). One first chooses a volume measure dp on M so that the total 
volume of M in this measure is finite. In the case of a weakly asymptotically simple 
space such as I am considering, this volume measure could be that defined by the 
conformal metric j o b  which is regular on Z- and Z+. For a point p E D+(S)  one 
can then define a quantity f ( p )  which is the volume of J + ( p )  n D+(S)  evaluated 
in the measure dp. Now choose a family { Q ( T ) } ,  7 > 0 of 2-spheres which cover 
Z+ and which are such that Q ( T ~ )  lies to the future of &(TI )  for 72 > 71. Then, 
given p E D + ( S )  one can define a quantity h(p, T )  as the volume in the measure of 
dp of D + ( S )  n [J’ (p)  - J - ( Q ( 7 ) ) ] .  The functions j ( p )  and h(p ,  T )  are continuous 
in p and T .  The surface S(T)  can now be defined as the set of points p for which 
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h(p, 7 )  = ~ f ( p ) .  Properties (i)-(v) can easily be verified. 
With the time function 7 one can describe the evolution of black holes. Suppose 

that a star collapses and gives rise to a trapped surface T. As was shown in the last 
section, the assumption of strong asymptotic predictability implies that one cannot 
escape from T to  Z+. There must thus be an event horizon j-(Z+) to the future of 
S. Also by the assumption of strong asymptotic predictability, J + ( S ) n k ( Z + )  will 
be contained in D + ( S ) .  For sufficiently large 7 ,  the surface S(r) will intersect the 
horizon and the set B ( T )  defined as S(7) - J-(Z+) will be nonempty. I shall define 
a black hole on the surface S(T)  to be a Connected component of B(T) .  In other 
words, it is a connected region of the surface S(7) from which one cannot escape to 
Z+. As 7 increases, black holes may grow or merge together and new black holes 
may be formed by further stars collapsing but a black hole, once formed, cannot 
disappear, nor can it bifurcate. To see that it cannot disappear is easy. Consider 
a black hole B 1 ( ~ 1 )  on a surface S(r1). Let p be a point of B l ( ~ 1 ) .  By property 
(iv), every future directed nonspacelike curve A from p will intersect either Z+ or 
S(72) for any 72 > 71. The former is impossible since p is not in J - (Z+) ,  This 
also implies that X must intersect S(72) at some point q which is not in J’(Z+). 
Thus q must be contained in some black hole B2(72) on the surface S(7-2) which will 
be said to be descended from the black hole Bl(71). Since black holes can merge 
together, B2(r2)  may be descended from more than one black hole on the surface 
S(71). Alternatively, a black hole on S(72) may not be descended from any on 
S ( q )  but have formed between 71 and 72 (Fig. 16). The result that a black hole 
cannot bifurcate can be expressed by saying that B l ( ~ 1 )  cannot have more than 
one descendant on a later surface S(72). This follows from the fact that any future 
directed nonspacelike curve from a point p E B 1 ( q )  can be continuously deformed 
through a sequence of such curves into any other future directed nonspacelike curve 
from p. Since all these curves will intersect S(72), their intersection with S(72) will 
form a continuous curve in S(72). Thus J + ( p )  n S(72) will be connected. Similarly 
J + ( B 1 ( q ) )  n S(72) will be connected. It must be contained in B(72) and so will be 
contained in only one connected component of B(72). There will thus be only one 
black hole on S(72) which is descended from Bl(r1). 

The boundary t IB l (~1)  in S ( q )  of a black hole B 1 ( ~ 1 )  is formed by part of the 
intersection of the event horizon with the surface S(71). Since we are assuming that 
the initial surface S is simply connected, it follows from property (v) that each of 
the surfaces S ( T )  is also simply connected. This implies that the boundary aBl(71) 

is connected. For suppose that d B 1 ( q )  consisted of two components &B1(71) and 
&B1(71). One could join a point q1 E & B 1 ( ~ 1 )  to a point 42 E &81(71) by a curve 
p lying in & ( T I )  and a curve X lying in S ( T ~ )  - B l ( ~ 1 ) .  Joining p and A, one would 
obtain a closed curve in S(q) which could not be deformed to zero in S ( q )  since it 
crossed the closed surface a lB1(~1)  only once. This would contradict the fact that 
S ( q )  is simply connected. 

If the black holes are formed by collapses in a space which is nonsingular ini- 
tially, the surface S can be chosen to have a topology of Euclidean 3-space R3. By 
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Fig. 16. The two black holes &(q) and &(q) on the surface S(q) merge to form the black hole 
&(n) on the surface S(q). A new black hole &(n) is formed between S(q) and S ( q ) .  

property (v) each surface S(r) minus the bounding 2-sphere Q(r) on Z+ will also 
have this topology. It then follows that the boundary 6Bl(r) of a black hole B1(r) 
will be compact and that the topology of S ( r )  n r-(Z+), the space outside and 
including the horizon, will have the topology of R3 minus a number of open sets 
with compact closure. As I said earlier, it is sometimes convenient to consider black 
hole solutions which are not initially nonsingular but which may outside the event 
horizon approximate the behaviour of initially nonsingular solutions at large times. 
If they are to do this it is not necessary that the surfaces S(r) - Q(r)  have the 
topology R3 (indeed they do not in the Schwarzschild and Kerr solutions), but they 
should have the same topology outside the event horizon. One can ensure this by 
requiring that the initial surface S has the property: 

(p) S n J'(Z+) has the topology of R3 minus a finite number of open sets with 

It is easy to show that if S has the property (/?) then each surface S(r) - Q ( T )  

has the property (/?) also. 
I showed earlier that the null geodesic generator of the event horizon did not have 

any future end-points and had negative or zero convergence p. It follows from this 
that the area of the boundary a&(r) of a black hole B1(r) cannot decrease with 
increasing r.  If two black holes Bl(r1) and B2(72) on a surface S(q) later collide and 

a compact closure. 
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merge to form a black hole B 3 ( ~ 2 )  on the surface S ( T ~ ) ,  the area of dB3(72) must be 
at least as great as the sum of the areas of the boundaries OB1(71) and aB2(71) of the 
original black holes. In fact it must be strictly greatly because aB3(72) will contain 
two disjoint closed sets corresponding to generators which intersected OBI (71) and 
l3&(~1) respectively. Since l 3 8 3 ( ~ 2 )  is connected, it must also contain an open set 
corresponding to generators which had past end-points between S ( q )  and S(72). 

The area of the boundaries of black holes has strong analogies to the concept 
of entropy in thermodynamics: it never decreases and it is additive. We shall see 
later that the area will remain constant only if the black hole is in a stationary state. 
When the black hole interacts with anything else the area will always increase. Under 
favourable circumstances one can arrange that the increase is arbitrarily small. This 
corresponds to using nearly reversible transformations in thermodynamics. I shall 
show later how the area of a black hole in a stationary state is related to its mass 
and angular momentum. The fact that the area cannot decrease will impose certain 
inequalities on the change of the mass and angular momentum of the black hole as 
a result of interaction. 

I shall denote by T ( T )  the region of the surface S ( T )  that contains trapped or 
marginally trapped surfaces lying in S(7). I shall call the boundary aT(7) of T ( T ) ,  
the uppawnt horizon in the surface S(T) .  In the last section it was shown that 
trapped or marginally trapped surfaces cannot intersect J - ( Z + ) .  Thus T ( T )  must 
be contained in B(T)  and the apparent horizon must lie behind or coincide with the 
event horizon. The apparent horizon aT(.r) will be a matginally trapped surface. 
That is, it is a spacelike 2-surface such that the convergence p of the outgoing full 
geodesics orthogonal to it is zero. As 7 increases, these null geodesics may be fo- 
cused by matter or gravitational radiation and the position of the apparent horizon 
will move outwards on the surface S(T)  at or faster than the speed of light. As the 
example of the spherical collapsing shell shows, it can move outwards discontinu- 
ously. When the solution is in a quasi-stationary state, the apparent horizon will 
lie just inside the event horizon and the area of dT(7) will be nearly equal to that 
of aB(7) .  In the transition from one quasi-stationary state to another the area of 
aB(7)  will increase and so the area of dT(7) must be greater in the find state than 
in the initial one. I have not been able to show, however, that the area of ~ T ( T )  
increases monotonically though I believe it probably does. 

I t  is interesting to  see the behaviour of the event and apparent horizon in the 
case of two black holes which collide and merge together. Suppose two stars a 
long way apart collapse to form black holes B ~ ( T )  and &(7) which have settled 
down to  a quasi-stationary state by the surface S(71) (Fig. 17). Just inside the two 
components dB1(.r1) and aB2(71) of the event horizon there will be two components 
aTl(71) and aTz(71) of the apparent horizon. The 2-surfaces aTl (~1)  and a T z ( ~ 1 )  
will be smooth but the 2-surfaces aBl(71) and aB2(71) will each have a slight cusp 
on the side facing the other. As the black holes approach each other, these cusps 
will become more pronounced and will join up to give a single component 8B3(7) 

of the event horizon. The apparent horizon aTl(7)  and aT2(7) on the other hand, 
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Fig. 17. The colliaon of two black holes. The event horizons BBi and BBs merge to form the 
event horizon a&. The apparent horizons aT2 do not merge but are enveloped by a new apparent 
horizon aT3. 

will not join up. As they approach each other there will be some surfaces S(72)  on 
which there will be a third component &?3(72) which surrounds both BT~(Tz)  and 

I shall now show that each component of the apparent horizon aT(7) must have 
the topology of a 2-sphere. I originally developed this proof for the event horizon 
in the stationary situations considered in the next section but I am grateful to 
G. W. Gibbons for pointing out that it can be applied to apparent horizon a t  any 
time. The idea is to show that if a connected component aTl(7) of the apparent 
horizon had any topology other than that of a 2-sphere, one could deform it to 

6Tz ( 7 2  1. 
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give a trapped or marginally trapped surface just outside m(r) This would be a 
contradiction of the fact that the apparent horizon is the outer boundary of such 
surfaces. 

Let ua be the unit timelike vector field orthogonal to the surface S(r ) .  Let Ia 
and na be respectively the future directed outgoing and ingoing null vector fields, 
orthogonal to OTl(r) and normalized so that 

l aud  = 2-4, naua = 2-4, Iana = 1 

The complex null vectors ma and ma will then lie in the 2-surface OTl (T ) .  The vector 
wa = 2-4(la - na) will be the unit outward spacelike vector in S ( r )  orthogonal 
to 8Tl(r). Suppose one now moves each point of aTl(r) a parameter distance h 
outwards dong the vector field ya = waef where f is some function on aTl(r). To 
maintain the orthogonality of la and no to the 2-surface requires 

K - 7 - 6 f  + i i + p = o  
Y - s+ 8f  + a  + P  = 0 

where 

a b  K = fa;bmalb, r = laibm n 
v = -na;bfianb, x = -na;bmalb 
6 f = mafia and ti + /3 = la;bnamb 

Under this movement of the 2-surface aT1(r), the change in the convergence p at 
the outgoing orthogonal null geodesics can be evaluated from the Newman-Penrose 
equations: 

dP - = 2-4e"oa + $00 + ( K  - 7 ) ( R  - 7) + p ( p  + € + 5 - p - 7 - 7) 
du 

+ $6 f - 8(6 + p)  + + $2 + (7.3) 

where 

b 1 x = -na;bfiafib, p = - n a ; b ~ a m  , 7 = --(na;blanb - ma;bmanb), 
2 

1 = - sCabcd(lanblcnd - laubmCmd), 
- R  - -  
24 

A = -  and 8 = 6 - (a - p )  
where a - f l  = fh,;bm a - b  m . The first three terms on the right of equation (7.3) are 
non-negative. The term a6f is the Laplacian of f in the 2-surface. One can choose 
f so that the sum of the last five terms on the right of equation (7.3) is constant 
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over the 2-surface. The sign of this constant value will be determined by that of the 
integral of (@A t t 211) over the 2-surface (a(& t ,f3) being a divergence, has zero 
integral). This integral can be evaluated from another Newman-Penrose equation 
which can be written as 

a(a t P )  - + P )  t - P )  t qii - P )  
= -2aX - 2& + 2A t 2411 (7.4) 

where 
1 

411 = qRab(1"nb t mafib) 

When integrated over the 2-surface the terms in ii + p disappear but there is in 
general a contribution from the & - /3 terms because the vector field ma will have 
singularities on the 2-surface. The contribution from these singularities is deter- 
mined by the Euler number x of the 2-surface. Thus 

(The real part of the equation is in fact the Gauss-Bonnet theorem.) Therefore 

- /(OX t $2 t 2A)dA = 2 q  - J ( 4 1 ~  + 3A)dA 

Any reasonable form of matter will obey the Dominant Energy condition (Hawk- 
ing 1971): -Po 2 ITab/ in any orthonormal tetrad. This and the Einstein equations 
imply that 411 + 3A 2 0. The Euler number x is t 2  for a sphere, 0 for a torus and 
negative for any other compact orientable 2-surface. (aTl(7) has to be orientable 
as it is a boundary.) Suppose &~' I (T )  was not a sphere. Then one could choose f 
so that the right hand side of equation (7.3) was everywhere positive or zero. This 
would mean that there would be a trapped or marginally trapped surface just out- 
side ~ T ( T ) ,  which is supposed to be the outer boundary of such surfaces. Thus each 
component of the apparent horizon has the topology of a 2-sphere. 

In the next section I shall show that the event horizon will coincide with the 
apparent horizon in the final stationary state of the solution. Thus each connected 
component l lB1(~)  of the event horizon will have spherical topology at late times. It 
might, however, have some other topology during the earlier, time-dependent phase 
of the solution. 

8. The Final State of Black Holes 

During the formation of a black hole in a stellar collapse, the solution will change 
rapidly with time. Gravitational radiation will propagate out to Z+ and across the 
event horizon into the black hole. By the conservation law for asymptotically flat 
space ( B o d  et al. 1962, Penrose 1963), the energy of the gravitational radiation 
reaching Z+ will reduce the mass of the system its measured from Z+. The radiation 
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crossing the event horizon will cause the area of the horizon to increase. The amount 
of energy that can be radiated to  Z+ or down the black hole is presumably bounded 
by the original rest mass of the star. Thus one might expect that the area of the 
horizon and the mass measured on Z+ might eventually tend to constant values 
and the solution outside the horizon settle down to a stationary state. Although 
we cannot at the moment describe in detail the time-dependent formation phase, 
it  seems that we probably can find all these final stationary states. In this section 
therefore I shall consider stationary black hole solutions in the expectation that 
outside the horizon they will approximate to time-dependent solutions at late times. 

More precisely, I shall consider spacetimes M, gab which satisfy 

(1) M, gab is strongly asymptotically predictable. 
( 2 )  M ,  gab is stationary, i.e., there exists a one parameter isometry group bt : 

M -+ M whose Killing vector Ka is timelike near 1- and Z+. (Note that it 
may be spacelike near the black hole.) 

Since these stationary spaces are not necessarily nonsingular initially, the partial 
Cauchy surface S may not have the topology R3. In fact, in most cases it will 
be R' x S2. However, one wants these spaces to approximate physical initially 
nonsingular solutions in the region outside and including the horizon at late times, 
i.e., on S(T)nJ - ( I+)  for large 7 .  Thus S(r)nJ-(I+) must have the same topology 
as it would have in an initially nonsingular solution. One can ensure this by requiring 
the property 

(p )  S n j-(Z+) has the topology of R3 minus a finite number of open sets with 
compact closure. 

It is also convenient (but not essential) to require 

(a) S is simply connected. 

Finally, one is interested only in black holes that one could fall into from infinity. 

(7) There is some 70 such that for 7 2 TO, S(T)nJ-(z+) is contained in J+(Z-).  

I shall call a space satisfying (l), (a) ,  (p),  (7) a regular predictable space. If, 
in addition, (2) is satisfied, I shall call it a stationary regular predictable space. I 
shall show that in such a space the convergence p and shear G of the generators of 
the horizon are zero. It then follows that the Ricci tensor term &,o = 4dfabZaZb 
and Weyl tensor term $0 = Cabcdlamblcmd must be zero on the horizon. One can 
interpret this as saying that no matter or gravitational radiation is crossing the 
horizon. 

The fact that pis zero implies that each connected component OBi(7) of the event 
horizon is a marginally trapped surface. Since there are no trapped or marginally 
trapped surfaces outside the event horizon a&(.) must coincide with zt component 
OT~(T) of the apparent horizon. Thus all stationary black holes are topologically 
spherical; there are no toroidal ones. There could be severd components dBi(7)  of 

Thus it is reasonable to require 
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the event horizon corresponding to black holes which maintain themselves at  con- 
stant distances from each other. This is possible in the limiting case of non-rotating 
black holes carrying electric charge equal to their mass (Hartle and Hawking 1972): 
the electric repulsion just cancels the gravitational repulsion. It seems probable 
but has not yet been proved that these solutions are the only stationary regular 
predictable spaces containing more than one black hole. 

Assuming there is only one black hole, the question of the final state has two 
branches according aa to whether or not the solution is static. A stationary solution 
is said to be etatic if the Killing vector Ka is hypersurface orthogonal, i.e., if the twist 
w" = #qabCdKbKaid is zero. In a static regular predictable space which is empty or 
contains only an electromagnetic field one can apply Israel's theorem (Israel, 1968) 
to show that the space must be the Schwarzschild or Reissner-Nordstrom solution. 

If the solution is not static but only stationary, I shall show (modulo one point) 
that the black hole must be rotating. I shall prove that a stationary regular pre- 
dictable space containing a rotating black hole must be axisymmetric. One can then 
appeal to Carter's theorem (see his lectures) to show that such spaces, if empty, can 
depend only on two parameters; the mass and angular momentum. One two p& 
rameter family is known, the Kerr solutions for a2 5 m2 (the Kerr solutions for 
a2 > m2 contain naked singularities). It seems unlikely that there are any others. 
Thus it appears that the final state of a black hole is a Kerr solution. In the case 
where the collapsing star carries a net electric charge one would expect it to be a 
Newman-Kerr solution. 

I shall only give outlines of the results mentioned above. The full gory details 
will be found in HE. 

To show that the convergence and shear of the generators of the event horizon 
are zero, consider a compact spacelike 2-surface F lying in the horizon. Under the 
time translation t$t the surface F will be moved into another 2-surface &(F)  in the 
event horizon. Assuming that t$t(F) lies to the future of F on the event horizon for 
t > 0, one can compare their areas by moving each element of F up the generators 
of the horizon to &(F) .  I showed earlier that the generators had no future end- 
points and did not have positive convergence p. If any of them had past end-points 
or negative convergence between F and &(F) ,  the area of cbt(F) would be greater 
than that of F. But the area of 4 t ( F )  must be the same as that of F since q5t is an 
isometry. Thus the generators of the event horizon cannot have any past end-points 
and must have zero convergence p. F'rom the Newman-Penrose equations 

dP - dv = P2 t ua t (€ t s)p+&Jo 

du 
dv 
- = 2pa -+ (3c - 7)a t $0 

it follows that the shear u, the Ricci tensor term &O and the Weyl tensor term ~0 

are zero on the horizon. 
The only complication in this proof comes from the fact that the Killing vector 

K" which represents infinitesimal time translations, may be spacelike on and near 
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the horizon. (I shall have more to say about this later.) This means that for an 
arbitrary 2-surface F in the horizon these may be some points of 4 t ( F )  for t > 0 
which lie to the past of F. However one can construct a 2-surface F for which 4 t (F)  
lies wholly to the future of F in the following way. Choose a compact spacelike 
2-sphere C on Z-. The Killing vector Ka will be directed along the null geodesic 
generators on I-. Thus q5t(C) will lie to the future of C for t > 0. The intersection 
of j + ( C ) ,  the boundary of the future of C, with the event horizon will define a 
2-surface F with the required properties. 

If the solution is static, one can apply Israel's theorem. If the solution is only 
stationary but not static one can apply a generalization of the Lichnerowicz theorem 
(cf. Carter) to  show that the Killing vector K" is spacelike in a non-zero region 
(called the ergosphere) part of which lies outside the horizon. The non-trivial part 
of this generalization consists of showing that a certain surface integral over the 
horizon would be zero if K" were not spacelike there. Details are given in HE. 

There are now two possibilities: either the ergosphere intersects the horizon or 
it does not. The horizon is mapped into itself by the time translation 4t. In the 
former case the Killing vector Ka will be spacelike on part of the horizon and so 
some null geodesic generators will be mapped into other ones. The generators form 
a 2-dimensional space Q which is topologically a 2-sphere, and which has a metric 
corresponding to the constant separation of the generators. The time translation 4t 
which moves generators into generators can be regarded as an isometry group on 
Q. Thus its action corresponds to rotating Q about an axis. One can interpret this 
as follows. A point of Q represents a generator of the horizon. As one moves along 
a generator one is moving relative to the stationary frame defined by the integral 
curves of K", i.e., relative to infinity. Thus the horizon would be rotating with 
respect to infinity. I shall show that such a rotating black hole must be axisymmetric. 

The other possibility is that the ergosphere might be disjoint from the horizon. 
Hajicek (1972) has shown that in general the ergosphere must intersect the horizon 
if the region outside the horizon is null geodesically complete in both the future 
and the past directions. However, these stationary spaces approximate to physical 
solutions only a t  late times. There is thus no physically compelling reason why they 
should not contain geodesics in the exterior region which are incomplete in the past 
direction. I shall therefore give an alternative intuitive argument to show that the 
ergosphere must intersect the horizon. 

When there is an ergosphere one can extract energy from the solution by the 
Penrose process (Penrose 1969). This consists of sending a particle with energy 
El = P f K ,  from infinity into the ergosphere. It then splits into two particles with 
energies E2 and E3. By local conservation El = E2 + E3. Since the Killing vector 
K" is spacelike in the ergosphere, one can choose the momentum p i  of the second 
particle such that E2 is negative. Thus E3 is greater than E l .  The particle 3 can 
escape to infinity where its total energy (the rest mass t kinetic energy) will be 
greater than that of the original particle 1. Thus one has extracted energy. Par- 
ticle 2, having negative energy, must remain in the region where K" is spacelike. 
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Suppose that the ergosphere did not intersect the horizon. Then particle 2 would 
have to remain outside the horizon. One could repeat the process and extract more 
energy. As one did so the solution would presumably change gradually. However the 
ergosphere could not disappear because there has to be somewhere for the negative 
energy particles to exist. If the ergosphere remained disjoint from the horizon one 
could extract an arbitrarily large amount of energy. This does not seem reasonable 
physically. On the other hand, if the ergosphere moved so that it intersected the 
horizon, the solution would have to become axisymmetric. At the moment the er- 
gosphere touched the horizon one would have a stationary, non-static, axisymmetric 
black hole solution. This could not be a Kerr solution because in a non-static Kerr 
solution the ergosphere actually intersects and does not merely touch the horizon. 
However it appears from the results of Carter that the Kerr solutions are the only 
stationary axisymmetric black hole solutions. Thus it seems that one ends up with 
a contradiction if one supposes that the ergosphere is disjoint from the horizon. I 
shall therefore assume that any stationary, non-static black hole is rotating. 

My original proof (Hawking 1972) that a stationary rotating black hole must be 
axisymmetric had the great advantage of simplicity. However it involved the assump- 
tion that as well as the future event horizon j-(Z+) there was a pust event horizon 
j+(Z-) and that the two horizons intersected in a compact spacelike 2-surface. 
Penrose pointed out that there is no necessity for this assumption to hold. These 
stationary spaces represent physical solutions only at  large times. There would be 
a past horizon if the solution were time-symmetric. By the Papapetrou theorem 
(see Carter) time-symmetry is a consequence of stationary and axial-symmetry. It 
should not be assumed to prove axial symmetry. I therefore developed another proof 
of axial symmetry which depends only on the future horizon. Unfortunately, this 
proof is rather long and messy. I shall try to give an intuitive picture of it here and 
shall give the full details in HE. 

Consider a rotating black hole. Let tl be the period of rotation of the horizon. 
This means that for a point p on a generator X of the horizon +t , (p )  is also on X 
(Fig. 18). One can choose a parameter v on X so that I" = dx"/dv  satisfies 

where c is constant on A and so that difference between the values of v a t  p and at 
c$t,(p) is t l .  This fixes the scaling of I". One can now form the vector field 

on the horizon. The orbits of I?, will be closed spacelike curves in the horizon. 
The aim will be to show that they correspond to rotations of the solution about 
an axis of symmetry. Choose a spacelike 2-surface F in the horizon tangent to I?". 
Let N be the null surface generated by the ingoing null geodesics orthogonal to F 
(Fig. 19). The idea of the proof is to consider the Cauchy problem for the region to 
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HORIZON 

OF K a  

Fig. 18. The time translation Q t ,  moves a point P on the horizon along the orbit of I P  to the 
point q 5 d l  (P) on the same generator of the horizon. 

the past of both the horizon and N. The Cauchy data for the empty space Einstein 
equations in this situation consists of $0 on the horizon $4 = C4bcdn4mbnc~d on 
N where no is the null vector tangent to N and p, p = -n4;bmamb and $2 = 
!jCat,c,j(14nblCnd - l"nbmcmd) on the 2-surface F. If there are other fields present 
(e.g., an electromagnetic field) one has to give additional data for them. I shall 
consider only the empty case but similar arguments hold in the presence of any 
fields obeying well-behaved hyperbolic equations. 

By the stationarity of the horizon, p and $0 are zero and one can show from the 
Newman-Penrose equations that $2 is constant along the generators of the horizon. 
Thus the only non-trivial Cauchy data are that on the null surface N. The idea now 
is to show that these Cauchy data are unchanged if one moves N by moving each 
point of the 2-surface F an equal parameter distance down the generators of the 
horizon. If this is the case, it follows from the uniqueness of the Cauchy problem 
that the solution admits a Killing vector K" which coincides with I" on the horizon. 
Then I?' defined as tl/27r(k4 - K") will also be a Killing vector. Since the orbits 
of k" are closed curves on the horizon, they will be closed everywhere and so will 
correspond to rotations about an axis of symmetry. 

To show that the data on N are unchanged on moving each point of F down the 
generators of the horizon, I assume that the solution is analytic though this is almost 
certainly not necessary. The data on N can then be represented by their partial 
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HORIZON 

Fig. 19. The event horizon and the null surface N intersected in the spacelike surface F. 

derivatives at F in the direction along N. From the Newman-Penrose equations one 
can evaluate the derivatives along a generator X of the horizon of these and certain 
other quantities. If one takes them in a certain order one obtains equations of the 
form 

dx - = a a z + b  dv 
where x is the quantity in question and a and b are constant along A. 

Now moving F a parameter distance 11 (the period of rotation of the black hole) 
to the past along the generators of the horizon is the same as moving F by the time 
translation & t I ,  Since q L t l  is an isometry, the quantity az will be unchanged under 
it. Thus 2 must be periodic along the generator X with period t l .  This is possible 
only if z is constant al0ng.X and equal to - (b /a ) .  One then uses this to calculate 
the derivative along X of another quantity and shows that it is constant by a similar 
argument. Proceeding by induction one shows that all the derivatives at the horizon 
of the Cauchy data on N are constant along the generators of the horizon. 

The first quantity x that one considers is li -+ p. The Newman-Penrose equation 
for this is 
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-(& d + p )  = S ( E  t q + $1 * 
dt 

By construction S(E + 5)  is constant along the generators of the horizon and by 
another Newman-Penrose equation, $1 = 0 on the horizon. Therefore in order for 
6 + /3 to be periodic it has to be constant along the generators and 6(c + S) has to 
be zero. This means that E + g must be constant over the whole horizon. In the 
next section we shall see E + 7 can be interpreted as the restoring force or effective 
surface gravity of the black hole. 

One now applies similar arguments to show that (5  - p), p, A, & and $4 are 
constant along the generators of the horizon. One then repeats the arguments to 
show that the first and higher derivatives of all quantities along the vector n" are 
constant dong the generators. This completes the proof. 

I t  turns out that if E is nonzero (as it is in general) the solution is completely 
determined by a knowledge of $2 on each generator. I shall use this fact in one of 
the applications in the next section. It holds true even if the space outside the black 
hole is not empty but contains, say, a ring of matter (in which case the space would 
not be a Kerr solution). 

The proof of axial symmetry implies that a rotating black hole cannot be exactly 
stationary unless all distance matter and all fields are arranged axisymmetrically. 
In real life this will never be the case. Thus a rotating black hole can never be 
exactly stationary, it must be slowing down. However, calculations by Press (1972), 
Hawking and Hartle (1972), and Hartle (1972) have shown that the rate of slowing 
down is very small in most cases. I shall discuss this further in the next section. 

9. Applications 

In this final section I shall outline some of the ways in which the theory described 
so far can be used to obtain quantitative results, which is what most people want. 
I shall discuss three applications: 

The limits that can be placed from the area theorem on the amount of energy 
that can be extracted from black holes. 
The change in the mass and angular momentum of a nearly stationary black 
hole produced by small perturbations. 
Time-symmetric black holes. (These are not very realistic but they provide 
some concrete examples.) 

A. Energy Limits 

In view of the last section it seems reasonable to assume that a black hole set- 
tles down to a Kerr solution or, if carrying an electric charge, to a Newman-Kerr 
solution. The area of the event horizon of such a solution is 

A = 4n[2M2 - e2 + 2 ( M 4  - M 2 e 2  - L2)3] 
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where M is the mass, e the electric charge and L the angular momentum of the 
black hole. (All in units such that G = c = 1.) Now suppose that the black 
hole, having settled down by the surface S(71) to a nearly stationary state with 
parameters MI, e l ,  L1, now undergoes some interaction with external particles or 
fields and then settles down again by the surface S(72) to a nearly stationary state 
with parameters M2, e2, L2. Since the area of the horizon cannot decrease 

A2 1 A1 

where A1 and A2 are given by equation (9.1) with the appropriate values of M, e 
and L.  In fact (9.2) is a strict inequality if there is any disturbance at the horizon. 
It puts an upper limit on M I  - M2, which represents the amount of energy extracted 
from the black hole by the interaction. To see what this limit is, it is convenient to 
express equation (9.1) in the form: 

A 4 r L 2  re4 e2 
16r A 2 M 2 = - + -  +A+- (9.3) 

The first term on the right can be regarded as the "irreducible" part of M 2 ,  the 
part that is irretrievably lost down the black hole. The second term can be regarded 
as the contribution of the rotational energy of the black hole and the third and 
fourth terms as the contribution of the electrostatic energy. Christodoulou (1970) 
has shown that one can extract an arbitrarily large fraction of the rotational energy 
by the Penrose process of sending a particle from infinity into the ergosphere where 
it splits into two particles one of which returns to infinity with more than the original 
energy while the other falls through the horizon and reduces the mass and angular 
momentum of the black hole. Similarly, using charged particles, one can extract an 
arbitrarily large fraction of the electrostatic energy. 

Note that it is M 2  and not M which has an irreducible part. This distinction 
does not matter when there is only one black hole but it means that one can ex- 
tract energy, other than rotational or electrostatic energy, by allowing black holes 
to collide and merge. Consider two black holes B ~ ( T )  and B2(7) a long way apart 
which have settled down to nearly stationary states. One can neglect the interaction 
between them and regard the solution near each as a Kerr solution with the param- 
eters MI, e l ,  L1 and M2, e2 and L2 respectively. The areas A1 and A2 of aBl(7)  
and a B z ( 7 )  will be given by equation (9.1). Suppose that at some later time the 
two black holes come together and merge to form a single black hole B3(7)  which 
settles down to a nearly stationary state with parameters M3, e3 and L3. During the 
collision process a certain amount of gravitational and possibly electromagnetic radi- 
ation will be emitted to infinity. The energy of this radiation will be M I  + M2 - M3. 
This is limited by the requirement that the area A3 of OB3(7) must be greater than 
the sum of A1 and Az. The fraction 6 = ( M I  t M2)-'(M1 t M2 - M3) of the total 
mass that can be radiated is always less than 1 - 2-4, i.e., about 65%. If the black 
holes are uncharged or carry the same sign of charge, the fraction is less than a half, 
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i.e., 50%. If the black holes are also non-rotating the fraction is less than 1 - 2'3,  
i.e., about 29%. 

By the conservation of charge e3 = el t e2. Angular momentum, on the other 
hand, can be carried away by the radiation. This cannot happen, however, if the 
situation is axisymmetric, i.e., if the rotation axes of the black holes are aligned along 
their direction of approach to each other. Then L3 = L1 + L2. One can see from 
equation (9.3) that M3 can be smaller, i.e., there can be more energy radiated, if the 
rotations of the black holes are in opposite directions than if they are in the same 
direction. This suggests that there may be an orientation dependent force between 
black holes analogous to that between magnetic dipoles. Unlike the electromagnetic 
case, the force is repulsive if the orientations are the same and attractive if they 
are opposite. Even in the limiting case when L1 = M t  and Lz = M;, there is still 
energy available to be radiated. Thus it seems that the force can never be sufficiently 
repulsive to prevent the black holes colliding. 

B. Perturbations of Black Holes 

To perform dynamic calculations about black holes seems to require the use of a 
computer in general. However there are a number of situations that can be treated 
as small perturbations of stationary black holes, i.e., Kerr solutions. The general 
idea in these calculations is to solve the linearized equations for a perturbation 
field (scalar, electromagnetic or gravitational) in a Kerr background and to try to 
find the radiation emitted to infinity and the rate of change of the mass and angular 
momentum of the black hole. In the case of the scalar and electromagnetic field these 
latter can be evaluated by integrating the appropriate components of the energy- 
momentum tensor of the field over the horizon. For gravitational perturbations, 
however, there is no well defined local energy-momentum tensor. Instead I shall 
show how one can determine the change in the mass and angular momentum of the 
black hole by calculating the change in the area of the horizon and the quantity $2 

on the horizon. It turns out that these depend only on the Ricci tensor terms 400  = 
4TTabIaIb and 401 = 4TTabla?nb and the Weyl tensor term $0 on the horizon. This is 
fortunate because it seems that the full equation for gravitational perturbations in 
a Kerr background are not solvable by separation of functions but Teukolsky (1972) 
has obtained decoupled separable equations for the quantities $0 and $4. 

The mass, the magnitude of the angular momentum and its orientation make 
up four parameters in all. However, in many uses there are constraints which make 
it sufficient to caluclate the change in only one function of these four parameters. 
The simplest such function is the area of the horizon which is given by equation 
(9.1). The rate of charge of this area can be calculated from the Newman-Penrose 
equations 

- =  dp p 2  + + 2€p + f$mJ 
dv (9.4) 

do - = 2 p a  + 2 r a  + $0 
dv (9.5) 
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Choose a spacelike surface S which intersects the event horizon of the background 
Kerr solutions in J+(Z-) and is tangent to the rotation Killing vector I?". Then 
one can define a family S(t) of such surfaces by moving S under the time translation 
t$t, i.e., by moving each point of S a parameter distance t along orbits of the Killing 
vector KO of the unperturbed metric. This defines a time coordinate t on the 
horizon, It is convenient to choose the parameter v along the generators of the 
horizon to be equal to t. Then in the unperturbed Kerr metric 

Y 
f = 4 M ( M Z t y ) '  (9.61 

where 
y = (M4 - L2)i 

There are two kinds of perturbations one can consider, those in which there 
is some matter fields like the scalar or electromagnetic field on the horizon with 
energy-momentum tensor Tab and those in which the perturbations at the horizon 
are purely gravitational and are produced by matter at a distance from the black 
hole. Consider first a matter field perturbation where the field is proportional to a 
small parameter A. The energy-momentum tensor and so the perturbation in the 
metric and in & will be proportional to X2. Thus p and u will be proportional to 
A2 and to order X2 equation (9.4) becomes 

where c is given by (9.6). Suppose that the perturbation field is turned off after 
some time t1. The black hole will then settle down to a stationary state with p = 0. 

Thus the solution of (9.7) for p is 

The rate of increase of area of the horizon is 

dt 

where the integral is taken over the two surface aB(t) which is the intersection of the 
event horizon with the surface S(t). Substituting from equation (9.8) and performing 
a partial integration with respect to time one finds that total area increase of the 
horizon is 

(9.9) 
6 A  = - 4n /Ta#dXb 

€ 

where dCb = lbdAdt is the 3-surface element of the event horizon. The null vector I" 
tangent to the horizon can be expressed in terms of K" and ko the Killing vectors 
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of the background Kerr metric which correspond to time translations and spatial 
rotations respectively. 

I" = K" + U P  + O ( X 2 ) ,  (9.10) 

where 
L 

= 2M(M2 + y) 
(9.11) 

is the angular velocity of the black hole. The vectors TabKO and -Tabka represent 
the flow of energy and angular momentum respectively in the matter fields. They 
are conserved in the background Kerr metric and their fluxes across the horizon give 
change of mass and angular momentum of the black hole. 

Thus 
(9.12) 

This is just the change needed to preserve the formula (9.1) for the area of the 
horizon of Kerr solution. It is therefore consistent with the idea that the pertur- 
bation changes the black hole from one Kerr solution to one with slightly different 
parameters. 

The case of purely gravitational perturbations is rather more interesting because 
one does not have an energy-momentum tensor from which to compute the fluxes 
of energy and angular momentum into the black hole. Instead one can use the area 
increase as a measure of a certain combination of them. One takes the gravitational 
perturbation field to be proportional to a small parameter A. Then from equations 
(9.4), (9.5) u will be proportional to X and p to X2 

4n 6A = -[6M - d L ] .  
€ 

dP - = ua + 2 € p ,  dt 

00 
From (9.14) 

u = - 1 exp{2c(t - t')}$odt' 

(9.13) 

(9.14) 

(9.15) 

and 
6A = 1 uadAdt . (9.16) 

One can apply this formula in at  least two situations. First there are stationary 
gravitational perturbations induced by distant matter which is stationary or nearly 
stationary. In such perturbations there will be no radiation at  infinity and the 
energy of the sources of the perturbation will be nearly constant. Thus there can 
be no energy flow into or out of the black hole and its mass must remain constant. 
From equation (9.1) it then follows that the increase in the area A of the horizon 
must be accompanied by a decrease in the angular momentum of the black hole. In 
other words, the effect of stationary perturbation is to slow down the rotation of the 

€ 

68 



black hole. What is happening is that the rotational energy part of M 2  in equation 
(9.3) is being dissipated into the irreducible part of M 2  represented by A. 

There is a strong analogy between this process and ordinary tidal friction in a 
shallow sea covering a rotating planet. A nearly stationary external body such as a 
moon will raise tides in the sea. As the planet rotates, the shape of a fluid element 
will change and so the fluid will be shearing. There will be dissipation of energy at 
a rate proportional to the coefficient of viscosity times the square of the shear. This 
energy must come from the rotational energy of the planet. Thus the planet will 
slow down. 

Similarly one can regard the perturbation field of a stationary external object as 
tidally distorting the horizon of the black hole (Fig. 20) with consequent shearing 
as the black hole rotates and dissipation of rotational energy at a rate proportional 
to the square of the shear. The dimensionless analogue of the viscosity in this case 
is of order unity. Hartle (1972) has calculated the rate of slowing down of a slowly 
rotating black hole caused by a stationary object of mass M' at coordinates T and 
8. For r / M  large he finds 

@+- OBJECT 

0 IS TOR TE D 

HORIZON 

Fig. 20. The gravitational of an external object tidally distorts the event horizon. 
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Because of the last factor, this seems too small ever to be of astrophysical signifi- 
cance. This situation might be different, however, for a rapidly rotating black hole 
with L nearly equal to M2. In this case the quantity c which acts as a restoring 
force in equations (9.13) and (9.14) is very small. In a sense the black hole is rotat- 
ing with nearly break up velocity so centrifugal force almost balances gravity and a 
s m d  object can raise a large tide on the horizon. For maximum effect, the object 
should be orbiting the black hole near the horizon with nearly the same angular 
velocity as that of the black hole. Under these circumstances the black hole would 
lose energy and angular momentum at a significant rate to the object. The object 
would also be losing energy and angular momentum in radiation to infinity. It is 
possible that the rates would balance to give what is called a floating orbit. To 
find out whether this could happen, it would be sufficient to calculate the rate of 
increase of the area of the horizon and the rate of radiation of energy and angular 
momentum to infinity since an object in a circular orbit can gain or lose energy and 
angular momentum only in a certain ratio. 

For other problems it would be helpful to be able to calculate separately the rate 
of change of the mass and the three components of angular momentum. In the last 
section we saw that a stationary black hole solution is in general determined by a 
knowledge of the quantity $2 on a 2-dimensional section of the horizon. In the case 
of a Kerr black hole, the angular momentum is represented by the imaginary 1 = 1 
part of $J~-*. From the Newman-Penrose equations one can calculate the change in 
$12 produced by the perturbation. 

where 8 acting on a spin weight s quantity is 8 + s(a - 0). Further details will be 
given elsewhere. 

C. Time-Symmetric Black Holes 

The last application I shall describe is largely based on the work of 
Gibbons. Some of it is about to be published (Gibbons 1972) and more 
in his Ph.D. thesis. 

G. W. 
will be 

To calculate the evolution of a section of the Einstein equation one requires 
initial data on a partial Cauchy surface S. The Cauchy data on a spacelike surface 
can be represented by two symmetric 3-dimensional tensor fields hij and xij. The 
negative definite tensor hij is the first fundamental form or induced metric of the 
3-surface S imbedded in the 4-dimensional spacetime manifold M. It is equal to 
g i j  - UjUj where ui is the unit timelike vector orthogonal to S. The tensor x;j is 
the second fundamental form or extrinsic curvature of S imbedded in M. It  is equal 
to U k ; , h f h : .  The fields hij and x i j  have to obey the constraint equations: 

70 



where 11 indicates covariant differentiation with respect to the 3-dimensional metric 
hij in the surfaces. The constraint equations are non-linear and difficult to solve 
in general. However the problem is much simpler if the solution is time-symmetric. 
The solution is said to be time-symmetric about the surface S if there is an isometry 
which leaves the surface S pointwise fixed but reverses the direction of time, i.e., 
it moves a point to the future of S on a timelike geodesic orthogonal to S to the 
point on the some geodesic an equal distance to the past of S. The time symmetry 
isometry maps x i j  to - x i j  since it reverses the direction of the normal ui to S. 
Thus x i j  = 0 .  The first constraint is trivially satisfied and the second one becomes 
in the empty case 

(3 )R  = 0 

The convergence of the outgoing null geodesics orthogonal to a 2-surface F in S 
is 

p = 2-bni?%j(u;;j 4- 2Ui;j) 

where wi is the unit spacelike vector in S orthogonal to F. The first term is zero 
because x i j  = 0.  Thus if F is a marginally trapped surface, the convergence of 
its normals in S must be zero. This means that it is an extremal surface, i.e., its 
area is unchanged to first order under a small deformation. In fact F must be a 
minimal surface if it is an apparent horizon, i.e., if it is the outer boundary of a 
region containing closed trapped surfaces. Conversely any minimal 2-surface in S is 
an apparent horizon. 

One can write down an explicit family of solutions of the remaining constraint 
equation by taking the metric hi, on S to be V'77ij where qij  is the three-dimensional 
flat metric and V satisfies the Laplace's equation in this metric 

v2v=o. 
I shall consider solutions of the form V = 1 + CMi/2ri representing the field of a 
number of point masses Mi where the distance from the ith mass is ri.  

The solution with only one mass is the Schwarzschild solution expressed in 
isotropic coordinance. The minimal surface, which in this case is both the apparent 
and event horizon, is at r = $M and has area 16zM2. Now consider the case of two 
equal mass points A41 and M2. If they are far  apart the minimal surfaces around 
each will be almost at rl  = 4M and r2 = 4M and their areas will be nearly 16xM2. 
Each surface will however be slightly distorted by the field of the other points and 
their a r e a  will be slightly greater than 16nM2. As the solution evolves the two 
black hole6 containing these two apparent horizons will fall towards each other and 
will merge to form a single black hole which will settle down to a Schwarzschild 
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solution with mass M'. The energy of the gravitational radiation emitted in this 
process will be the initial mass 2M of the system minus the final mass M'. This 
is limited by the fact that the area 1 6 ~ M ' ~  of the event horizon of the find black 
hole must be greater than the sum of the areas of the event horizons around the two 
original black holes. The area of these event horizons must be greater than those 
of the corresponding apparent horizons since these are minimal surfaces. Thus the 
upper limit on the fraction 6 of the initial mass that can be radiated is somewhat 
less than 1 - 2-3. If the two mass points are moved nearer to each other in the 
initial surface S the minimal surfaces around them become more distorted and their 
area increases. Thus the upper limit on the fraction of energy that can be radiated 
becomes less. This is what one would expect since the available energy of each 
black hole is reduced by the negative gravitational potential of the other. In fact to 
first order, the reduction in the upper limit on c just corresponds to the Newtonian 
gravitational interaction energy of the two point masses. When the two mass points 
are moved close to each other the area of the minimal surface around each becomes 
greater than 32rM2. This seems to indicate that the amount of energy that could 
be radiated would be negative which would be a contradiction. However before the 
two mass points are close enough for this to happen, it seems that a third minimal 
surface will be formed which surrounds them both and has area less than 647rM2 
(Fig. 21). 

Fig. 21. The two apparent horizons &TI and &T2 are surrounded by another apparent horizon aT3. 

Gibbons (1972) has shown that any minimal surface in a conformally flat initial 
surface must have an area greater than 

where the integral is taken over the minimal surface. The expression in the brackets 
represents the contribution to  the total mass on the initial surface arising from 
points within the minimal surface. The solution that evolves from the initial surface 
will eventually settle down to a Schwarzschild solution with an event horizon of 
area 16~M'~. Since this area must be greater than the area of the event horizon 
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on the initial surface which in turn must be greater than the area of the minimal 
surface, the difference between the initial mass M and the final mass M' must be 
less than (1 - 2 - 3 / 2 ) M .  This means that a single distorted black hole on a surface 
of time symmetry cannot radiate more than 65% of its initial mass M in relaxing 
to a spherical black hole. 

The black holes that have been considered so far in this subsection are non- 
rotating. This is because the condition that the solution be invariant under t + -t 
rules out any rotation. However, one can include rotation in a simple way if the 
solution is invariant under the simultaneous transformation t + - t ,  cp -+ -cp. I 
shall call such a solution ( t ,  cp)  symmetric. To obtain such a solution the initial 
data must be of the form 

where J a  is an axisymmetric vector field orthogonal to the Killing vector kb which 
corresponds to rotations about the axis of symmetry. The first constraint equation 
then becomes 

Jia = STTabZL"kb. 

One can integrate this equation to obtain the total angular momentum within a 
given 2-surface 

L=-- J JadA". 
8n 

In the empty case, to which I shall now restrict myself, the angular momentum 
will arise from singularities of the field J". The solution will be asymptotically 
predictable and will represent black holes if those singularities are contained within 
apparent horizons. From the form of X a b  it follows that the apparent horizons in 
the initial surface of ( t ,  c p )  symmetry are minimal 2-surfaces. Note that this is the 
case only in a surface of time symmetry or ( t ,  cp)  symmetry. It is not true in later 
space-li ke surfaces. 

In the empty case the second constraint equation becomes 

This equation can be solved by a technique of Lichnerowicz. Choose a spatial 
metric hab. Then choose a spatial vector field J, which is axisymmetric, orthognal 
to 2" and which satisfies Jlf. = 0 in the metric hab. One then makes a conformal 
transformation = V4hab. The first constraint equation will remain satisfied if 
J a  transforms as ,fa = Ve2Ja. The second constraint equation will be satisfied if V 

where the covariant derivatives are with respect to the metric hab. This equation is 
non-linear so one cannot write down explicit solutions even in the case where the 
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metric hob is chosen to be flat. However one can note certain qualitative features. 
One of these is that the addition of angular momentum tends to increase the total 
mass of the solution. Thus it seems that the rotational energy of black holes is 
positive ae one would expect. Calculations by Gibbons in the case of two black 
holes indicate that the ratio of the area of the apparent horizons to the square of 
the total mass is bigger when the angular momenta of the black holes are in opposite 
directions than when they are in the same direction. This indicates that there is 
less energy available to the radiated in the former case than in the latter which is 
consistent with the idea that there is a spin-dependent force between black holes 
which is attractive in the case of opposite angular momenta and repulsive in the 
other case. 

The calculations of Gibbons indicate that when the black holes are far apart the 
force is proportional to the inverse fourth power of the separation which is what one 
would expect from the analogy with magnetic dipoles. 
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A M .  Expressions arc derived for the mass of a stationary axisymmetric solution 
of the Einstein equations containing a black hole surrounded by matter and for the 
difference in mass between two neighboring such solutions. Two of the quantities which 
appear in these expressions, namely the area A of the event horizon and the “surface 
gravity’k of the black hole, have a close analogy with entropy and temperature respectively. 
This analogy suggests the formulation of four laws of black hole mechanics which corre- 
spond to and in some ways transcend the four laws of thermodynamics. 

1. Introduction 
It is generally believed that a gravitationally collapsing body will 

give rise to a black hole and that this black hole will settle down to a 
stationary state. If the black hole is rotating, the stationary state must 
be axisymmetric [l] (An improved version of this theorem involving 
weaker assumptions is outlined in [2] and is given in detail in [3]). 
It has been shown that stationary axisymmetric black hole solutions 
which are empty outside the event horizon fall into discrete families 
eachof which depends on only two parameters, the mass M and the 
angular momentum J [4-61. The Kerr solutions for M4>JZ are one 
suchfamily. It seems unlikely that thereareany others. It also seems reason- 
able to suppose that the Newman-Kerr solutions for M4 > J2 + M2Q2, 
where Q is the electric charge, are the only stationary axisymmetric black 
hole solutions which are empty outside the event horizon apart from 
an electromagnetic field. On the other hand there will be an infinite 
dimensional family of stationary axisymmetric solutions in which 
there are rings of matter orbiting the black hole. In Sections 2 and 3 of 
this paper we shall derive formulae for the mass of such a solution and 
for the difference in mass of two nearby solutions. These formulae 
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generalise the expressions found by Smarr [73 and Beckenstein [S] 
for the Kerr and Newman-Kerr solutions. We show that the quantities 
appearing in the formulae have well-defined physical interpretations. 
Of particular interest are the area A of the event horizon and the "surface 
gravity" K, which appear together. These have strong analogies to 
entropy and temperature respectively. Pursuing this analogy we are 
led in Section4 to formulate four laws of black hole mechanics which 
are similar to, but distinct from, the four laws of thermodynamics. 

2. The Integral Formula 

In a stationary axisymmetric asymptotically flat space, there is a 
unique time translational Killing vector K" which is timelike near infinity 
with KaK,= - 1 and a unique rotational Killing vector & whose 
orbits are closed curves with parameter length 2 ~ .  These Killing vectors 
obey equations 

K a ; b =  &a;b] 7 E7a:b= K[a;b)  9 (1) 

K , ; b x b = k a ; b K b ,  (2) 
Kaibb = - RabKb , 
@; bb = - RabKb , 

(3) 
(4) 

where a semicolon denotes the covariant derivatives, square brackets 
around indices imply antisymmetrization and R,, = Roe: with 

'd:[brl= 3 RdbcYQ 

for any vector ua. Since K o ; b  is antisymmetric, one can integrate Eq. (3) 
over a hypersurface S and transfer the volume on the left to an integral 
over a 2-surface d S  bounding S: 

(5 )  1 Ka;'dZab = - 1 R:KbdZa,  
as S 

where dZab and dZa are the surface elements of dS and S respectively. 
We shall choose the surface to be spacelike, asymptotically flat, tangent 
to the rotation Killing vector I?, and to intersect the event horizon [: 13 
in a 2-surface 8s. The boundary dS of S consists of dB and a 2-surface 
as, at infinity. For an asymptotically flat space, the integral over as, 
in equation (5 )  is equal to -47cM, where M is the mass as measured from 
infinity. Thus 

(6) 
1 hd = 5 (2 T,b - T62) K a d z b  -I- - 1 Ka;bdx,b,  

S 4R dB 
where 

R a b - f R g a b =  * 
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The first integral on the right can be regarded as the contribution to the 
total mass of the matter outside the event horizon, and the second 
integral may be regarded as the mass of the black hole. One can integrate 
Eq. (4) similarly to obtain an expression for the total angular momentum 
J as measured asymptotically from infinity, 

The first integral on the right is the angular momentum of the matter, 
and the second integral can be regarded as the angular momentum 
of the black hole. 

One can introduce a time coordinate t which measures the parameter 
distance from S along the integral curves of K" (i.e. t;,K" = 1). The null 
vector F=dx"/dt ,  tangent to the generators of the horizon, can be 
expressed as 

The coefficient is the angular velocity of the black hole and is the 
same at all points of the horizon [9]. Thus one can rewrite Eq.(6) as 

(9) 

I"= K" + 8 H P .  (8) 

1 M = j (2T: - T6:) K"dzb + 2 8 H J H  + - [ pbdz, ,b,  
S 4a aB 

where 

is the angular momentum of the black hole. One can express dXeb as 
l,,nb,dA, where n, is the other null vector orthogonal to a E ,  normalized 
so that nap= - 1, and d A  is the surface area element of aB. Thus the 
last term on the right of Eq. (9) is 

1 - K d A ,  

where K = - l,,bn"lb represents the extent to which the time coordinate 
t is not an affine parameter along the generators of the horizon. One can 
think of K as the "surface gravity: of the black hole in the following sense: 
a particle outside the horizon which rigidly corotates with the black 
hole has an angular velocity OH, a four-velocity u" = d(K" + a#), and 
an acceleration four-vector tP;bUb. The magnitude of the acceleration, 
multiplied by a factor l/d to convert from change in velocity per unit 
proper time to change in velocity per unit coordinate time t ,  tends to K 
when the particle is infinitesimally close to the event horizon. 

We shall now show that K is constant over the horizon. Let m",i" 
be complex conjugate null vectors lying in dE and normalised so that 

4n aB 
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maGa = 1. Then 

K;,ma = -(Ia:bnalb);cmc 
(10) 

Since la is a Killing vector, ka;bc = &,bald. The normalization of the null 
tetrad on the horizon, from which 

= - l?;bcnaPmc - Ia;bna;cPmc - la~bnalb;cmc. 

gab = - nalb- + mazb + 6 a m b  , 
is used to put the second term in the form Icla;,narnc. The third term is 
- ~ l ~ ; , n ~ r n ~  as a result of the vanishing of the shear and convergence 
of the generators of the horizon, la,,maEb = 0 = laibmarnb. Thus 

K;,ma = - RabcdlambPnd. (11) 

But on the horizon 
0 = (la;bmaiiib);cmC 

= RdabckdmaGbmc (12) 
= - Rdbldmb + RabcdiambiCnd. 

By the Einstein equations Rb,lbmd = 8nTb,lbmd. 
If energy-momentum tensor obeys the Dominant Energy Condition 

[lo], Tbdlb  will be a non-spacelike vector. However T b d l b l d = O  on the 
horizon since the shear and convergence of the horizon are zero. This 
shows that Tbdlb must be zero or parallel to Id and that TbdlbmdsO. 
Thus K;,ma is zero and K is constant on the horizon. 

The integral mass formula becomes 

(13) 
S 4n 

where A is the area of a 2-dimensional cross section of the horizon. 
When Tab is zero, i.e. when the space outside the horizon is empty, 
this formula reduces to that found by Smarr [7] for the Kerr solution. 
In the Kerr solution, 

K kf = (2 T,b - T6:) K”dzb  + 2 f 2 ~ J ~  + - A , 

JH a, = 
2 M ( M 2  + (M4 - 5;)”’) ’ 

A = 8n(M2 + (M4 - J;)”’). (16) 
For a Kerr solution with a zero angular momentum, the total mass is 
represented by the last term in equation (13). As the angular momentum 
increases, the surface gravity decreases until it is zero in the limiting 
case, Js = M4. The mass is then all represented by the rotational term 
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2QHJH. The reduction of the surface gravity with angular momentum 
can bc thought of as a centrifugal effect. When the angular momentum 
is near the limiting value, the horizon is, in a sense, very loosely bound 
and a small perturbation can raise a large tide [ 111. 

3. The Differential Formula 

In this section we shall use the integral mass formula to derive an 
expression for the difference 6M between the masses of two slightly 
different stationary axisymmetric black hole solutions. For simplicity 
we shall consider only the case in which the matter outside the horizon 
is a perfect fluid in circular orbit around the black hole. The differential 
mass formula for rotating stars without the blackhole terms is discussed 
in [ 121. A treatment including electromagnetic fields, which allows the 
matter to be an elastic solid, is given in [6] .  

A perfect fluid may be described by an energy density E which is a 
function of the particle number density n and entropy density s. The 
temperature 0, chemical potential p and pressure p are defined by 

p = p n  + 0 s  - E .  

Tab  = (& + p )  ua"b + P g a b  3 

(19) 

(20)  

The energy momentum tensor is 

where 00 = ( -  u b U b ) - l ' Z p  is the unit vector tangent to the flow lines and 
u" = Ka + QJ?, where G? is the angufar velocity of the fluid. The angular 
momentum, entropy and number of particles of the fluid can be expressed 
as 

and 
j so"dC, 9 
j nOOdZa respectively. 

When comparing two slightly different solutions there is a certain 
freedom in which paints are chosen to correspond. We shall use this 
freedom to make the surfaces S, the event horizons, and the Killing 
vectors Ka and k the same in the two solutions. Thus 

and 
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where h , b = 8 g a b  = - g a c g b d 6 g c d .  Then 

6P = 6RH€P,  (23) 
61, = habib + g,b6RHRb.  (24) 

Since the event horizons are in the same position in the two solutions, 
the covariant vectors normal to them must be parallel, 

6 I&,] = 0 , 8nIanbl = o . (25) 
Also, the Lie derivative of S l ,  by ib is zero, (61a);bjb + 6 1 , P ; b  = 0. Therefore 

6u = f ( S i , P  + 1,6P),,nC ++(I,Ia),,6nc 
= f(61,);b(Pnb f rf ib )  + 6ial",bnb 

+ 6S1H€P;aianb + 6nb1a,b1a 
=f(sl ,); ,(Pn* + nap) + S Q H P , , i , n b .  

(26) 

As 61, is proportional to la on the horizon, (SI,),bmaiii'is zero. Thus 

8 K =  -+(S/,);" + 8 a H p ; b l a n b  
(27) 

= - f h a b ; a l b  + 6 n H P ; b l a n b .  

To evaluate SM, we express the mass formula derived in the previous 
section in the form 

The variation of the term involving the scalar curvature, R, gives 

using h,d;,K" + 
last term in (29) into the 2-surface integral 

+ hacKaid  = 0. One can therefore transform the 

1 
(31) 

The integral over as, gives -6M and, by Eq. (27), the integral over dB 

gives --A - 26QHJH. 

-- (Kahr;a - Kdhpal) d z a d .  
4~ as 

S K  
4R 

The variation of the energy-momentum tensor term in (28) is 

28 f T,bKadCb= - 2 f as(T;&'dCb} + 26 1 pK"dC, 
(32) + 2 f $6 ( ( E  + p) (- t t d g c d ) -  U,i<*dCb) . 
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But e + p = p ? l + 6 ~ ,  Sp=Sp?l+66S,  and u"6{(-u'd~,d)-1'2u,} = i t f # h c d .  

26 s T t K a d C b  = s TcdhcdKadza + 2SQSdJ 
Therefore 

(33) 

where 6 d J  = -6{ T , b p d C , }  is the change in the angular momentum of 
the fluid crossing the surface element dZ,, 

+ 2 j Y S d N  + 2 J 8 6 d S ,  

SdN = 6(~1(-u,u")-'/ 'K~dZ,) 

is the change in the number of particles crossing dZb,  

6 d S = 6 { S(- Uatf)-"2 K b d z b }  

is the change in the entropy crossing dZ,, 

ii= (- U,U')1/* p 

is the "red-shifted'.: chemical potential, and 

8= (- U,U')''~ 6 

is the "red-shifted" temperature. Thus 
K SM QddJ + JiSdN + f BddS + QHSJH + 811. SA . (34) 

This is the differential mass formula. 
If an infinitesimal ring is added to a black hole slowly, without 

allowing any matter or radiation to cross the event horizon, the area 
and the angular momentum of the black hole are constant and the matter 
terms in the Eq. (34) give the net energy required to add the ring. Since 
Q,, and K do change to first order in the mass of the ring, the change in 
M,, LI 2&JH + ~ A / 4 x  must be taken into account in the integral mass 
formula of Eq. (1 3). 

4. The Four Lam 

In this section we shall pursue the analogy between black holes and 
thermodynamics and shall formulate four laws which correspond to and 
in some ways transcend the four laws of thermodynamics. We start with 
the most obvious analogy: 

The Second Law [ 13 
The area A of the event horizon of each black hole does not decrease 

with time, i.e. 
S A Z O .  
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If two black holes coalesce, the area of the final event horizon is greater 
than the sum of the areas of the initial horizons, i.e. 

A ,  > A, + A , .  

This establishes the analogy between the area of the event horizon 
and entropy. The second law of black hole mechanics is slightly stronger 
than the corresponding thermodynamic law. In thermodynamics one 
can transfer entropy from one system to another, and it is required only 
that the total entropy does not decrease. However one cannot transfer 
area from one black hole to another since black holes cannot bifurcate 
([ 1,2,3]). Thus the second law of black hole mechanics requires that the 
area of each individual black hole should not decrease. 

The First Law 
Any two neighboring stationary axisymmetric solutions con- 

taining a perfect fluid with circular flow and a central black hole are 
related by 

6 M  = A- 6 A  + 8,6JH + J 8 S d J +  Jji6dN + J B6dS . 8n 

K It can be seen that - is analogous to temperature in the same way 

that A is analogous to entropy. It should however be emphasized that 

-and A are distinct from the temperature and entropy of the black hole. 8n 
In fact the effective temperature of a black hole is absolute zero. 

One way of seeing this is to note that a black hole cannot be in equilibrium 
with black body radiation at any non-zero temperature, because no 
radiation could be emitted from the hole whereas some radiation would 
always cross the horizon into the black hole. If the wavelength of the 
radiation were very long, corresponding to a low black body temper- 
ature, the rate of absorption of radiation would be very slow, but true 
equilibrium would be possible only if there were no radiation present 
at all, i.e. if the external black body radiation temperature were zero. 
Another way of seeing that the effective temperature of a black hole is 
zero is to note that the “red shifted” effective temperature gof any matter 
orbiting the black hole must tend to zero as the horizon is approached, 
because the time dilatation factor (- U“U,,)’’~ tends to zero on the horizon. 
The fact that the effective temperature of a black hole is zero means 
that one can in principle add entropy to a black hole without changing 
it in any way. In this sense a black hole can be said to transcend the 

8n 

k‘ 
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second law of thermodynamics. In practise of course any addition of 
entropy to a black hole would cause some increase in the area of the 
event horizon. One might therefore suppose that by adding some mul- 
tiple of the area to the total entropy of all matter outside the event horizon 
one could obtain a quantity which never decreased. However this is 
not possible since by careful management one can arrange that the area 
increase accompanying a given addition of entropy is arbitrarily small. 
One way of doing this would be to put the entropy into two containers 
and lower them on ropes down the axis towards the north and south 
poles. As the containers approach the black hole they would distort 
the horizon. The shear or rate of distortion of the horizon would be 
proportional to the rate at which the containers were being lowered. 
The rate of increase of area of the horizon would be proportional to the 
square of the shear, [2,11], and so to the square of the rate at which 
the containers were being lowered. Thus by lowering the containers 
very slowly, one could ensure that the area increase was very small. 
When the containers reach the horizon, they would be moving parallel 
to the null vector 1" and so would not cause any area increase as they 
cross the horizon. 

In a similar way the effective chemical potential ji tends to zero on the 
horizon, which means that in principle one can also add particles to a 
black hole without changing it. In this sense a black hole transcends 
the law of conservation of baryons. 

Continuing the analogy between - and temperature, one has: K 
ax 

The Zeroth Law 
The surface gravity, K of a stationary black hole is constant over the 

This was proved in Section 2. Other proofs under slightly different 

Extending the analogy even further one would postulate: 

event horizon. 

assumptions are given in [6,2]. 

The Third Law 
It is impossible by any procedure, no matter how idealized, to reduce 

K to zero by a finite sequence of operations. 
This law has a rather different status from the others, in that it does 

not, so far at least, have a rigorous mathematical proof. However there 
are strong reasons for believing in it. For example if one tries to reduce 
the value of K of a Kerr black hole by throwing in particles to increase 
the angular momentum, one finds that the decrease in K per particle 
thtown in gets smaller and smaller as the mass and angular momentum 
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tend to the critical ratio JIMz = 1 for which K is zero. While idealized 
accretion processes do exist for which JIMZ -+ 1 with the addition of a 
finite amount of rest mass ([ 13, 14]), they require an infinite divisibility 
of the matter and an infinite time. Another reason for believing the third 
law is that if one could reduce K to zero by a finite sequence of operations, 
then presumably one could carry the process further, thereby creating 
a naked singularity. If this were to happen there would be a breakdown 
of the assumption of asymptotic predictability which is the basis of many 
results in black hole theory, including the law that A cannot decrease. 

This work was carried out while the authors were attending the 1972 Les Houches 
Summer School on Black Holes. The authors would like to thank Larry Smarr. Bryce 
de Witt and other participants of the school for valuable discussions. 
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Abotmct. In the classical theory black hola can only absorb and not emit particles. However it 
is shown that quantum mechanical elfects cause black holes to mate  and emit particles as if they 

were hot bodies with temperature - FZ lom6 (%) “K where K is the surfaa gravity of the black 

hole. This thermal emission leads to a slow decrease in the mass of the black hole and to its eventual 
disappearance: any primordial black hole of mass less than about loLs g would have evaporated by 
now. Although thesc quantum ellects violate the classical law that the area of the event horimn of a 
black hole cannot decrease, there remains a Cieneralizod Second Law: S++A never demapes where S 
is the entropy of matter outside black holes and A is the sum of the surface areas of the event horizons. 
This show that gravitational collapse converts the baryons and leptons in the collapsing body into 
entropy. It is tempting to speculate that this might be the reason why the Universe contains so much 
entropy per baryon. 

hK 
2nk 

1. 

Although there has been a lot of work in the last fifteen years (see [l, 21 for 
recent reviews), I think it would be fair to say that we do not yet have a fully 
satisfactory and consistent quantum theory of gravity. At the moment classical 
General Relativity still provides the most successful description of gravity. In 
classical General Relativity one has a classical metric which obeys -the Einstein 
equations, the right hand side of which is supposed to be the energy momentum 
tensor of the classical matter fields. However, although it may be reasonable to 
ignore quantum gravitational efCects on the grounds that these are likely to be 
small, we know that quantum mechanics plays a vital role in the behaviour of 
the matter fields. One therefore has the problem of defining a consistent scheme 
in which the space-time metric is treated classically but is coupled to the matter 
fields which are treated quantum mechanically. Presumably such a scheme would 
be only an approximation to a deeper theory (still to be found) in which space- 
time itself was quantized. However one would hope that it would be a very good 
approximation for most purposes except near space-time singularities. 

The approximation I shall use in this paper is that the matter fields, such as 
scalar, electro-magnetic, or neutrino fields, obey the usual wave equations with 
the Minkowski metric replaced by a classical space-time metric gab. This metric 
satisfies the Einstein equations where the source on the right hand side is taken 
to be the expectation value of some suitably defined energy momentum operator 
for the matter fields. In this theory of quantum mechanics in curved space-time 
there is a problem in interpreting the field operators in terms of annihilation and 
creation operators. In flat space-time the standard procedure is to decompose 
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the field into positive and negative frequency components. For example, if is 
a massless Hermitian scalar field obeying the equation 4:uhqah=0 one expresses 
4 as 

4=C,Cf ia i+Ja! )  (1.1) 

where the { A }  are a complete orthonormal family of complex valued solutions 
of the wave equation j;.:abqOh= 0 which contain only positive frequencies with 
respect to the usual Minkowski time coordinate. The operators ui and a! are 
interpreted as the annihilation and creation operators respectively for particles 
in the i th state. The vacuum state 10) is defined to be the state from which one 
cannot annihilate any particles, i.e. 

aJ0)  =O 
In curved space-time one can also consider a Hermitian scalar field operator 

4 which obeys the covariant wave equation +:abg(lb=O. However one cannot 
decompose into its positive and negative frequency parts as positive and negative 
frequencies have no invariant meaning in curved space-time. One could still 
require that the {J} and the {f,} together formed a complete basis for solutions 
of the wave equations with 

for all i . 

+ i J s ( ~  &:a - h; Z" = a i j  (1.2) 
where S is a suitable surface. However condition (1.2) does not uniquely fuc the 
subspace of the space of all solutions which is spanned by the {h} and therefore 
does not determine the splitting of the operator 4 into annihilation and creation 
parts. In a region of space-time which was flat or asymptotically flat, the appro- 
priate criterion for choosing the { A }  is that they should contain only positive 
frequencies with respect to the Minkowski time coordinate. However if one has 
a space-time which contains an initial fiat region (1) followed by a region of 
curvature (2) then a final flat region (3), the basis {fli} which contains only positive 
frequencies on region (1) will not be the same as the basis {f31} which contains 
only positive frequencies on region (3). This means that the initial vacuum state 
lo,), the state which satisfies a ,,lo,) = O  for each initial annihilation operator 
all, will not be the same as the final vacuum state 10,) i.e. uSilOl)+0. One can 
interpret this as implying that the time dependent metric or gravitational field 
has caused the creation of a certain number of particles of the scalar field. 

Although it is obvious what the subspace spanned by the {A}  is for an asympto- 
tically flat region, it is not uniquely defined for a general point of a curved space- 
time. Consider an observer with velocity vector tp at a point p. Let B be the least 
upper bound IRaadl in any orthonormal tetrad whose timelike vector coincides 
with f. In a neighbourhood U of p the observer can set up a local inertial co- 
ordinate system (such as normal coordinates) with coordinate radius of the order 
of €I-*. He can then choose a family {A}  which satisfy equation (1.2) and which 
in the neighbourhood b' are approximately positive frequency with respect to 
the time coordinate in L;. For modes I;. whose characteristic frequency w is high 
compared to B*, this leaves an indeterminacy between and its complex con- 
jugate f j  of the order of the exponential of some multiple of - COB-*. The indeter- 
minacy between the annihilation operator ai and the creation operator a! for the 
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mode is thus exponentially small. However, the ambiguity between the ui and 
the a! is virtually complete for modes for which w<Bi .  This ambiguity introduces 
an uncertainty of kj in the number operator u/u,  for the mode. The density of 
modes per unit volume in the frequency interval o to w + d o  is of the order of 
d d w  for w greater than the rest mass m of the field in question. Thus the un- 
certainty in the local energy density caused by the ambiguity in defining modes 
of wavelength longer than the local radius of curvature B-*, is of order Bz in 
units in which G = c = h = l .  Because the ambiguity is exponentially small for 
wavelengths short compared to the radius of curvature B-f, the total uncertainty 
in the local energy density is of order B2. This uncertainty can be thought of as 
corresponding to the local energy density of particles created by the gravitational 
field. The uncertainty in the curvature p r o d u d  via the Einstein equations by 
this uncertainty in the energy density is small compared to the total curvature 
of space-time provided that B is small compared to one, i.e. the radius of curvature 
B-* is large compared to the Planck length cm. One would therefore 
expect that the scheme of treating the matter fields quantum mechanically on a 
classical curved space-time background would be a good approximation, except 
in regions where the curvature was comparable to the Planck value of an-'. 
From the classical singularity theorems [3-63, one would expect such high cur- 
vatures to occur in collapsing stars and, in the past, at the beginning of the present 
expansion phase of the universe. In the former case, one would expect the regions 
of high curvature to be hidden from us by an event horizon [7]. Thus, as far as 
we are concerned, the classical geometry-quantum matter treatment should be 
valid apart from the first s of the universe. The view is sometimes expressed 
that this treatment will break down when the radius of curvature is comparable 
to the Compton wavelength - cm of an elementary particle such as a 
proton. However the Compton wavelength of a zero rest mass particle such as 
a photon or a neutrino is infinite, but we do not have any problem in dealing 
with electromagnetic or neutrino radiation in curved space-time. All that hap- 
pens when the radius of curvature of space-time is smaller than the Compton 
wavelength of a given species of particle is that one gets an indeterminacy in the 
particle number or, in other words, particle creation. However, as was shown 
above, the energy density of the created particles is small locally compared to the 
curvature which created them. 

Even though the effects of particle creation may be negligible locally, I shall 
show in this paper that they can add up to have a significant influence on black 
holes over the lifetime of the universe - 10" s or lo6' units of Planck time. 
It seems that the gravitational field of a black hole will create particles and emit 
them to infinity at just the rate that one would expect if the black hole were an 
ordinary body with a temperature in geometric units of rc/2n, where )c is the 
"surface gravity" of the black hole [8]. In ordinary units this temperature is of 
the order of 1OZ6M-' OK, where M is the mass, in grams of the black hole. For 
a black hole of solar mass g) this temperature is much lower than the 3 O K  

temperature of the cosmic microwave background. Thus black holes of this size 
would be absorbing radiation faster than they emitted it and would be increasing 
in mass. However, in addition to black holes formed by stellar collapse, there 
might also be much smaller black holes which were formed by density fluctua- 
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tions in the early universe [9, 10). These small black holes, being at a higher 
temperature, would radiate more than they absorbed. They would therefore pre- 
sumably decrease in mass. As they got smaller, they would get hotter and so 
would radiate faster. As the temperature rose, it would exceed the rest mass of 
particles such as the electron and the muon and the black hole would begin to 
emit them also. When the temperature got up to about loL2 OK or when the mass 
got down to about 10" g the number of different species of particles being emitted 
might be so great [ I l l  that the black hole radiated away all its remaining rest 
mass on a strong interaction time scale of the order of s. This would pro- 
duce an explosion with an energ of lo3' ergs. Even if the number of species of 
particle emitted did not increase very much, the black hole would radiate away 
all its mass in the order of 10-28M3 s. In the last tenth of a second the energy 
released would be of the order of lo3' ergs. 

As the mass of the black hole decreased, the area of the event horizon would 
have to go down, thus violating the law that, classically, the area cannot decrease 
[7,123. This violation must, presumably, be caused by a flw of negative energy 
across the event horizon which balances the positive energy flux emitted to 
infinity. One might picture this negative energy flux in the following way. Just 
outside the event horizon there will be virtual pairs of particles, one with negative 
energy and one with positive energy. The negative particle is in a region which 
is classically forbidden but it can tunnel through the event horizon to the region 
inside the black hole where the Killing vector which represents time translations 
is spacelike. In this region the particle can exist as a real particle with a timelike 
momentum vector even though its energy relative to infinity as measured by the 
time translation Killing vector is negative. The other particle of the pair, having 
a positive energy, can escape to infinity where it constitutes a part of the thermal 
emission described above. The probability of the negative energy particle tun- 
nelling through the horizon is governed by the surface gravity K since this quantity 
measures the gradient of the magnitude of the Killing vector or, in other words, 
how fast the Killing vector is becoming spacelike. Instead of thinking of negative 
ene ra  particles tunnelling through the horizon in the positive sense of time one 
could regard them as positive energy particles crossing the horizon on past- 
directed world-lines and then being scattered on to future-directed world-lines by 
the gravitational field. It should be emphasized that these pictures of the mecha- 
nism responsible for the thermal emission and area decrease are heuristic only 
and should not be taken too literally. It should not be thought unreasonable that 
a black hole, which is an excited state of the gravitational field, should decay 
quantum mechanically and that, because of quantum fluctuation of the metric, 
energy should be able to tunnel out of the potential well of a black hole. This 
particle creation is directly analogous to that caused by a deep potential well in 
flat space-time [18]. The real justification of the thermal emission is the mathe- 
matical derivation given in Section (2) for the case of an uncharged non-rotating 
black hole. The effects of angular momentum and charge are considered in 
Section (3). In Section (4) it is shown that any renormalization of the energy- 
momentum tensor with suitable properties must give a negative energy flow 
down the black hole and consequent decrease in the area of the event horizon. 
This negative ene re  flow is non-observable locally. 
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The decrease in area of the event horizon is caused by a violation of the weak 
energy condition [5-7,12] which arises from the indeterminacy of particle num- 
ber and energy density in a curved space-time. However, as was shown above, 
this indeterminacy is small, being of the order of B2 where B is the magnitude 
of the curvature tensor. Thus it can have a diverging effection a null surface like 
the event horizon which has very small convergence or divergence but it can not 
untrap a strongly converging trapped surface until B becomes of the order of 
one. Therefore one would not expect the negative energy density to cause a 
breakdown of the classical singularity theorems until the radius of curvature of 
space-time became lO"' cm. 

Perhaps the strongest reason for believing that black holes can create and 
emit particles at a steady rate is that the predicted rate is just that of the thermal 
emission of a body with the temperature 42n. There are independent, thermo- 
dynamic, grounds for regarding some multiple of the surface gravity as having 
a close relation to temperature. There is an obvious analogy with the second law 
of thermodynamics in the law that, classically, the area of the event horizon can 
never decrease and that when two black holes collide and merge together, the 
area of the final event horizon is greater than the sum of the areas of the two 
original horizons [7,12]. There is also an analogy to the first law of thermo- 
dynamics in the result that two neighbouring black hole equilibrium states are 
related by [8] 

K dM= - dA + QdJ 8n 

where M, R, and J are respectively the mass, angular velocity and angular mo- 
mentum of the black hole and A is the area of the event horizon. Comparing this to 

dU=TdS+pdV 

one sees that if some multiple of A is regarded as being analogous to entropy, 
then some multiple of K is analogous to temperature. The surface gravity is also 
analogous to temperature in that it is constant over the event horizon in equi- 
librium. Beckenstein [19] suggested that A and K were not merely analogous to 
entropy and temperature respectively but that, in some sense, they actually were 
the entropy and temperature of the black hole. Although the ordinary second 
law of thermodynamics is transcended in that entropy can be lost down black 
holes, the flow of entropy across the event horizon would always cause some 
increase in the area of the horizon. Beckenstein therefore suggested [20] a Gen- 
eralized Second Law: Entropy + some multiple (unspecified) of A never decreases. 
However he did not suggest that a black hole could emit particles as well as 
absorb them. Without such emission the Generalized Second Law would be 
violated by for example, a black hole immersed in black body radiation at a lower 
temperature than that of the black hole. On the other hand, if one accepts that 
black holes do emit particles at a steady rate, the identification of u/2n with tem- 
perature and ) A  with entropy is established and a Generalized Second Law 
confirmed. 
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2. Gravitational Collapse 

I t  is now generallx klieved that, according to classical theory, a gravitational 
collapse will produo: a black hole which will settle down rapidly to a stationary 
axisymmetric equilibrium state characterized by its mass, angular momentun1 
and electric charge [7. 131. The  Kerr-Newman solution represent one such family 
of black hole equilibrium states and it seems unlikely that there are any others. 
It has therefore become a common practice to ignore the collapse phase and to 
represent a black hole simp11 by one of these solutions. Because these solutions 
are stationary there will not be any mixing of positive and negative frequencies 
and so one would not enpect to obtain any particle creation. However there is 
a classical phenomenon called superradiance [ 14-17] in which waves incident 
in certain modes on a rotating or charged black hole are scattered with increased 
amplitude [see Section (311. On a particle description this amplification must cor- 
respond to an increase in the number of particles and therefore to stimulated 
emission of particles. One would therefore expect on general grounds that there 
would also be a steady rate of spontaneous emission in these superradiant modes 
which would tend to carq- away the angular momentum or charge of the black 
hole [16]. To understand how the particle creation can arise from mixing of 
positive and negative frequencies, it is essential to consider not only the quasi- 
stationary final state of the black hole but also the time-dependent formation 
phase. One would hope that. in the spirit of the “no hair” theorems, the rate of 
emission would not depend on details of the collapse process except through the 
mass, angular momenwm and charge of the resulting black hole. I shall show 
that this is indeed the case but that, in addition to the emission in the super- 
radiant modes, there is a steady rate of emission in all modes at the rate one 
would expect if the black hole were an ordinary body with temperature 42n. 

I shall consider first of all the simplest case of a non-rotating uncharged black 
hole. The final stationan state for such a black hole is represented by the 
Schwarzschild solution nirh metric 

As is now well known. the apparent singularities at r =  2M are fictitious, arising 
merely from a bad choice of coordinates. The global structure of the analytically 
extended Schwarzschild solution can be described in a simple manner by a 
Penrose diagram of the r-r plane (Fig. 1) [6, 131. In this diagram null geodesics 
in the r-t plane are at =-I? to the vertical. Each point of the diagram represents 
a 2-sphere of area 4 a i .  A conformal transformation has been applied to bring 
infinity to a finite distance: infinity is represented by the two diagonal lines (really 
null surfaces) labelled J- and 9-, and the points I+, I-, and Io. The two hori- 
zontal lines r=O are curvature singularities and the two diagonal lines r = 2 M  
(really null surfaces) are the future and past event horizons which divide the 
solution up into regions from which one cannot escape to 3’ and 3-. On the 
left of the diagram there is another infinity and asymptotically flat region. 

Most of the Penrose diagram is not in fact relevant to a black hole formed 
by gravitational collapse since the metric is that of the Schwarzchild solution 
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r -0 singularity I+ 

r - 0  singularity 1: 
Fig. 1. The Penrose diagram for the analytically extended Schwarzschild solution 

205 

region not applicable to ' 
a gravitational collapse 

1 

Fig. 2. Only the region of the Schwarzschild solution outside the collapsing body is relevant for a 
black hole formed by gravitational collapse. Inside the body the solution is completely dillerent 

tinaularity horizon 

Fig. 3. The Penrose diagram of a spherically symmetric collapsing body producing a black hole..Thc 
vertical dotted line on the left represents the non-singular centre of the body 

only in the region outside the collapsing matter and only in the asymptotic future. 
In the case of exactly spherical collapse, which I shall consider for simplicity, the 
metric is exactly the Schwarzchild metric everywhere outside the surface of the 
collapsing object which is represented by a timelike geodesic in the Penrose 
diagram (Fig. 2). Inside the object the metric is completely different, the past 
event horizon, the past r=O singularity and the other asymptotically flat region 
do not exist and are replaced by a time-like curve representing the origin of polar 
coordinates. The appropriate Penrose diagram is shown in Fig. 3 where the con- 
formal freedom has been used to make the origin of polar coordinates into a 
vertical line. 

In this space-time consider (again for simplicity) a massless Hermitian scalar 
field operator 4 obeying the wave equation 

4 ; a b g a b = 0 .  (2.2) 
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(The results obtained would be the same if one used the conformally invariant 
wave equation : 

#;a,,$b+&R4=0 -1 
The operator 4 can be expressed as 

f # = C i { / ; . a i + J a ; } .  (2.3) 

The solutions {A} of the wave equation j&,g"*=O can be chosen so that on past 
null infinity 9- they form a complete family satisfying the orthonormality con- 
ditions (1.2) where the surface S is 9- and so that they contain only positive 
frequencies with respect to the canonical affine parameter on Y-. (This last con- 
dition of positive frequency can be uniquely defined despite the existence of 
"supertranslations" in the Bondi-Metzner-Sachs asymptotic symmetry group 
[21, 223.) The operators a, and a! have the natural interpretation as the annihi- 
lation and creation operators for ingoing particles i.e. for particles at past null 
infinity 9-. Because massless fields are completely determined by their data on 
I-, the operator f# can be expressed in the form (2.3) everywhere. In the region 
outside the event horizon one can also determine massless fields by their data on 
the event horizon and on future null infinity 9'. Thus one can also express # 
in the form 

4 = Ci{Pibi + +qici +&Ci'J . (2.4) 

Here the { p i }  are solutions of the wave equation which are purely outgoing, i.e. 
they have zero Cauchy data on the event horizon and the {q,} are solutions which 
contain no outgoing component, i.e. they have zero Cauchy data on 9'. The 
{ p i )  and {q i }  are required to be complete families satisfying the orthonormality 
conditions (1.2) where the surface S is taken to be .P and the event horizon 
respectively. In addition the { p i }  are required to contain only positive frequencies 
with respect to the canonical affine parameter along the null geodesic generators 
of 9'. With the positive frequency condition on { p i } ,  the operators { b,} and { bi.} 
can be interpreted as the annihilation and creation operators for outgoing par- 
ticles, i.e. for particles on 9-. It is not clear whether one should impose some 
positive frequency condition on the {qi} and if so with respect to what. The choice 
of the {qi}  does not affect the calculation of the emission of particles to 9'. I shall 
return to the question in Section (4). 

Because massless fields are completely determined by their data on f- one 
can express { p i }  and {qi} as linear combinations of the {A}  and g}:  

These relations lead to corresponding relations between the operators 

bi= x j (E . .a  1 1  J .-P..a?). I J  J 

c. = Xi(". d I J J  .a .- q. 1 J J  .a?) . 
(2.7) 

(2.8) 
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The initial vacuum state lo), the state containing no incoming particles, i.e. 

ailO) =O for all i . (2.9) 

However, because the coeficients pi, will not be zero in general, the initial vacuum 
state will not appear to be a vacuum state to an observer at Y+.  Instead he will 
find that the expectation value of the number operator for the i th outgoing mode is 

(2.10) 

Thus in order to determine the number of particles created by the gravitational 
field and emitted to infinity one simply has to calculate the coefficients pi,. One 
would expect this calculation to be very messy and to depend on the detailed 
nature of the gravitational collapse. However, as I shall show, one can derive an 
asymptotic form for the /Ii, which depends only on the surface gravity of the 
resulting black hole. There will be a certain finite amount of particle creation 
which depends on the details of the collapse. These particles will disperse and at 
late retarded times on f+ there will be a steady flux of particles determined by 
the asymptotic form of pi]. 

In order to calculate this asymptotic form it is more convenient to decompose 
the ingoing and outgoing solutions of the wave equation into their Fourier com- 
ponents with respect to advanced or retarded time and use the continuum nor- 
malization. The finite normalization solutions can then be recovered by adding 
Fourier components to form wave packets. Because the space-time is spherically 
symmetric, one can also decompose the incoming and outgoing solutions into 
spherical harmonics. Thus, in the region outside the collapsing body, one can 
write the incoming and outgoing solutions as 

(2.1 1) 

(2.12) 

no particles on f-, is defined by 

(0- I bf bi IO- ) = GIPijI' * 

f,,l,,, = (27r)-*r- ' (0 ' ) -*F~, ( r )d~ '"~ , (8 ,4 )  , 
purm = (2n)-*r- lo-*P&)ei@" Yh(f?, 4) , 

where Y and u are the usual advanced and retarded coordinates defined by 

u=t+r+2Mlog -- I& 1 1 9  

(2.13) 

(2.14) 

Each solution p , can be expressed as an integral with respect to o' over solu- 
tions f,,,, and I,,,,, with the same values of I and Iml (from now on I shall drop 
the suffices I, m): 

(2.15) 

To calculate the coefficients a-. and p-., consider a solution p ,  propagating 
backwards from f+ with zero Cauchy data on the event horizon. A part p t '  of 
the solution p ,  will be scattered by the static Schwarzchild field outside the col- 
lapsing body and will end up on 9' with the same frequency a. This will give 
a 6(o'-o) term in a-,. The remainder plf' of p ,  will enter the collapsing body 

Pa = jc (a,,, f,, + Baal, 7, Ma' * 
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event horizon 

Fig. 4. The solution po of the \rave equation has an infinite number of cycles near the event horizon 
and near the surface v =  u,, 

where it will be partly scattered and partly reflected through the centre, eventually 
emerging to 9-. It is this part p z )  which produces the interesting erects. Because 
the retarded time coordinate u goes to infinity on the event horizon, the surfaces 
of constant phase of the solution p ,  will pile up near the event horizon (Fig. 4). 
To an observer on the collapsing body the wave would seem to have a very large 
blue-shift. Because its effective frequency was very high, the wave would propa- 
gate by geometric optics through the centre of the body and out on I-. On 
J - p ? '  would have an infinite number of cycles just before the advanced time 
c= co where co is the latest time that a null geodesic could leave 9-, passthrough 
the centre of the body and escape to 9+ before being trapped by the event 
horizon. One can estimate the form of plf) on 9- near v = v o  in the followin_g 
way. Let s be a point on the event horizon outside the matter and let P be a null 
vector tangent to the horizon. Let no be the future-directed null vector at x which 
is directed radially inwards and normalized so that Ian,= - 1. The vector -mu 
( E  small and positive) will connect the point x on the event horizon with a nearby 
null surface of constant retarded time u and therefore with a surface of constant 
phase of the solution p g ' .  If the vectors P and i f  are parallelly transported along 
the null geodesic 7 through s which generates the horizon, the vector -en" will 
always connect the event horizon with the same surface of constant phase of pzf'. 
To see what the relation between E and the phase of plf' is, imagine in Fig. 2 that 
thecollapsing body did not exist but one analytically continued the empty space 
Schwarzchild solution back to cover the whole Penrose diagram. One could then 
transport the pair (P.n") back along to the point where future and past event 
horizons intersected. The vector -En" would then lie along the past event horizon. 
Let 2 be the afine parameter along the past event horizon which is such that at 

the point of intersection of the two horizons, A=O and7 = n". The affne par- 

ameter i. is related to the retarded time u on the past horizon by 

dx" 
d/. 

j .= -ce-''' (2.16) 

where C is constant and K is the surface gravity of the black hole defined by 
Eb K b =  - KK" on the horizon where K" is the time translation Killing vector. 
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For a Schwarzchild black hole K =  - . I t  follows from this that the vector 

-&ti" connects the future event horizon with the surface of constant phase 

- - (log8 - log C) of the solution p:). This result will also hold in the real space- 

time (including the collapsing body) in the region outside the body. Near the 
event horizon the solution p:) will obey the geometric optics approximation as 
it passes through the body because its effective frequency will be very high. This 
means that if one extends the null geodesic y back past the end-point of the event 
horizon and out onto 9- at u= tro and parallelly transports n" along y, the vector 
-ed' will still connect y to a surface of constant phase of the solution p?). On 
f - n "  will be parallel to the Killing vector K" which is tangent to the null geodesic 
generators of 9- : 

na== DK". 

4M 7 
w 
K 

Thus on 9- for uo- u small and positive, the phase of the solution will be 

(2.17) 0 

K 
- - ( l ~ g ( ~ o - ~ ) - l ~ g D -  10gC). 

Thus on 4- p z f )  will be zero for D > uo and for u -c uo 

(2.18) 

where P; = Po(2M) is the value of the radial function for Po on the past event 
horizon in the analytically continued Schwarzchild solution. The expression 
(2.18) for plf' is valid only for.uo- t' small and positive. At earlier advanced times 
the amplitude will be different and the frequency measured with respect to q will 
approach the original frequency o. 

By Fourier transforming pzf) one can evaluate its contributions to zoo, and 
Po,.. For large \.slues of o' these will be determined by the asymptotic form 
(2.18). Thus for large a' 

p2L. zz - ia2'- . (2.20) 
The solution plf) is zero on 9- for large values of v. This means that its Fourier 

transform is analytic in the upper half o' plane and that plf) will be correctly 
represented by a Fourier integral in which the contour has been displaced into the 

-I+!%! 
upper half o' plane. The Fourier transform of p z )  contains a factor (- i d )  ' 
which has a logarithmic singularity at o'=O, To obtain /?%. from a%, by (2.20) 
one has to analytically continue aZf),. anticlockwise round this singularity. This 
means that 
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Actually, the fact that &) is not given by (2.18) at early advanced times means 
that the singularity in zuu. occurs at o'=o and not at w'=O. However the rela- 
tion (2.21) is still valid for large a'. 

The expectation value of the total number of created particles at 9+ in the 
frequency range w to o + d o  is doJzI/3rw.l'do'. Because Iflw,,I goes like (o')-* 
at large a' this integral diverges. This infinite total number of created particles 
corresponds to a finite steady rate of emission continuing for an infinite time as 
can be seen by building up a complete orthonormal family of wave packets from 
the Fourier compcwents pW Let 

-+ Jj; (J+"ce-2" '" - '0  Pwdw (2.22) 

wherej and I I  are integers, j 2 0 ,  E > O .  For E small these wave packets will have 
frequency j s  and will be peaked around retarded time u = 2xm- with width E -  I.  

One can expand {p in}  in terms of the {fa) 

Pjn= 109 (a jnor  fu* + Sjnw*L*>do' (2.23) 

where 
a , ~ ,  =&-+ Jj (j+ c 1 k e - 2 R i n c - ' w  a,.do etc. (2.24) 

For]%&, n B s  

lajm,l=l(2n)-1P;w-+r ( 1 -- iK") &-+(a')-+ 

. Jjc (j+ exp io"( - 2nm- + K- I 1ogw')do" 

= n-lp--w-fr ( I--  ' ~ )E- t (o~~-* , - l s in t&~I  (2.25) 

where o = j &  and z = K- logo'- 2nm- l .  For wave-packets which reach 9' at 
late retarded times, i.e. those with large values of n, the main contribution to 
zj-, and fljlwu. come from very high frequencies o' of the order of exp(2nnu-I). 
Thls means that these coefficients are governed only by the asymptotic forms 
(2.19, 2.20) for high u' which are independent of the details of the collapse. 

The expectation value of the number of particles created and emitted to 
infinity 9' in the wave-packet mode pin is 

JZ Ifljnor,12dW'. (2.26) 

One can evaluate this as follows. Consider the wave-packet pjn propagating 
backwards from 9'. A fraction l-rjn of the wave-packet will be scattered by 
the static Schwarzchild field and a fraction rjn will enter the collapsing body. 

(2.27) 

where aj:L. and /3$:., are calculated using (2.19, 2.20) from the part pit' of the 
wave-packet which enters the star. The minus sign in front of the second term on 
the right of (2.27) occurs because the negative frequency components of pj:) make 
a negative contribution to the flux into the collapsing body. By (2.21) 

lzj:L,I= exp(nwK- l)[pj:;,[. (2.28) 

r j n =  jOe (Iajw-I ( 2 )  2 - If12*IzM~' 
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Thus the total number of particles created in the mode p,,, is 

r,,,(exp(2n0~-~)- 1)- . (2.29) 

But for wave-packets at late retarded times, the fraction r,, which enters the 
collapsing body is almost the same as the fraction of the wave-packet that would 
have crossed the past event horizon had the collapsing body not been there but 
the exterior Schwarzchild solution had been analytically continued. Thus this 
factor r,, is also the same as the fraction of a similar wave-packet coming from 
f- which would have crossed the future event horizon and have been absorbed 
by the black hole. The relation between emission and absorption cross-section is 
therefore exactly that for a body with a temperature, in geometric units, of 42n. 

Similar results hold for the electromagnetic and linearised gravitational fields. 
The fields produced on 9- by positive frequency waves from f+ have the same 
asymptotic form as (2.18) but with an extra blue shift factor in the amplitude. 
This extra factor cancels out in the definition of the scalar product so that the 
asymptotic forms of the coeficients a and /3 are the same as in the Eqs. (2.19) and 
(2.20). Thus one would expect the black hole also to radiate photons and gravitons 
thermally. For massless fermions such as neutrinos one again gets similar results 
except that the negative frequency components given by the coefficients /3 now 
make a positive contribution to the probability flu into the collapsing body. 
This means that the term [PI2 in (2.27) now has the opposite sign. From this it 
follows that the number of particles emitted in any outgoing wave packet mode 
is (exp(2nwu' ')+ l)-l times the fraction of that wave packet that would have 
been absorbed by the black hole had it been incident from Y-. This is again 
exactly what one would expect for thermal emission of particles obeying Fermi- 
Dirac statistics. 

Fields of non-zero rest mass do not reach 3- and 9+. One therefore has to 
describe ingoing and outgoing states for these fields in terms of some concept such 
as the projective infinity of Eardley and Sachs [23] and Schmidt [24]. However, 
if the initial and final states are asymptotically Schwarzchild or Kerr solutions, 
one can describe the ingoing and outgoing states in a simple manner by sepata- 
tion of variables and one can define positive frequencies with respect to the time 
translation Killing vectors of these initial and final asymptotic space-times. In the 
asymptotic future there will be no bound states: any particle will either fall through 
the event horizon or escape to infinity. Thus the unbound outgoing states and the 
event horizon states together form a complete basis for solutions of the wave 
equation in the region outside the event horizon. In the asymptotic past there 
could be bound states if the body that collapses had had a bounded radius for 
an infinite time. However one could equally well assume that the body had col- 
lapsed from an infinite radius in which case there.wouId be no bound states. The 
possible existence of bound states in the past does not affect the rate of particle 
emission in the asymptotic future which will again be that of a body with tem- 
perature u/2n. The only difference from the zero rest mass case is that the fre- 
quency w in the thermal factor (exp(2nu~-')T l)-' now includes the rest mass 
energy of the particle. Thus there will not be much emission of particles of rest 
mass m unless the temperature u/2n is greater than m. 
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One can show that these results on thermal emission do not depend on 
spherical symmetry. Consider an asymmetric collapse which produced a black 
hole which settled to a non-rotating uncharged Schwarzchild solution (angular 
momentum and charge will be considered in the next section). The fact that the 
final state is asymptotically quasi-stationary means that there is a preferred 
Bmdi coordinate system [25] on 3' with respect to which one can decompose 
the Cauchy data for the outgoing states into positive frequencies and spherical 
harmonics. On 9- there may or may not be a preferred coordinate system but 
if there is not one can pick an arbitrary Bondi coordinate system and decompose 
the Cauchy data for the ingoing states in a similar manner. Now consider one 
of the JT states palm propagating backwards through this space-time into the 
collapsing body and out again onto 9-. Take a null geodesic generator y of the 
event horizon and extend it backwards beyond its past end-point to intersect 9- 
at a point y on a null geodesic generator 1 of 3-. Choose a pair of null vectors 
(I", il") at j with P tangent to 7 and it" tangent to I.. Parallelly propagate I", iz" 
along 7 to a point x in the region of space-time where the metric is almost that 
of the final Schwarzchild solution. At xit" will be some linear combination of la 
and the radial inward directed null vector n'. This means that the vector - c i a  
will connect s to a surface of phase - -w/K (logs- log€) of the solution pwlm 
where E is some constant. As before, by the geometric optics approximation, the 
vector - ui" at ~7 will connect J to a surface of phase - - w / K  (logs - IogE) of pzi 
where p:& is the part of palm which enters the collapsing body. Thus on the null 
geodesic generator i. of 4-. the phase of /I:,:,, will be 

iw -- (log co - ti) - IO-eH) (2.30) 

\\-here I' is an affine parameter on i with value vo at J* and H is a constant. By the 
pomerrical optics approximation, the value of pz:', on i. will be 

h' 

iw L esp - - [l0g(ro- 4- IogH]} (2.31) 

for c0 - t r  small and positive and zero for u > uo where L is a constant. On each 
null geodesic generator of S-plf!,, will have the form (2.31) with different values 
of L. r0. and H. The lackof spherical symmetry during the collapse will cause 
p z m  on 4- to contain components of spherical harmonics with indices (l',m') 
different from (1,m). This means that one now has to express p:/)n in the form 

i h '  

(2.32) 

Because of 12.31), the coefficients d2)  and pc2)  will have the same o' dependence 
as in (2.19) and (2.20). Thus one still has the same relation as (2.21): 

(2.33) 

As before. for each (1. rn). one can make up wave packets pjnrm. The number of 
particles emitted in such a \vave packet mode is 
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Similarly, the fraction fjnlm of the wave packet that enters the collapsing body is 

(2.35) 
Again, fin,,,, is equal to the fraction of a similar wave packet coming from f- 
that would have been absorbed by the black hole. Thus, using (2.33), one finds 
that the emission is just that of a body of temperature lc/2n: the emission at late 
retarded times depends only on the final quasi-stationary state of the black hole 
and not on the details of the gravitational collapse. 

r j n r m =  G’;rn, j; {Igj;flmo’l’rn’ 12.- 1/?$/,,. l ’ ,* ]2}d0’  . 

3. Angular Momentum and Charge 

If the collapsing body was rotating or electrically charged, the resulting black 
hole would settle down to a stationary state which was described, not by the 
Schwarzchild solution, but by a charged Kerr solution characterised by the 
mass M, the angular momentum J ,  and the charge Q. As these solutions are 
stationary and axisymmetric, one can separate solutions of the wave equations 
in them into a factor eiwu or eio” times e-im4 times a function of r and 8. In the case 
of the scalar wave equation one can separate this last expression into a function 
of r times a function of 8 [26]. One can also completely separate any wave equa- 
tion in the non-rotating charged case and Teukolsky [27] has obtained com- 
pletely separable wave equations for neutrino, electromagnetic and linearised 
gravitational fields in the uncharged rotating case. 

Consider a wave packet of a classical field of charge e with frequency o and 
axial quantum number m incident from infinity on a Kerr black hole. The change 
in mass d M  of the black hole caused by the partial absorption of the wave packet 
will be related to the change in area, angular momentum and charge by the 
classical first law of black holes: 

ii 
d M =  - dA+G!dJ + @dQ (3 .1)  

where R and 9 are the angular frequency and electrostatic potential respectively 
of the black hole [13]. The fluxes of energy, angular momentum and charge in 
the wave packet will be in the ratio o:m:e. Thus the changes in the mass, angular 
momentum and charge of the black hole will also be in this ratio. Therefore 

82r 

h: 
dM(1 -L?mw-’-e@o-’)= - d A  . (3.2) 871 

A wave packet of a classical Boson field will obey the weak energy condition: the 
local energy density for any observer is non-negative. It follows from this 17, 123 
that the change in area dA induced by the wave-packet will be non-negative. 
Thus if 

w<mG!+e@ (3.3) 

the change in mass dM of the black hole must be negative. In other words, the 
black hole will lose energy to the wave packet which will therefore be scattered 
with the same frequency but increased amplitude. This is the phenomenon known 
as “superradiance”. 
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For classical fields of half-integer spin, detailed calculations [28] show that 
there is no superradiance. The reason for this is that the scalar product for half- 
inteser spin fields is positive definite unlike that for integer spins. This means 
that the probability flux across the event horizon is positive and therefore, by 
conservation of probability, the probability flux in the scattered wave packet must 
be less than that in the incident wave packet. The reason that the above argument 
based on the first law breaks down is that the energy-momentum tensor for a 
classical half-integer spin field does not obey the weak energy condition. On a 
quantum, particle level one can understand the absence of superradiance for 
fermion fields as a consequence of the fact that the Exclusion Principle does not 
allow more than one particle in each outgoing wave packet mode and therefore 
does not allow the scattered wave-packet to be stronger than the incident wave- 
packet. 

Passing now to the quantum theory, consider first the case of an unchanged, 
rotating black hole. One can as before pick an arbitrary Bondi coordinate frame 
on .f- and decompose the operator # in terms of a family Ifd,,,} of incoming 
solutions where the indices w, I ,  and m refer to the advanced time and angular 
dependence of j on 9- in the given coordinate system. On 9' the final quasi- 
stationary state of the black hole defines a preferred Bondi coordinate system 
using which one can define a family {pa,,,,} of outgoing solutions. The index I in 
this 8sc labels the spheroidal harmonics in terms of which the wave equation is 
separable. One proceeds as before to calculate the asymptotic form of pz!,, on 
J-. The only difference is that because the horizon is rotating with angular 
velocit! R with respect to I+, the effective frequency near a generator of the 
event horizon is not o but w-mQ. This means that the number of particles 
emitted in the wave-packet mode pjnlm is 

(3.4) 
The effect of this is to cause the rate of emission of particles with positive angular 
momentum ))I to be higher than that of particles with the same frequency o and 
quantum number I but with negative angular momentum -m. Thus the particle 
emission tends to carry away the angular momentum. For Boson fields, the 
factor in curly brackets in (3.4) is negative for o<mf2.  However the fraction 
of the wave-packet that would have been absorbed by the black hole is also 
negative in this case because o < m Q  is the condition for superradiance. In  the 
limit that the temperature ~ / 2 n  is very low, the only particle emission occurs is 
an amount Trj,,,,,, in the modes for which w<mQ. This amount of particle 
creation is equal to that calculated by Starobinski [16] and Unruh [29], who 
considered only the final stationary Kerr solution and ignored the gravitational 
collapse. 

One can treat a charged non-rotating black hole in a rather similar way. The 
behaviour of fields like the electromagnetic or gravitational fields which do not 
cam an electric charge will be the same as before except that the charge on the 
black will reduce the surface gravity k and hence the temperature of the black 
hole. Consider now the simple case of a massless charged scalar field #J which 
obeys the minimally coupled wave equation 

{esp (2m- l(c+-mR)~ T I 1 - rjnlm . 

cfb( r, - i d , )  ( r, - ieA b)$ = 0 . (3.5) 
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The phase of a solution pm of the wave equation (3.5) is not gauge-invariant but. 
the propagation vector ik,= F"(logp,)- ieA, is. In the geometric optics or WKB 
limit the vector k, is null and propagates according to 

kaibkb= - eFabkb. (3.6) 
An infinitessimal vector %' will connect points with a "guage invariant" phase 

difference of ik#. If i is propagated along the integral curves of P according to 

,??bkb= -eEZb (3.7) 
i will connect surfaces of constant guage invariant phase difference. 

In the final stationary region one can choose a guage such that the electro- 
magnetic potential A, is stationary and vanishes on 9'. In this guage the field 
equation (3.5) is separable and has solutions pm with retarded time dependence 
elopu. Let x be a point on the event horizon in the final stationary region and let 
1" and f l  be a pair of null vectors at x. As before, the vector -En" will connect 
the event horizon with the surface of actual phase - o / x  (logs-logc) of the 
solution p,. However the guage invariant phase will be - x - ' ( a -  &)(loge- logC) 
where @=.:'Aa is the electrostatic potential on the horizon and Ka is the time- 
translation Killing vector. Now propagate P like k' in Eq. (3.6) back until it inter- 
sects a generator R o f f -  at a point y and propagate n" like %' in Eq. (3.7) along 
the integral curve of 1". With this propagation law, the vector -en" will connect 
surfaces of constant guage invariant phase. Near 9- one can use a different 
electromagnetic guage such that A' is zero on f-. In this guage the phase of 
p c )  along each generator of f- will have the form 

-(a- e$)x- '{log(o,- 0)- logH} (3.8) 
where H is a constant along each generator. This phase dependence gives the 
same thermal emission as before but with o replaced by o- e@. Similar remarks 
apply about charge loss and superradiance. In the case that the black hole is both 
rotating and charged one can simply combine the above results. 

4. The Back-Reaction on the Metric 

I now come to the difficult problem of the back-reaction of the particle creation 
on the metric and the consequent slow decrease of the mass of the black hole. 
At first sight it might seem that since all the time dependence of the metric in 
Fig. 4 is in the collapsing phase, all the particle creation must take place in the 
collapsing body just before the formation of the event horizon, and that an in- 
finite number of created particles wodd hover just outside the event horizon, 
escaping to 9' at a steady rate. This does not seem reasonable because it would 
involve the collapsing body knowing just when it was about to fall through the 
event horizon whereas the position of the event horizon is determined by the 
whole future history of the black hole and may be someway outside the apparent 
horizon, which is the only thing that can be determined locally [7]. 

Consider an observer falling through the horizon at some time after the 
collapse. He can set up a local inertial coordinate patch of radius - M centred 
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on the point where he crosses the horizon. He can pick a complete family {h,} 
of solutions of the wave equations which obey the condition: 

I-qs ( h ~ l ~ ~ ~ ; O - ~ ~ ~ ~ ~ l ; ~ ) ~ ~ o = ~ ( ~ ~  -4 (4.1) 

(where S is a Cauchy surface) and which have the approximate coordinate de- 
pendence ei@' in the coordinate patch. This last condition determines the splitting 
into positive and negative frequencies and hence the annihilation and creation 
operators fairly weH for modes h, with w > M  but not for those with o < M .  
Because the {h,}, unlike the {p,}, are continuous across the event horizon, they 
m i l l  also be continuous on 4-. It is the discontinuity in the {p,} on 9- at u=uo 
which is responsible for creating an infinite total number of particles in each mode. 
po by producing an (a')-' tail in the Fourier transforms of the {p,} at large 
negative frequencies w'. On the other hand, the {h,} for w>M will have very 
small negative frequency components on 9-. This means that the observer at 
the event horizon will see few particles with o > M. He will not be able to detect 
particles with w<M because they will have a wavelength bigger than his particle 
detector which must be smaller than M. As described in the introduction, there 
mill be an indeterminacy in the energy density of order M-4 corresponding to 
the indeterminacy in the particle number for these modes. 

The above discussion shows that the particle creation is really a global process 
and is not localised in the collapse: an observer falling through the event horizon 
would not see an infinite number of particles coming out from the collapsing 
body. Because it is a non-local process, it is probably not reasonable to expect 
to be able to form a local energy-momentum tensor to describe the back-reaction 
of the particle creation on the metric. Rather, the negative energy density needed 
to account for the decrease in the area of the horizon, should be thought of as 
arising from the indeterminacy of order of M-4 of the local energy density at the 
horizon. Equivalently, one can think of the area decrease as resulting from the 
fact that quantum fluctuations of the metric will cause the position and the very 
concept of the event horizon to be somewhat indeterminate. 

Although it is probably not meaningful to talk about the local energy-momen- 
t u n  of the created particles, one may still be able to define the total energy flux 
over a suitably large surface. The problem is rather analogous to that of defining 
gravitational energy in classical general relativity: there are a number of different 
energy-momentum pseudo-tensors, none of which have any invariant local sig- 
nificance, but which all agree when integrated over a sufficiently large surface. 
In the particle case there are similarly a number of different expressions one can 
use for the renormalised energy-momentum tensor. The energy-momentum 
tensor for a classical field 4 is 

L = & ; o & ; b -  9g0bBd4;c4;d .  (4.2) 

If one takes this expression over into the quantum theory and regards the 9's as 
operators one obtains a divergent result because there is a creation operator for 
each mode to the right of an annihilation operator. One therefore has to subtract 
out the divergence in some way. Various methods have been proposed for this 
(e.g [30]) but they all seem a bit ad hoc. However, on the analogy of the pseudo- 
tensor, one would hope that the different renormalisations would all give the 

102 



Particle Creation by Black Holes 217 

same integrated fluxes. This is indeed the case in the final quasi-stationary region: 
all renonnalised energy-momentum operators Td which obey the conservation 
equations Tb=O, which are stationary i.e. which have zero Lie derivative with 
respect to the time translation Killing vector K" and which agree near 9' will 
give the same fluxes of energy and angular momentum over any surface of con- 
stant r outside the event horizon. It is therefore sufficient to evaluate the energy 
flux near J+ : by the conservation equations this will be equal to the energy flux 
out from the event horizon. Near 4' the obvious way to renormalise the eqergy- 
momentum operator is to normal order the expression (4.2) with respect to 
positive and negative frequencies defined by the time-translation Killing vector 
K" of the final quasi-stationary state. Near the event horizon normal ordering 
with respect to K" cannot be the correct way to renormalise the energy-momentum 
operator since the normal-ordered operator diverges at the horizon, However it 
still gives the same energy outflow across any surface of constant r. A renonnalised 
operator which was regular at the horizon would have to violate the weak energy 
condition by having negative energy density. This negative energy density is not 
observable locally. 

In order to evaluate the normal ordered operator one wants to choose the 
{q,} which describe waves crossing the event horizon, to be positive frequency 
with respect to the time parameter defined by K' along the generators of the 
horizon in the final quasi-stationary state. The condition on the (4,) in the time- 
dependent collapse phase is not determined but this should not affect wave 
packets on the horizon at late times. If one makes up wave-packets {qin} like the 
{pjn], one finds that a fraction I',, penetrates through the potential barner around 
the black hole and gets out to f- with the same frequency o that it had on the 
horizon. This produces a ~ ( w - o ' )  behaviour in y,,,,.. The remaining fraction 
1 - r,, of the wave-packet is reflected back by the potential barrier and passes 
through the collapsing body and out onto 3-. Here it will have a similar form 
to p$). Thus for large a', 

Iyj;$,l= exp(norc- ')l@,,.! . (4.3) 
By a similar argument to that used in Section (2) one would conclude that the 
number of particles crossing the event horizon in a wave-packet mode peaked at 
late times would be 

(1 - rj.) (exp(2no~- ') - 1) - ' . (4.4) 

For a given frequency o, i.e. a given value of j ,  the absorption fraction rj, goes 
to zero as the angular quantum number 1 increases because of the centrifugal 
barrier. Thus at first sight it might seem that each wave-packet mode of high 1 
value would contain 

{exp(2norc-')- 

particles and that the total rate of particles and energy crossing the event horizon 
would be infinite. This calculation would, of course, be inconsistent with the 
result obtained above that an observer crossing the event horizon would see only 
a finite small energy density of order M-4. The reason for this discrepancy seems 
to be that the wave-packets {p,,,} and (en} provide a complete basis for solutions 
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of the wave equation only in the region outside the event horizon and not actu- 
ally on the event horizon itself. In order to calculate the particle flux over the 
horizon one therefore has to calculate the flux over some surface just outside the 
horizon and take the limit as the surface approaches the horizon. 
To perform this calculation it is convenient to define new wave-packets 

xjn=pfi)+qf:' which represent the part of pjn and qjn which passes through the 
collapsing body and yjn = pj!,' + qj!,' which represents the part of pin and qjn which 
propagates out to 9- through the quasi-stationary metric of the final black hole. 
In the initial vacuum state the {y,.} modes will not contain any particles but 
each xjn mode will contain (exp(2nolc-')- l}-' particles. These particles will 
appear to leave the collapsing body just outside the event horizon and will propa- 
gate radially outwards. A fraction r,, will penetrate through the potential barrier 
peaked at r=3M and will escape to f+ where they will constitute the thermal 
emission of the black hole. The remaining fraction l-rjn will be reflected back by 
the potential barrier and will cross the event horizon. Thus the net particle flux 
across a surface of constant r just outside the horizon will be rjn directed outwards. 

I shall now show that using the normal ordered energy momentum operator, 
the average energy flu across a surface of constant r between retarded times u, 
and uz 

(uz-u1)-' J::(O-IT,IO,)K"dCb (4.5) 

is directed outwards and is equal to the energy flux for the thermal emission from 
a hot body. Because the {yjn} contain no negative frequencies on Y-, they will 
not make any contribution to the expectation value (4.5) of the normal ordered 
energy-momentum operator. Let 

- 
xjn  = (Cjn,, f,. + tjn,* f,.)do' . (4.6) 

X j n = ( r j J + P j n .  (4.7) 

Near 9' 

Thus - 
(4 .5)=(~2-~1)- '  Re{Ij.. cj....**J: f i : o o " f f , P j , < j n o '  

. (Fjen,, ~j..n,,tj..n..,. - rj.n..pj,.n,,[j,,n .,". )do'du} (4.8) 

where o and o" are the frequencies of the wave-packets pin and pj..,,- respectively. 
In the h i t  u Z - u l  tends to infinity, the second term in the integrand in (4.8) will 
integrate out and the first term will contribute only for (j", n")=( j ,  n). By argu- 
ments similar to those used in Section 2, 

(4.9) Jg 1<jn,.12dw'= {exp(2nwh--')- l}-l . 
Therefore 

(4.5)= 5; r,o{exp(2no~-')- l}-'do (4.10) 

where r,= lim rjn is the fraction of wave-packet of frequency that would be 
absorbed by the black hole. The energy flux (4.10) corresponds exactly to the rate 
of thermal emission calculated in Section 2. Any renormalised energy momentum 

n-. 00 
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Fig. 5. The Penrose diagram for a gravitational collapse followed by the slow evaporation and even- 
tual disappearance of the black hole, leaving empty space with no singularity at the origin 

operator which agrees with the normal ordered operator near P ,  which obeys 
the conservation equations, and which is stationary in the final quasi-stationary 
region will give the same energy flux over any surface of constant r. Thus it will 
give positive energy flux out across the event horizon or, equivalently, a negative 
energy flux in across the event horizon. 

This negative energy flux will cause the area of the event horizon to decrease 
and so the black hole will not, in fact, be in a stationary state. However, as long 
as the mass of the black hole is large compared to the Planck mass g, the 
rate of evolution of the black hole will be very slow compared to the characteristic 
time for light to cross the Schwanchild radius. Thus it is a reasonable approxima- 
tion to describe the black hole by a sequence of stationary solutions and to cal- 
culate the rate of particle emission in each solution. Eventually, when the mass 
of the black hole is reduced to lo-’ g, the quasi-stationary approximation will 
break down. At this point, one cannot continue to use the concept of a classical 
metric. However, the total mass or energy remaining in the system is very small. 
Thus, provided the black hole does not evolve into a negative mass naked sin- 
gularity there is not much it can do except disappear altogether. The baryons or 
leptons that formed the original collapsing body cannot reappear because all 
their rest mass energy has been carried away by the thermal radiation. It is 
tempting to speculate that this might be the reason why the universe now contains 
so few baryons compared to photons: the universe might have started out with 
baryons only, and no radiation. Most of the baryons might have fallen into small 
black holes which then evaporated giving back the rest mass energy of baryons 
in the form of radiation, but not the baryons themselves. 

The Penrose diagram of a black hole which evaporates and leaves only empty 
space is shown in qg. 5. The horizontal line marked “singularity” is really a 
region where the radius of curvature is of the order the Planck length, The matter 
that runs into this region might reemerge in another universe or it might even 
reemerge in our universe through the upper vertical line thus creating a naked 
singularity of negative mass. 
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the singuloritia. In this manner we obtain finite, purely imaginary valua for the actions of the Kerr-Newman 
solutions and de Sitter space. One interpretation of these valua h that they give the probabilities for finding 
such metricr in the vacuum state. Another interpretation is that they give the contribution of that metric to 
the partition function for a grand canonical ensemble at a certain tempenlure, angular momentum, and 
charge. We we this appmch to evaluate the entropy of these metriu and find that it is always equal to one 
quarter the area of the event horizon in fundamental units. This agrns with previoua derivations by 
completely different methods. In the case of a stationary system such BS a star with no event horizon, the 
gravitational field has no entropy. 

One can evaluate the action for a gravitational field on a section of the complexified spacetime which avoids 

L INTRODUCTION 

In the path-integral approach to the quantization 
of gravity one considers expressions of the form 

where d[  g] is a measure on the space of metric8 
g, d[$]is ameasureonthespaceof  matter fields I$, 
and I[ g, $11 is the action. In this integral one must in- 
clude not only metr ics  which can be continuously 
deformed into the flat-space metric but also homo- 
topically disconnected metric8 such as those of 
black holes; the formation and evaporation of 
macroscopic black holes gives rise to effects such 
as baryon nonconeervation and entropy produc- 
tion.'" One would therefore expect s imilar  pheno- 
mena to occur on the elementary-particle level. 
However, there is a problem in evaluating the ac- 
tion I for a black-hole metric because of the space- 
time singularities that it necessarily contains."' 
In this paper we shall show how one can overcome 
this difficulty by oomplexifying the metr ic  and 
evaluating the action on a real four-dimensional 
section (really a contour) which avoids the singu- 
larities. In Sec. TI we apply this procedure to 
evaluating the action for  a number of stationary 
exact solutione of the Einstein equations. For a 
black hole of ma80 M, angular momentum J, and 
charge Q we obtalp 

I * i U K - ' ( h f -  w), (1.2) 

where 
K a (T+ - Y - )  2-'(T+* +Sf@)" 

= w+ (T,' +pM")" , 
T,=M*M-PM-'-@)'* 

i~ units such that 

G = c = A = k = l .  

one  interpretation of this result i8 that it gives 
a probability, in an appropriate sense, of the 
occurrence in  the vacuum state of a black hole 
with these parameters. T h i s  aspect will be dis- 
cussed further in another paper. Another inter- 
pretation which will be discussed in Sec. RI of this 
paper is that the action gives the contribution of 
the gravitational field to Ule logarithm of the parti- 
tion function for a system a t  a certain temperature 
and angular velocity. From the partition function 
one can calculate the entropy by standard thermo- 
dynamic arguments. It turns out that this entropy 
18 zero for stationary gravitationlrl field8 such as 
those of stars which contain no event horizons. 
However, both for black holes and de Sitter space' 
it turns out that the entropy is equal to one quarter  
of the area of the event horizon. This is in  agree- 
ment with resul ts  obtained by completely differ- 
ent methods. '. ' 

11. THE ACTION 

The action for the gravitational field is usually 
taken to be 

However, the curvature scalar R contains te rms  
which are linear in  second derivatives of the 
metric. In order  to obtain an action which depends 
only on the f i r s t  derivatives of the metric, as is 
required by the path-integral approach, the second 
derivatives have to be removed by integration by 
parts. The action for the metric g over a region 
Y with boundary BY has the form 

(2.1) 
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The surface term B is to be chosen so that for 
metrics g which satisfy the Einstein equations the 
action Z i s  an extremum under variations of the 
metric which vanish on the boundary a Y  but which 
may have nonzero normal derivatives. This will 
be satisfied if B=(8r)" K + C ,  where K is the 
trace of the second fundamental form of the bound- 
ary a Y  in the metric g and C is a t e r m  which de- 
pends only on the induced metric h ,  on aY. The 
term C gives rise to a term in the action which is 
independent of the metric g. This can be absorbed 
into the normalization of the measure on the space 
of all metrics. However, in the case of asymptot- 
ically flat metr ics ,  where the boundary a Y  can be 
taken to be the product of the time axis with a two- 
sphere of large radius, it is natural to choose C 
so that I = 0 for the flat-space metric 11. Then B 
=(Sr)-' [K], where [K) is the difference in the 
trace of the second fundamental form of aY in the 
metric g and the metric 11. 

We shall illustrate the procedure for evaluating 
the action on a nonsingular section of a complexi- 
fied spacetime by the example of the Schwarz- 
schild solution. This is normally given in the 
form 

d$ = - ( 1  - 2Mr-')dP + ( 1 -  2Mr") - 'dP  +Y% * . 
( 2 . 2 )  

This has singularities at Y = O  and at Y =2M. As 
i s  now well known, the singularity a t  r - 2 M  can 
be removed by transforming to Kruskal coordi- 
nates in  which the metric has the form 

ds* =32~MS~"exp[-r(2M)"](-dz* +dya)  + P d n a ,  

(2 .3 )  

where 

-2' +ya = [ ~ ( 2 ~ 4 ) - l -  l ] e x p [ r ( 2 ~ ) " ] ,  (2 .4 )  

(2 .5 )  ( y+ z)(y- z)-l= e x p [ t ( 2 ~ ) - ' ] .  

The singularity a t  Y -0 now lies on the surface za - y* = 1. It is a curvature singularity and cannot 
be removed by coordinate changes. However, it  
can be avoided by defining a new coordinate Z =iz.  
The metr ic  now takes the positive-definite o r  
Euclidean form 

dsa  =3"CI'r''exp[-r(~~)"](dl' +dy*)  +gdS6*, 

(2 .6 )  

(2 .7 )  

where Y is now defined by 

t' +y* = [ Y ( ~ M ) "  - 1 ] a x p [ r ( 2 ~ ) " ] .  

On the section on which E and y are real (the Eu- 
clidean section), Y will be real and greater  than 
o r  equal to 2 M .  Define the imaginary time by 7 
=it. It follows from Eq. (2.5) that T is periodic 

with period 8nM. On the Euclidean section T has 
the character of an angular coordinate about the 
"axis" r = 2 M .  Since the Euclidean section i s  non- 
singular we can evaluate the action (2.1) on a re -  
gion Y of it bounded by the surface r =yo. The 
boundary a Y  has  topology S 1 x p  and so is  compact. 

The scalar curvature R vanishes so the action 
is given by the surface term 

( 2 . 8 )  

( 2 . 9 )  

where (a/an)JdC i s  the derivative of the a rea  SdC 
of a Y as each point of a Y is moved an equal dis- 
tance along the outward unit normal n. Thus in 
the Schwarzschild solution 

/ K d Z  = - 3 2 f A 4 ( 1  -2&fr-1)d2 

d 
d r  

x- [ iP ( l -  2 M r " ) q  

= - 3 2 # i r M ( 2 ~  - 3 M ) .  (2 .10 )  

The factor -i arises from the (-k)" in  the sur -  
face element d C .  For flat space K =2r - ' .  Thus 

JKdC = - 3 2 f i M ( 1 -  2 ~ y - l ) ~ ~  2 r .  (2 .11 )  

Therefore 

Z = ( 8 n ) - l / [ K ] d C  

= 4 m v  +O(MaY,-') 

= n i M K "  + 0(M*YO"), (2 .12 )  

where K = (4M)-' is the surface gravity of the 
Schwarzschild solution. 

The procedure is similar for the Reissner- 
Nordstrdm solution except that now one has to 
add on the action for the electromagnetic field Fab. 
This is 

- ( 1 6 r ) - l J  F , , F ~ ~ ( - ~ ) % % .  (2 .13 )  

For  a solution of the Maxwell equations, Fa*:;, = O  
so the integrand of (2 .13 )  can be written as a di- 
vergence 

(2 .14)  

Thus the value of the action is 

- ( 8 n ) - L / P ' A a d C b .  (2 .15 )  
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The electromagnetic vector potential A, for the 
Reiasner-Nordstr6m solution is normally taken to 
be 

A,=QV1tr. .  (2.16) 

However, this is singular on the horizon as t is 
not defined there. To obtain a regular potential 
one has to make a gauge transformation 

(2.17) 

where 0 = Q(Y+)-' is the potential of the horizon of 
the black hole. The combined gravitational and 
electromagnetic actlons are 

I =ilrK"(M - Q&). (2 .18)  

We have evaluated tho action on a section in the 
complexified space the  on which the induced me- 
tric is real and poritive-definite. However, be- 
cause R , Fab, and K we holomorphic functions on 
the complexified spacetime except at the singu- 
larities, the action integral is really a contour 
integral and will have the same value on any sec- 
tion of the complexitied spacetime which is homo- 
logous to the Euclidean section even though the in- 
duced metric on thia section may be complex. 
This allows us to extend the procedure to other 
spacetimes which do not necessarily have a real 
Euclidean section. A particularly important 
example of such a metric is that of the Kerr-New- 
man solution. In this one can introduce Kruskal 
coordinates y and z and, by setting t - i z ,  one can 
define a nonsingular section as in the Schwarz- 
schild case. We shall call this the "quasi-Eucli- 
dean section." The metric on this section is com- 
plex and it is asymptotically flat in a coordinate 
system rotating with angular velocity n, where 
SZ =JM''(Y+* +J'M")'' is the angular velocity of 
the black hole. The regularity of the metric at 
the horizon requires that the point k7, 8 ,  4) be 
identified with the point (t +f%K", r, B , #  +i2%s2x"). 
The rotation does not affect the evaluation of the 
j [ K ] d C  so the actlon is still given by Eq. (2.18).  
One can also evaluate the gravitational contribu- 
tion to the action for a stationary axisymmetric 
solution containing a black hole surrounded by a 
perfect fluid rigidly rotating at  some different 
angular velocity. The action is 

I = i 2 n ~ - ' [ ( M n ) - ' /  L R V d C a + 2 " M ] ,  (2.19) 

where K%/8xa =8/8t is the time-translation rCillhg 
vector and 2 is a surface in  the quasi-Euclidean 
section which connects the boundary at Y -r,, with 
the "axis" or bifurcation surface of the horizon 
ray+. The total maas, MI can be expressed as 

(2.20) 

(2.21) 

M,, is the mass of the black hole, A is the area 
of the event horizon, and 51, and J,, are respec- 
tively the angular velocity and angular momentum 
of the black hole." The energy-momentum tensor 
of the fluid has  the form 

T.b=(P+phraUb+pgab, (2.22) 

where p is the energy density and p is the pres- 
sure of the fluid. The 4-velocity u, can be ex- 
pressed as 

Xu' -KO +a,,, ma , (2.23) 

where a ,  is the angular velocity of the fluid, ma 
is the axial Killing vector, and X is a normaliza- 
tion factor. Substituting (2.21) and (2 .22)  in (2.20) 
one finds that 

M = (4%)'' KA + 2SZ,,,lH +2Q,  J ,  

(2.24) 

(2.25) 

is the angular momentum of the fluid. By the field 
equations, R - 8 n ( p - 3 p ) ,  so this action is 

(2.26) 

One can also apply (2.26) to a situation such as a 
rotating star where there is no black hole present. 
In this case the regularity of the metric does not 
require any particular periodicity of the time co- 
ordinate and 2 n ~ - '  can be replaced by an arbitrary 
periodicity fl. The significance of such a periodic- 
ity will be discussed in  the next section. 

We conclude this section by evaluating the action 
for de Sitter space. This is given by 

I =(16n)-'J Y (R - 2A)(-g)'*d'x 

+(sn l - iQ~ ld~ t (2.27) 

where A is the cosmological constant. By the field 
equations R -4A. If one were to take Y to be the 
ordinary real de Sitter space, i.e., the section 
on which the metric was real and Lorentzian. the 
volume integral in (2.27) would be infinite. How- 
ever, the complexified de Sitter space contains a 
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section on which the metric is the real  positive- 
definite metric of a 4-sphere of radius 31'aA-da. 
This Euclidean section has no boundary so that 
the value of this action on it is 

I = -12ni.A-1, (2.28) 

where the factor of -i comes from the (-g)da. 

111. THE PARTITION FUNCTION 

In the path-integral approach to the quantization 

a t  a time t ,  to a field 
of a field 4 one expresses the amplitude to go 
from a field configuration 
configuration 9, a t  time t, as 

where the path integral is over  a l l  field configura- 
tions + which take the values 
at time t,. But 

a t  time t,  and 

( $ a .  4 b1)=(4~Iexp[-iH(t, - tJ1 I (3.2) 

one ob- 
where H is the Hamiltonian. If one se t s  t, - t ,  
= -i@ and 
tains 

= &  and the sums over all 

where the path integral is now taken over all fields 
which are periodic with period 0 in imaginary 
time. The left-hand side of (3.3) is just the parti- 
tion function Z for the canonical ensemble consist- 
ing of the field 4 at temperature T =@-'. Thus one 
can express  the partition €unction for the system 
in te rms  of a path integral over periodic fields." 
When there are  gauge fields, such as the electro- 
magnetic or gravitational fields, one must include 
the Faddeev-Popov ghost contributions to the path 
integral.11'13 

One can also consider grand canonical ensembles 
in which one has chemical potentials p, associated 
with conserved quantities C,. In this case the par- 
tition function is 

(3.4) 

For example, one could consider a system a t  a 
temperature T =@-I with a given angular momen- 
tum J and electric charge Q. The corresponding 
chemical potentials are then a, the angular veloc- 
ity, and 9, the electrostatic potential. The parti- 
tion function will be given by a path integral over 
all fields 4~ whose value at the point (t +is, r ,  8, 9 
+im) is exp (q@@) times the value at ( t , ~ ,  @,#I,  
where q is the charge on the field. 

The dominant contribution to the path integral 
will come from metrics g and matter fields $I 

which are near background fields go and &, which 
have the correct  periodicities and which extrem- 
ize the action, i.e., are solutions of the classical 
field equations. One can express  g and + as 

g=g ,+g ,  9=4,+6 (3.5) 

and expand the action in a Taylor series about the 
background fields 

+ higher-order terms,  (3.6) 

where I,[ g] and I,[ 61 are quadratic in the fluctua- 
tions g and 6. If one neglects higher-order terms,  
the partition function is given by 

=id go, +,I +lnj-d 81 exp(il,[ 81) 

But the normal thermodynamic argument 

In2  = - WT" , (3.8) 

where W =M - T S - C , p , C ,  is the "thermodynam- 
ic potential" of the system. One can therefore re- 
gard il[ g,,+,] as the contribution of the background 
to -WT" and the second and third te rms  in (3.7) 
as the contributions arising from thermal gravi- 
tons and matter quanta with the appropriate chemi- 
cal potentials. A method for evaluating these lat- 
te r  terms will be given in another paper. 

Newman solutions because in them the points 
( t , r ,  @,4) and ( t + z n i ~ - ' , r ,  e, ,$+2nin~-~)  are 
identified (the charge q of the graviton and photon 
are zero). It follows that the temperature T of 
the background field is ~ ( 2 n ) "  and the thermody- 
namic potential is 

One can apply the above analysis to the Kerr- 

W = f ( M - @ Q ) ,  (3.9) 

W =iM - T S - @ Q -  SZJ. (3.10) 

but 

Therefore 

fiu = T S + ~ @ Q  + n ~ ,  (3.11) 

but by the generalized S m a r r  formula'*14 

~ I U = K ( ~ T ) " A  + i O Q  +nJ. (3.12) 

Therefore 

S = ? A ,  (3.13) 

in complete agreement with previous results. 
For de Sitter space 

WT" = - 12 rA-', (3.14) 

but in this case W = - T S ,  s i n c e M = J = Q = O  be- 
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cause this epace is closed. Therefore 

S = 1 2 ~ A ' ~ ,  (3.15) 

which again agrees with previous results. Note 
that the temperature T of de Sitter space cancels 
out the period. This is what one would expect 
since the temperature is observer dependent and 
related to the normalization of the timelike Killing 
vector. 

Finally we consider the caae of a rotating star 
i n  equilibrium at iome temperature T with no 
event horizons. In this case we must include the 
contribution from the path integral over the matter 
fields as it is these which are producing the gravi- 
tational field. For matter quanta in thermal equili- 
brium at a temperature T volume V* T-' of flat 
space the thermodynamic potential is given by 

WT" = -$p( -~~)~ 'd 'x= -pVT- ' .  (3.16) 

In situations in  which the characteristic wave- 
lengths, T-l ,  fire omall compared to the gravita- 
tional length scales it is reasonable to use this 
fluid approximation for  the density of thermody- 
namic potential; thus the matter contributing to 
the thermodynamic potential will be given by 

W,T" = - fp ( -g )d '  Px=T" /PK.dC,  (3.17) 

(because of the signature of our metric K"dC, is 
negative), but by Eq. (2.26) the gravitational con- 
tribution to the total thermodynamic potential is 

W, - M - 0,  J, +jz p K dT;, . (3.18) 

Therefore the total thermodynamic potential is 

W =M - n ,J, +L (P + P ) l p  dC, , (3.19) 

but 

P+P-TS+ C L n , ,  (3.20) 
t 

where Tis the local temperature, s is the en- 
tropy density of the fluid, rl is the local chemical 
potentials, and nl is the number densities of the 
ith species of particles making up the fluid. 
Therefore 

In thermal equilibrium 

f a  TX-', (3.22) 

El = cr I X' , (3.23) 

where T and pl are the values of T and El at in- 
finity.' Thus the entropy is 

S = -J su'd8, . (3.24) 

This is just the entropy of the matter. In the ab- 
sence of the event horizon the gravitational field 
has no entropy. 
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the quantum-mechanical requirement that energy should be positive imply that gravity is dwap attractive. 
Thi leada to 8inguluities in any reasonable theory of gravitation. A singularity is a place where the clmical 
conapb of space and time break down as do all the known laws of phyda becruee they arc all formdated on 
a classical spra-time bacclyround..In this paper it is claimed that this breakdown is not mmly a mult  of our 
ignorance of the correct theory but that it rcprarmb a fundamental limitation to our ability to predict the 
fulwe, a limitation that is analogous but additional to the limitation imposad by the normal quantum- 
mechanical uncertainty principle. The new limitation arisar bocruse general relativity allows the causal 
structure of space-time to be very different from that of Minkowski apace. The interaction region can be 
bounded not only by an initial surface on which data are given and a final surface on which measurements arc 
made but also a "hidden surface" about which the obsuvcr has only limited information such M the mass, 
angular momentum, and charge. Concerning this hidden surface one has a "principle of ignorance": The 
8UrfrOe emib with equal probability dl configurations of particl~.cOmpatible with the observers limited 
knowledge. It is shown that the ignorance principle hold8 for the quantum-mechanical evaporation of black 
holes: The black hole crcatca particla in pairs, with one particle always falling into the hole and the other 
W b l y  exaping to infinity. Because part of the information about the state of the system is loat down the 
hole, the hd dtuation is represented by a density matrix rather than a pure quantum state. This means there 
b no S matrix for the process of black-hole formation and evaporation. Instcad one has to introduce a new 
operator, called the supcracattcring operator, which m a p  density matrim describing the initial situation to 
dauity matrim describing the fmal situation. 

The principle of equivalence, which says that gravity couples to the energy-momentum tensor of matter, and 

1. INTRODUCTION 

Gravity is by far the weakest interaction known 
to physics: The ratio of the gravitational to elec- 
trical forces between two electrons is about one 
part in 1OU. In fact, gravity is so weak that it 
would not be observable at all were it not distin- 
guished from all other interactions by having the 
property known as the principle of universality or 
Bquivalence: Gravity affects the trajectories of all 
freely moving particles in the same way. This has 
been verified experimentally to an accuracy of 
about 10'" by Roll, Krotkov, and Mcke' and by 
Bragineky and Panov.* Mathematically, the princi- 
ple of equivalence is expressed as saying that 
gravity couples to the energy-momentum tensor 
of matter. This result and the usual requirement 
from quantum theory that the local energy density 
should be positive imply that gravity is always at- 
tractive. The gravitational fields of all the parti- 
cles in large concentrations of matter therefore 
add up and can dominate over all other forces. As 
predicted by general relativity and verified experi- 
mentally, the universality of gravity extends to 
light. A sufficiently high concentration of mass can 
therefore produce such a strong gravitational field 
that no light cm escape. By the principle of spe- 
cial relativity, nothing else can escape either since 
nothing can travel faster than light. One thus has 

a situation in which a certain amount of matter is 
trapped in a region whose boundary shrinks to 
zero in a finite time. Something obviously goes 
badly wrong. In fact, as was shown in a series of 
papers by Penrose and this author:-e a space-time 
singularity is inevitable in such circumstances 
provided that general relativity is correct and that 
the energy-momentum tensor of matter satisfies 
a certain positive-definite inequality. 

Singularities are predicted to occur in two areas. 
The first is in the past at the beginning of the pres- 
ent expansion of the universe. This is thought to be 
the "big bang" and is generally regarded as the 
beginning of the universe, The second area in 
which singularities are predicted is the collapse 
of isolated regions of high-mass concentration such 
as burnt-out stars. 

A singularity can be regarded as a place where 
there is a breakdown of the classical concept of 
space-time as a manifold with a pseudo-Reiman- 
nian metric. Because all known laws of physics 
are formulated on a classical space-time back- 
ground, they will all break down at a singularity. 
This is a great crisis for physics because it means 
that one cannot predict the future: One does not 
know what will come out of a singularity. 

Many physicists are very unwilling to believe 
that physics breaks down at singularities. The 
following attempts were therefore made in order 
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to try to avoid this conclusion. 
1.  General relativity does not predict singulari- 

ties. This was widely believed at one time (e.g., 
Lifshitz and Khalatniko+’). It was, however, 
abandoned after the singularity theorems mentioned 
above and it is now generally accepted that the 
classical theory of general relativity does indeed 
predict singularities (Lifshitz and Khalatnikov’). 

2. Modih general relativity. In order to prevent 
singularities the modifications have to be such as 
to make gravity repulsive in some situations. The 
simplest viable modification is probably the Brans- 
Dicke theory,”. In this, however, gravity is al- 
ways attractive so that the theory predicts singu- 
larities just as in general relativity.’ The Ein- 
stein-Cartan theory” contains a spin-spin interac- 
tion which can be repulsive. This might prevent 
singularities in some cases but there a re  situations 
(such as a purely gravitational and electromagnetic 
fields) in which singularities will still occur. Most 
other modlficatime of general relativity appear 
either to be in conflict with observations or to have 
undesirable features like negative energy or 
fourth- order equations. 

3.  The “cosmic censorship’’ hypothesis: Nature 
abhors a naked shgdar i ty .  In other words, if one 
starts out with an initially nonsingular asymptot- 
ically flat situation, any singularities which subse- 
quently develop due to gravitational collapse will 
be hidden from the view of an observer at infinity 
by an event horieon. This hypothesis, though un- 
proved, is probably true forthe classical theory 
of general relativity with an appropriate definition 
of nontrivial singularities to rule out such cases 
as the world liner of pressure-free matter inter- 
secting on caustics. If the cosmic censorship hy- 
pothesis held, one might argue that one could ig- 
nore the breakdown of physics at space-time singu- 
larities because this could never cause any detec- 
table effect for observers careful enough not to 
f a l l  into a black hole. This is a rather selfish at- 
titude because it ignores the question of what hap- 
pens to an observer who does fa l l  through an event 
horizon. It also does not solve the problem of the 
big-bang singularity which definitely is naked. The 
f ind  blow to this attempt to evade the issue of 
breakdown at singularities, however, has been the 
discovery by this that black holes create 
and emit particles at a steady rate with a thermal 
spectrum. Because this radiation carries away 
energy, the black holes must presumably lose ma~s 
and eventually diaappear. If one tries to describe 
this process of black-hole evaporation by a classi- 
cal space-time metric, there is inevitably a naked 
singularity when the black hole disappears. Even 
if the black hole does not evaporate completely one 
can regard the emitted particles as having come 

from the singularity inside the black hole and 
having tunnelled out through the event horizon on 
spacelike trajectories. Thus even an observer at 
infinity cannot avoid seeing what happens at a 
singularity. 

4 .  Quantize general relativity. One would ex- 
pect quantum gravitational effects to be important 
in the very strong fields near a singularity. A 
number of people have hoped, therefore, that these 
quantum effects might prevent the singularity from 
occurring or might smear it out in some way such 
as to maintain complete predictability within the 
limits set by the uncertainty principle. However, 
seYious difficulties have arisen in trying to treat 
quantum gravity like quantum electrodynamics by 
using perturbation theory about some background 
metric (usually flat space). Usually in electrody- 
namics one makes a perturbation expansion in 
powers of the small parameter e ’ h c ,  the charge 
squared. Because of the principle of equivalence, 
the quantity in general relativity that corresponds 
to charge in electrodynamics is the energy of a 
particle. The perturbation expansion is therefore 
really a series in powers of the various energies 
involved divided by the Planck mass fi l lPcllaG-l’a 

10-5 g. 
This works well for low-energy tree-approxima- 

tion diagrams but it breaks down for diagrams with 
closed loops where one has to integrate over all 
energies. At energies of the Planck mass, all 
diagrams become equally important and the series 
diverges. This is the basic reason why general 
relativity is not r e n o r m a l i ~ a b l e . ’ ~ ~ ~ ~  

Each additional closed loop appears to involve a 
new infinite subtraction. There appears to be an 
infinite sequence of finite remainders or renormal- 
iaation parameters which are not determined by 
the theory. One therefore cannot, as was hoped, 
construct an S matrix which would make definite 
predictions. The trouble with perturbation theory 
is that it uses the light cones of a fixed background 
space. It therefore cannot describe situations in 
which horizons or worm holes develop by vacuum 
fluctuations. This is not to say that one cannot 
quantize gravity, but that one needs a new ap- 
proach. 

One possible view of the failure of the above at- 
tempts to avoid the breakdown of predictability 
would be that we have not yet discovered the cor- 
rect theory. The aim of this paper, however, is to 
show this cannot be the case if one accepts that 
quantum effects will cause a black hole to radiate. 
In this case there is a basic limitation on our abili- 
ty to predict which is similar but additional to the 
usual quantum-mechanical uncertainty principle. 
This extra limitation arises because general rela- 
tivity allows the causal structure of space-time 
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to be very different from that of Minkowski space. 
For example, in the case of gravitational collapse 
which produces a black hole there  is an event hori- 
zon which prevents observers at infinity from mea- 
suring the internal state of the black hole apart 
f rom its mass, angular momentum, and charge. 
This means that measurements at future infinity 
are insufficient to determine completely the state 
of the system at past infinity: One also needs data 
on the event horizon describing what fell into the 
black hole. One might think that one could have 
observers  stationed just outside the event horizon 
who would signal to the observers at future infinity 
every time a particle fell into the black hole. How- 
ever, this is not possible, just as one cannot have 
observers who will measure both the position and 
the velocity of a particle. To signal accurately the 
time at which a particle crossed the event horizon 
would require a photon of the same wavelength and 
therefore the same energy as that of the infalling 
particle. If this  were done for every particle which 
underwent gravitational collapse to form the black 
hole, the total energy required to  signal would be 
equal to  that of the collapsing body and there would 
be no energy left over to form the black hole. It 
therefore follows that when a black hole forms, one 
cannot determine the results of measurements at 
past infinity from observations at future infinity. 
This  might not seem so terrible because one is 
normally more concerned with prediction than 
postdiction. However, although in such a situation 
one could classically determine future infinity from 
knowledge of past infinity, one cannot do this if 
quantum effects a r e  taken into account. For exam- 
ple, quantum mechanics allows particles to  tunnel 
on spacelike or past-directed world lines. It is 
therefore possible for a particle to tunnel out of the 
black hole through the event horizon and escape 
to  future infinity. One can interpret such a hap- 
pening as being the spontaneous creation in the 
gravitational field of the black hole of a pair of 
particles, one with negative and one with positive 
energy with respect to infinity. The particle with 
negative energy would fall into the black hole 
where there  are particle s ta tes  with negative en- 
ergy with respect to infinity. The particles with 
positive energy can escape tQ infinity where they 
constitute the recently predicted thermal emission 
from black holes. Because these particles come 
from the interior of the black hole about which an 
external observer has no knowledge, he cannot 
predict the amplitudes for them to be emitted but 
only the probabilities without the phases. 

In Secs. III and IV of this paper it is shown that 
the quantum emission from a black hole is com- 
pletely random and uncorrelated. Similar results 
have been found by Wald“ and Parker.” The black 

hole emits  with equal probability every configura- 
tion of particles compatible with conservation of 
energy, angular momentum, and charge (not every 
configuration escapes to infinity with equal proba- 
bility because there  is a potential barrier around 
the black hole which depends on the angular mo- 
mentum of the particles and which may reflect 
some of the particles back into the black holes). 
This  result can be regarded as a quantum version 
of the “no hair” theorems because it implies that 
an observer at infinity cannot predict the internal 
state o t  the black hole apart f rom its mass, angu- 
lar momentum, and charge: If the black hole 
emitted some configuration of particles with great- 
er probability than others, the observer would 
have some a priori information about the internal 
state. Of course, if the observer measures the 
wave fuxictions of all the particles that are emitted 
in a particular case he can then aposteriori de- 
termine the internal state of the black hole but it 
will have disappeared by that time. 

horizon is an example of a situation in which the 
interaction region is bounded by an initial surface 
on which data are prescribed, a final surface on 
which measurements are made, and, in addition, 
a third “hidden” surface about which the observer 
can have only limited information such as the flux 
of energy, angular momentum, or charge. Such 
hidden surfaces can surround either singularities 
(as in the Schwarzschild solution) or “wormholes” 
leading to  other space-time regions about which 
the observer has no knowledge (as  in the Reissner- 
NordstrGm or  other solutions). About this surface 
one has the principle of ignorance. 

the observer’s limited information are equally 
probable. 

So f a r  the discussion has been in t e r m s  of quan- 
tized matter fields on a fixed classical background 
metric (the semiclassical approximation). How- 
ever, one can extend the principle t o  treatments in 
which the gravitational field is also quantized by 
means of the Feynman sum over histories. In this 
one performs an integration (with an as yet unde- 
termined measure) over all configuration of both 
matter and gravitational fields. The classical ex- 
a p p l e  of black-hole event horizons shows that in 
this integral one has to include metrics in which 
the interaction region (i.e., the region over which 
the action is evaluated) is bounded, not only by the 
initial and final surfaces, but by a hidden surface 
as well. Indeed, in any quantum gravitational situ- 
ation there is t h e  possibility of “virtual” black 
holes which arise from vacuum fluctuations and 
which appear out of nothing and then disappear 
again. One therefore has to include in the sum 

A gravitational collapse which produces an event 

Al l  data on a “hidden” surface compatible with 
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over histories metrics containing transient holes, 
leading either to singularities or to other space- 
time regions about which one has no knowledge. 
One therefore haa to introduce a hidden surface 
around each of these holes and apply the principle 
of ignorance to say that all field configurations on 
these hidden surfaces are equally probable pro- 
vided they are  compatible with the conservation of 
mass, angular momentum, etc. which c m  be mea- 
sured by surface integrals at a distance from the 
hole. 

Let H,  be the Hilbert space of all possible data 
on the initial surface, H, be the Hilbert space of 
all possible data on the hidden surface, and Hs be 
the Hilbert space of all possible data on the final 
surface. The basic assumption of quantum theory 
is that there is some tensor S,,, whose three in- 
dices refer to H,, Ho, and H,,  respectively, such 
that if  

then 

c c c 
is the amplitude to have the initial state [,, the 
final state xA,  and the state f, on the hidden sur- 
face. Given only the initial state 6, one cannot de- 
termine the final state but only the element cSABc.& of the tensor product H a e H s ,  Because 
one is ignorant of the state on the hidden surface 
one cannot find the amplitude for measurements on 
the final surface to give the answer x,  but one can 
calculate the probability for this outcome to be 
~ ~ P C D Z C X D ,  where 

is the density matrix which completely describes 
observations made only on the future surface and 
not on the hidden surface. Note that one gets this  
density matrix from by summing with 
equal weight over all the unobserved states on the 
“hidden” surface. 

One can see from the above that there will not 
be an S matrix o r  operator which maps initial 
states to final states, because the observed final 
situation is described, not by a pure quantum 
state, but by a density matrix. In fact, the initial 
situation in general will also be described not by 
a pure state but by a density matrix because of the 
hidden surface occurring at earlier times. Instead 
of an S matrix one will have a new operator called 
the superscattering operator 8 ,  which maps densi- 
ty  matrices describing the initial situation to den- 
sity matrices describing the final situation. This 
operator can be regarded as a 4-index tensor 

aABCD where the first two indices operate on the 
final apace H3 C9 H ,  and the last two indices operate 
on the space If, a€€,. It is related to the 3-index 
tensor SABC by 

The final density matrix pale  is given in terms of 
the initial density matrix plco by 

The superscattering operator is discussed further 
in Sec. V. 

The fact that in gravitational interactions the 
final situation at infinity is described by a density 
matrix and not a pure state indicates that quantum 
gravity cannot, as was hoped, be renormaliaed 
to give a well-defined S matrix with only a finite 
number of undetermined parameters. It seems 
reasonable to conjecture that there is a close con- 
nection between the infinite sequence of renormall- 
aation constants that occur in perturbation theory 
and the loss of predictability which arises from 
hidden surfaces. 

One can also appeal to the principle of ignorance 
to provide a possible explanation of the observa- 
tions of the microwave background and of the abun- 
dances of helium and deuterium which indicate that 
the early universe was very nearly spatially homo- 
geneous and isotropic and in thermal equilibrium. 
One could regard a surface very close to the initial 
big-bang singularity (say, at the Planck time 

sec) as being a “hidden surface” in the sense 
that we have no a priori information about it. The 
initial surface would thus emit all configurations 
of particles with equal probability. T o  obtain a 
thermal distribution one would need to impose 
some constraint on the total energy of the configu- 
rations where the total energy is the rest-mass en- 
ergy of the particles plus their kinetic energy of 
expansion minus their gravitational potential ener- 
gy. Observationally this  energy is very nearly, if 
not exactly, zero and this can be understood as a 
necessary condition for our existence: If the 
total energy were large and positive, the universe 
would expand too rapidly for galaxies to form, and 
if the total energy were large and negative, the 
universe would collapse before intelligent life had 
time to develop. We therefore do have some 
limited knowledge of the data on the initial surface 
from the  fact of our own existence. If one assumes 
that the initial surface emitted with equal probabil- 
ity all configurations of particles with total energy 
(with some appropriate definition) nearly equal to 
z-ero, then an approximately thermal distribution 
is the most probable macrostate since it 
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corresponds to the largest number of microstates. 
Any significant departure f rom homogeneity or iso- 
tropy could be regarded as the presence in some 
long-wavelength modes of a very large number of 
gravitons, a number greatly in excess of that for  
a thermal distribution and therefore highly im- 
probable. It should be  pointed out that this view 
of the generality of isotropic expansion is the op- 
posite of that adopted by Collins and Hawking.” 
The difference arises from considering microscop- 
ic rather than macroscopic configurations. 

One might also think to explain the observed net 
baryon number of the universe by saying that we, 
as observers, could result only from initial con- 
figurations that had a net baryon number. An al- 
ternative explanation might be that CP violations 
in the highly T-nonsymmetric early universe 
caused expanding configurations in which baryons 
predominated to  have lower energies than s imilar  
expanding configurations in which antibaryons pre- 
dominated. This would mean that for  a given ener- 
gy density there  would be more configurations 
with a positive baryon number than with a negative 
baryon number, thus the expectation value of the 
baryon number would be positive. Alternatively, 
there might be a sor t  of spontaneous symmetry 
breaking which resulted in regions of pure baryons 
or pure antibaryons having lower energy densities 
than regions containing a mixture of baryons and 
antibaryons. In this case, as suggested by 
Omni$s,’’ one would get a phase transition in which 
regions of pure baryons were separated from re- 
gions of pure antibaryons. Unlike the case con- 
sidered by Omngs, there  is no reason why the 
separation should not be  over length scales larger  
than the particle horizon. Such a greater separa- 
tion would overcome most of the difficulties of the 
om& model. 

There is a close connection between the above 
proposed explanation for  the isotropy of the uni- 
verse  and the suggestion by Zel’dovichao that it is 
caused by particle creation in anisotropic regions. 
In Zel’dovich’s work, however, in order  to define 
particle creation, one has to  pretend that the uni- 
verse  was time-independent at early t imes (which 
is obviously not the case). The present approach 
avoids the difficulty of talking about early times; 
one merely has to count the configurations at some 
convenient late time. 

The conclusion of this paper is that gravitation 
introduces a new level of uncertainty or random- 
ness into physics over and above the uncertainty 
usually associated with quantum mechanics. Ein- 
stein was very unhappy about the unpredictability 
of quantum mechanics because he felt that “God 
does not play dice.” However, the results given 
here  indicate that “God not only plays dice, He 

sometimes throws the dice where they cannot be  
seen.” 

11. QUANTUM THEORY IN CURVED SPACE-TIME 

In this section a brief outline is given of the 
formalism of quantum theory on a given space-time 
background which was used by HawkinglS to derive 
the quantum-mechanical emission from black 
holes. This formalism will be used in Sec. III to 
show that the radiation which escapes to infinity is 
completely thermal and uncorrelated. In Sec. IV 
a specific choice of states for particles going into 
the black hole is used to calculate explicitly both 
the ingoing and the emitted particles. This  shows 
that the particles are created in pairs with one 
member of the pair always falling into the hole and 
the other member either falling in or escaping to 
infinity. Section V contains a discussion of the 
superscattering operator 8 which maps density 
matrices describing the initial situation to density 
matr ices  describing the final situation. 
For simplicity only a massless Hermitian scalar  

field $I and an uncharged nonrotating black hole will 
be  considered. The extension to charged massive 
fields of higher spin and charged rotating black 
holes is straightforward along the lines indicated 
in Ref. 13. Throughout the paper units will b e  used 
in which C = c= ti = k= 1. 

Figure 1 is a diagram of the situation under con- 
sideration: A gravitational collapse creates  a 
black hole which slowly evaporates and eventually 
disappears by the quantum-mechanical creation 
and emission of particles. Except in the final 
stages of the evaporation, when the black hole gets 
down to the Planck mass, the back reaction on the 
gravitational field is very small  and it can be 
treated as an unquantieed external field. The 
metric a t  late times can be approximated by a se- 
quence of time-independent Schwareschild solu- 
tions and the gravitational collapse can be taken to 
be  spherically symmetric (it was shown in Ref. 13 
that departures f rom spherical symmetry made no 
essential difference). 

The scalar field operator Q, satisfies wave equa- 
tion 

ofp=o (2.1) 

[+(X) ,~J(Y) I=~G(X,Y)  (2.2) 

in this  metric and the commutation relations 

where C(x, y) is the half-retarded minus half-ad- 
vanced Green’s function. One can express the op- 
erator 4 as 

where the {f,} are a complete orthonormal family 
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FIG. 1. A gravitational collapse produces a black 
hole which elowly evaporate8 by the emtsston of radta- 
tton to future null m t t y  $*. Becauee of the ~ O E E  of en- 
ergy, the black hole deoreases in size and eventually 
dteappeare. 

of complex-valued solutions of the wave equation 
f , = 0 which contain only positive frequencies at 

past null infinity 8'. The operators Q, are position 
independent and obey the commutation relations 

The operators u, and u: are respectively the anni- 
hilation and creation operators for particles in the 
ith mode at past infinity. The initial vacuum state 
for scalar particles lo-), i.e., the state which con- 
tains no scalar particles at past infinity, is defined 
by 

a,(0,)=0 for a u i .  (2.6) 

One can also express $J in the form 

Here the {p,} are a complete orthonormal family 
of solutions of the wave equation whic h contain only 
positive frequencies at future null infinity #+and 
whichare purely outgoing, i.e., they have zero Cauchy 
data on the event horizon If. The {q,} are a com- 
plete orthonormal set of solutions of the wave 
equation which contain no outgoing component. The 
position-independent operators b, and c, obey the 
commutation relations 

[bt,b,l=[c,,C,l=O 8 (2.8) 

[4,cjl=[~,,  41=0 , (2.9) 

[a,, a=[% 4= *,, * (2.10) 

The operators b, and b: are respectively the anni- 
hilation and creation operators for outgoing parti- 

cles at future infinity. By analogy one could re- 
gard the operators c, and c: as the annihilation and 
creation operators for particles falling into the 
black hole. However, because one cannot uniquely 
define positive frequency for the {q,}, the division 
into annihilation and creation parts is not unique 
and so one should not attach too much physical 
significance to this interpretation. The nonunique- 
ness of the {c,} and the {ci} does not affect any ob- 
servable at future infinity. In Sec. IV a particular 
choice of the {q,} will be made which will allow an 
explicit calculation of the particles going into the 
black hole. The final scalar-particle vacuum state 
I O,),. i.e., the state which contains no outgoing par- 
ticles at future infinity or particles going into the 
black hole, is defined by 

b, I O$ = c,  I O,>= 0. (2.11) 

It can be represented as 10r)lO,,), where the b and 
c operators act on 10,) and IO,,), respectively, 
which are the vacua for outgoing particles and for 
particles falling into the hole. lor) is uniquely de- 
fined by the positive-frequency condition on the 
{p,} but the ambiguity in the choice of the {q,} 
means that 10,) is not unique. 

mined by their data on tl- one can express { p i }  
and {q,}, as linear combinations of the v,} and 

Because massless fields are completely deter- 

{?,k 

(2.13) 

These relations lead to corresponding relations be- 
tween the operators: 

(2.14) 

(2.15) 

In the situation under consideration the metric 
is spherically symmetric. This means the angular 
dependence of the C f , } ,  {p,}, and {q,} can be taken 
to be that of spherical harmonics YJm. The rela- 
tions (2.12) and (2.13) will connect only solutions 
with the same values of I and Im I. (This is not 
true if the collapse is not exactly spherically sym- 
metric but it was shown in Ref. 13 that this  makes 
no essential difference.) For computational pur- 
poses it is convenient to use f and p solutions 
which have time dependence of the form efw'" and 
edWM, respectively, where v and u are advanced and 
retarded times. The solutions will be denoted by 
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{f,,} and {p,} and will have continuum normaliza- 
tion. They can be superposed to form wave-packet 
solutions of finite normalization. The summations 
in Eqs. (2.3), (2.7), and (2.12) are replaced by in- 
tegrations over frequency. The operators a,, b,, 
etc. obey s imilar  commutation relations involving 
6 functions in the frequency. 

The advantage of using Fourier components with 
respect to t ime is that one can calculate the coef- 
ficients a,,. and fi,,, in the approximation that the 
mass of the black hole is changing only slowly. 
One considers a solution p, propagating backwards 
in time from future infinity. A part p:) is reflec- 
ted by the static Schwarzschild metric and reaches 
past infinity with the same frequency. This gives 
a t e r m  r , 6 ( w  - w ' )  in a,,,, where r, is the reflec- 
tion coefficient of the Schwarzschild metric for  
the frequency w and the given angular mode. More 
interesting is the behavior of the part p t l  which 
propagates through the collapsing body and out to 
past infinity with a very large blue-shift. This  
gives contributions to  a,,,,, and p,,. of the form 

(2.16) 

where K = (4M)'' is the surface gravity of the black 
hole and where t ,  i s  the transmission coefficient 
for the given Schwarzschild metric, i.e., 

I t w  I = r w  

is the fraction of a wave with frequency w and the 
given angular dependence which penetrates through 
the potential bar r ie r  into the hole, 

111. THE OUTGOING RADIATION 

One assumes that there  are no scalar  particles 
present in the infinite past, i.e., the system is in 
the initial scalar-particle vacuum state lo-). (It 
is not a complete vacuum because it contains the 
matter that will give rise to the black hole.) The 
state 10.) will not coincide with the final scalar- 
particle vacuum state 10,) because there is particle 
creation. One can express lo-) as a linear combi- 
nation of states with different numbers of particles 
going out to  infinity and into the horizon: 

(3.1) 

where /A,)  is the outgoing s ta te  with n,, particles 
in the jth outgoing mode and IBH) is the horizon 

state with nbb particles in the kth mode going into 
the hole. In other words, 

(3.2) 

(3.3) 
b 

An operator Q which corresponds t o  an observable 
at future infinity will be composed only of the {b,} 
and the {b:} and will operate only on the vectors 
(Ar). Thus the expectation value of this operator 
will be 

(3.4) 

where QCA= (C, 1 Q (A,) in the matrix element of the 
operator on the Hilbert space of outgoing states 
and P ~ c ' % k ~ j &  is the density matrix which com- 
pletely describes all observations which are made 
only at future infinity and do not measure what 
went into the hole. The components of pAC can be 
completely determined from the expectation values 
of polynomials in the operators {b,} and {b:}. Thus 
the density matrix is independent of the ambiguity 
in the choice of the {q,} which describes particles 
going into the hole. 
As an example of such a polynomial consider 

b;b,, which is the number operator for the j th  out- 
going mode. Then 

(3.5) 
b 

In or,der to calculate this last expression one ex- 
pands the finite-normalization wave-packet mode 
p, in te rms  of continuum-normalization modes p,, 

where 

then 

(3 * 7) 

- 
XFwlwo BW2,.dw1dw,dw' - 

If the wave packet is sharply peaked around fre- 
quency w ,  one can use Eq. (2.14) to show that 
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xe"W1 -Wa )Upw" e-1WK-l 

x 1: elYK'l(W I a d y ,  (3.8) 

where y=ln(-w'). The factor e-lwK-' arises from 
the analytic continuation of w' to negative values 
in the expression (2.15) for a,,, 

Eq. (3.8)= Itw('("Wi'-.l)''8(wl- oz), (3.9) 

therefore 

This is precisely the expectation value for a body 
emitting thermal radiation with a temperature 
T = K / ~ w .  To show that the probabilities of emitting 
different numbers of particles in the j th  mode and 
not just the average number are in agreement with 
thermal radiation, one can calculate the expectation 
values of n:, n:, and so on. For example, 

One can evaluate the second term on the right-hand 
side of (3.11) using Eqs. (2.14) and (2.15) as above. 
The terms a$$ give rise to expressions involving 
functions like 8(w1 + wa) which do not contribute, 
since w1 and w, are  both positive. The terms in 
u::, give rise to expressions involving functions 
like J$:(w)dw which vanish because for wave pac- 
kets at late times the phase of $,(w) varies very 
rapidly with w. Thus, 

(3.12) 

where x =  Pr' and r = It, I ,. Proceeding induc- 
tively one can calculate the higher moments 
(n,"), etc. These are all consistent with the prob- 
ability distribution for n particles in the j th  mode, 

(3.13) 

This  is Just the combination of the thermal prob- 
ability (1 - x)x" to emit m particles in the given 
mode with the probability r that a given emitted 
particle will  escape to infinity and not be reflected 
back into the hole by the potential barrier. 

One can also investigate whether there is any 
correlation between the phases for emitting differ- 
ent numbers of particles in the same mode by 
examining the expectation values of operators like 
b,b, which connect components of the density ma- 
trix with different numbers of particles in the j t h  
mode. These expectation values are all zero. To 

see whether there are any correlations between 
different modes one can consider the expectation 
values of operators like b: b ,  which relate to other 
nondiagonal components of the density matrix. 
These are also all zero. Thus the density matrix 
is completely diagonal in a basis of states with 
definite particle numbers in modes which are 
sharply peaked in frequency. One can express the 
density matrix explicitly as 

(3.14) 

The density matrix (3.14) is exactly what one would 
expect for a body emitting thermal radiation. 

A s  the black hole emits radiation its mass will 
go down and its temperature will go up. This vari- 
ation will be slow except when the mass of the 
black hole has gone down to nearly the Planck 
mass. Thus to a good approximation the probabili- 
ty  of n, particles being emitted in the j th  wave-pac- 
ket mode will be given by Eq. (3.13) where the 
temperature corresponds to the mass of the black 
hole at the retarded time around which the jth mode 
is peaked. After the black hole has completely 
evaporated and disappeared, the only possible 
states /A,) for the radiation at future infinity will 
be those for which the total energy of the particles 
is equal to the initial mass Mo of the black hole. 
The probability of such a state occurring will be 

P(A) = PAA 

(3.15) 

If r were 1 for all modes, 

In[W)]= C Ml - - ~ j , ) -  C ~ ~ j 4 ~ i ~ j 4 ,  

1 

(3.16) 

where Mi# is the mass to which the black hole has 
been reduced by the retarded time of the jth mode 
by emission of particles in configuration A. By 
conservation of energy Cnlow, = M, for a11 possible 
configurations A of the emitted particles. Because 
MI, is only a slowly varying function of the mode 
number j ,  the last term in Eq. (3.10) will be nearly 
the same for all configurations A. Thus the black 
hole emits all configurations with equal probability. 
The probabilities of different configurations at 
future infinity are not equal because the 
are different for different modes. 

factors 

IV. THE INCOINC PARTICLES 

In this section a specific choice will be made of 
the ingoing solutions {4,} which will allow an ex- 
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plicit calculation to be  made of the coefficients 
A,, so that the state of the system can be expressed 
in te rms  of particles falling into the black hole and 
particles escaping to infinity. The outgoing Soh- 
tions {p,} are chosen to be purely positive frequen- 
cy along the orbits of the approximate time-trans- 
lation Killing vector X in the quasistationary re-  
gion outside the black hole at late times. They 
therefore, correspond t o  particle modes that would 
be measured by an observer with a detector moving 
along a world-line at constant distance from the 
black hole. They do not correspond to  what would 
be detected by nonstationary observers, in parti- 
cular observers falling into the black hole, be- 
cause they are not purely positive frequency along 
the world lines of such observers. 

could regard a particle he detected in a mode {p,} 
as being one member of a pair of particles created 
by the gravitational yield of the collapse, the other 
member having negative energy and having fallen 
into the black hole. The horizon states {q,} will be 
chosen so that some of them describe those nega- 
tive-energy particles which the stationary observer 
considers to  exist inside the black hole. The re- 
maining {q,} will describe those positive-energy 
particles which are reflected back by  the potential 
bar r ie r  around the black hole and which fall through 
the event horizon. It should be emphasized that 
this choice of {q,} does not correspond to anything 
that an infalling observer would measure since 
they are not positive frequency along his  world 
line. However, given the {p,}, the choice of the 
{q,} that will be used is minimal in the sense that 
any other choice would describe the creation of 
extra pairs  of particles, both of which fell into the 
black hole. 

which relate 
the {p,} to the {fl} and {T i }  one decomposes the 
{PI} into Fourier components {p,} with time depen- 
dence of the form elwu, where u = t - r - 2M ln(r 
-2M) is the retarded t ime coordinate in the 
Schwarzschild solution. Because u tends to + 
in the exterior region as one approaches the future 
horizon, the surfaces of constant phase of p, pile 
up just outside the future horizon (Fig. 2). In 
other words, p, is blue-shifted to a very high fre- 
quency near the future horizon. This  means that 
it propagates by geometric optics back through the 
collapsing body and out to past null infinity tT 
where it has time dependence of the form 

A stationary observer outside the black hole 

To calculate the coefficients OL and 

e-~WK~llI l (U, , -Y) for u <  

and (4.1) 

0 for  v>v,,, 

where v = t+ Y +  2M ln(r - 2M) is the advanced time 

coordinate and u,, is the last advanced t ime before 
which a null geodesic could leave a', pass  through 
the center of the collapsing object, and escape to 
@. Similarly, to  calculate the coefficients y and 
11 which express the {q,} in t e r m s  of the {f,} and 
the (3,) one decomposes the {q,} into Fourier com- 
ponents {q,}. In the quasistationary region the 
par t  (4:)) that c rosses  the future horizon in the 
quasistationary region will have t ime dependence 
of the form el0". The par t  qp) which crosses  the 
horizon just after its formation will have time de- 
pendence of the form e-'"" (the minus sign is be- 
cause in the interior region the direction of in- 
crease of u is reversed). The surfaces of constant 
phase of {&'} pile up just inside the horizon (Fig. 
2). One can therefore propagate them backwards 
also by geometric optics through the cof ips ing  body 
and out to 8-,  where they will have time dependence 
of the form 

e l U K " b l ( U - U o )  for u>v  

and (4.2) 
0 for v < u o .  

In order  to calculate the coefficients a, p ,  y ,  
and 11 one can decompose (4.1) and (4.2) into posi- 
tive- and negative-frequency components of the 
form elu% and e-Iw5, in te rms  of the advanced time 
v a t  0-. However, one can obtain the same results 

\ .Y' 

FIG. 2. The wave fronts or surfaces of constant phase 
of the solutions p, pile up just outside the event hortzon 
because of the large blue-shtft. They propagate by geo- 
metric opttcs through the collapsing body and out to 
past null Infinity 8' just before the advanced ttme u 
=so. Simthrly the wave fronts of 8' will ptle up just 
tnstde the horizon and wtll  propagate through the collaps- 
tng body out to 0' just after the advanced ttme u =so. 
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if one leaves out the collapsing body and analytical- 
ly extends back to the past horizon the Schwarz- 
schild solution that represents the quasistationary 
region. Instead of propagating p, and go back 
through the collapsing body to 8' and analyzing 
them there into positive- and negative-frequency 
components with respect to the advanced time v ,  
one propagates them back to the past horizon H- 
and analyzes them into positive- and negative- 
frequency components with respect to an affine 
parameter U along the generators of H'. (A sim- 
ilar construction hw been used by Unruh.") One 
can then discuss the creation of particles in t e r m s  
of the Penrose diagram (Fig. 3) of the analytically 
extended Schwarzschild solution. The initial vacu- 
um state 10,) is now defined a8 the state which on 
8' has no positive-frequency components with re- 
spect to the advanced time v and which on the past 
horizon H- h a s  no positive-frequency components 
with respect to affine parameter U. In other 
words, one can express the operator @ in the form 

(4.3) 

where {j t)}  are a family of solutions of the wave 
equation in the analytically extended Schwarzschild 
solution with continuum normalization which have 
zero Cauchy data on the past horizon and have time 
dependence of the form efwu on 8-, and {ff)} are a 
family of solutions with continuum normalization 
which have zero  Cauchy data on 0- and have time 
dependence of the form e f w u  on the past horizon. 
The initial vacuum state is then defined by 

at' lo-) =a?) 10.) so. (4.4) 

This definition of the vacuum state is different 
from that used by BoulwareP for  the analytically 
extended Schwarzschild solution. The above defini- 
tion, however, reproduces the resul ts  on particle 
creation by a black hole which was formed by a 
collapse. 

lated to the retarded time u by 
The affine parameter U on the past  horizon is re- 

Ua- K - ' h ( -  u), (4.5) 

where - m < u < m ,  U<O. One can analytically con- 
tinue (4.5) past the logarithmetic singularity a t  
U=O. In doing so, one picks up an imaginary par t  
of i d '  depending on whether one passes  above or 
below the singularity, respectively. Define the 
two analytic continuations u, and u. by 

u+=u-=- ~"ln(- u) for  U < O ,  

ut=-  ~-'hu*in~'' for  u>O. 
(4 3) 

Because u, is holomorphic in the upper half U 
plane, the functions elwu+ and e-lWu+ defined all the 

way up the past horizon from U=- 0 to U=+- both 
contain only positive frequencies with respect to 
U. This means that one can replace the family of 
solutions {jt)}, which have zero Cauchy data on 
8- and only positive frequencies with reepect to U 
on the past horizon, by two orthogonal families 
of solutions {I:)} and {f;)}, with continuum nor- 
malization which have zero  Cauchy data on 0-, and 
which have time dependence on the past horizon of 
the form etwu* and e-twu+, respectively. One can 
then express  Q as 

(4.7) 
Equation (4.4) then becomes 

a:')O.) =a~'(O,)=a~'10.)=0. (4.8) 

Equation (4.8) says that there are no scalar parti- 
cles in the modes {f:')} and {/:I}. However, these 
modes extend across both the interior and exterior 
regions of the analytically continued Schwarzschild 
solution. An observer a t  future null infinity 0* 
cannot measure these modes but only the par t  of 
them outside the future horizon. To correspond 
with what an observer sees  , define a new basis 
consisting of three orthogonal families {wu}, {y,}, 
and {z,} of solutions with continuum normalization 
with the following properties: 

{w,} have zero Cauchy data on g- and on the past 
horizon for  U<O. On the past horizon for  U>O 
they have time dependence of the form e-fwu+. (The 
minus sign is necessary in order  for the {w,} to 
have positive Klein-Gordon norm and thus for the 
associated annihilation and creation operators to 
have the right commutation relations.) 
{y,} have zero Cauchy data on 8' and the past 

horizon for D O .  On the past horizon for U<O 
they have time dependence of the form edWu+. 

{z,} have zero Cauchy data on the past horizon 
and on 8- they have time dependence of the form 
e l w .  

The modes {z,} represent particles which come 
in from 8' and pass  through the future horizon with 
probability t,la o r  are reflected back to B+ with 
probability Y,  I '. The modes {y ,} represent par- 
ticles which, in the analytically extended Schwara- 
schild space, appear to come from the past horizon 
and which escape to B'with probability It, 1' or 
are reflected back to the future horizon with prob- 
ability I Y , I ' .  In the spacetime which includes the 
collapsing body, the outgoing and incoming solu- 
tions {p,} and {q,} in the quasistationary 
region outside the horizon correspond to linear 
combinations of the {y,} and the {z,}: 
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Future Horizon 
\ 

Rxt Horizon 

FIG. 3. The Penrose dlagram of the r-t plane of the 
analyttcally extended Schwarzechlld space. Null llnes 
are at f 46’ and a conformal transformatton has been 
made to b a g  tnftnlty , represented by I* and 8‘ , to a 
finlte dtatance. Each polnt In thla diagram represents a 
sphem of area 4w2. 

(4.9) 

The modes {w,} represent particles which, in the 
analytically extended Schwarzschild space , are 
always inside the future horizon and which do not 
enter the exterior region. In the real space-time 
with the collapsing body they correspond to par- 
ticles which crosa the event horizon lust after i ts  
formation. 

cf;‘)}, therefore they a re  the same everywhere, 
i.e., 

The modes {z,} have the same Cauchy data as the 

z w =  fp  (4.10) 

where x=e-awwr”. The factors (1 - x ) ~ / ~  and 
~-‘/~(l- x)lIa appear because of the Rornraliza- 
tion. On the past horizon for U>O 

(4.12) 

This implies that (1 - x) - ’ / ’ (y ,  +%l’aGw) 
same Cauchy data as ft) and therefore is the same 
everywhere, i.e., 

the 

Tt’ = (1 - %)-,/a( y , + %%w)< (4.13) 

Similarly, 

f!) = (1 - %)-lla(ww +%’lay,). (4.14) 

One can express the operator 4 k terms of the 
basis { W ~ , Y , ~ Z , ) :  

Q = J (gwww+h,yw+jwzw +H.c.)dc, (4.15) 

where the {g,} and the {g’,}, etc., are the annihila- 
tion and creation operators for particles in the 
modes {w,}, etc. Comparing (4.15) with (4.7) and 
using (4.13) and (4.14) one sees that 

aY’=(l - x ) - q l w -  X l ’ a g ; ) ,  

a”’ = j,. 
up’= (1 - %)“la(gw - %l’ZhL), (4.16) 

W 

One can superimpose the continuum-normalization 
solutions eft)}, etc., {w,}, etc. to form families 
of orthonormal wave-packet solutions uy)}, ~ ~ ’ } ,  vy)}, {w,}, { y,}, {z,} .  If the wave packets are 
sharp€y peaked around frequency w, the corre- 
sponding operators u j l ) ,  etc., g,, etc. will be re- 
lated by Eq. (4.16), where the suffix w is replaced 
by j and modes with the same suffix j are  taken to 
be made up from continuum modee in the same 
way, i.e., they have the same Fourier transforms. 

One can define a future vacuum state lo+) by 

g, lO,)=h, lO+)=i,lo,)=o. (4.17) 

One can then define states 1A;B; C)  which contain 
n,, particles in the mode wI, nao particles in the 
mode us, etc., n,, particles in the mode yl, etc., 
and n,, particles in the mode z, ,  etc. by 

IA;B;C)=  D(n,,,l)-1/2(gj)”,a] 

The initial vacuum state lo-) can be expressed as 
a linear combination of these states: 

The coefficients p ( A ; B ;  C )  may be found by using 
Eqs. (4.8) and (4.16) which give 

(h, - xllzg:)  1 0- ) = 0, (4.21) 

j , l ~  )so.  (4.22) 

Equation (4.22) implies that the coefficients p wil l  
be nonzero only for states with no particles in the 
{z,} modes, i.e., states for which n,,=O for all j .  
Equation (4.20) connects the coefficients )I for 
states with m particles in the wh mode and s par- 
ticles in the y h  mode, with the coefficients fi  for 
states with m - 1 particles in the wh mode and 
s- 1 particles in the yh mode, Le., 
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- d'a(Sh)l'afl(A[t?Z- 1J; B [ ( S -  l )h] ;O)=O,  

(4.23) 

where p(A[mk]; B[s,];O) is the coefficient for the 
state (nl,,ha, . . . ; nlL,nab, . . . ;O}, where nha=m 
and nL,=s.  By induction on (4.23) one sees that 

p(A[mhl; B[sh]; 0) O,X'"''P(A[OJ; B[oh]; 0). 

(4.24) 

In other words, if one compares states with the 
same numbers of particles in all modes except 
the wh mode and the y h  mode, the relative prob- 
abilities of having m and s particles, respectively, 
in them modes is eero unless m =s, in which case 
it is proportional to x". One can interpret this as 
saying that the particles are created in pairs in the 
corresponding w and y modes. The particle in the 
w mode enters the black hole shortly after its for- 
mation. The particle in the y mode is emitted from 
the black hole and will escape to infinity with prob- 
ability It,,,lz or be reflected back into the black hole 
with probability Ir, 1'. The relative probabilities 
of different numbers of particles being emitted in 
the y modescorrespond exactly to the probability 
distribution for thermal radiation. 

By applying (4.24) to each value of k one obtains 

(4.25) 

if {n1,,n,,, . . * } a b l b p # a b P  . .}, ,.i(A;B;O)=O other- 
wise. Strictly rpeaking, p(0;O;O) is zero because 
in the approximation that has been used the back 
reaction of the created particles has been ignored 
and the space-time ha8 been represented by a 
Schwarzschild solution of constant mass. This 
means that the black hole goes on emitting at a 
steady rate for an infinite time and therefore the 
probability of emitting any given finite number of 
particles is vanishingly small. However, If one 
considers the emission only over some finite period 
of time in which the mass of the black hole does 
not change significantly, Eq. (4.25) givee the cor- 
rect relative probabilities of emitting different 
configurations of particles. Again one sees that 
the probabilities of emitting all configurations with 
some given energy are equal. 

If one puts in the angular dependence Y,, of the 
modes, one finds that because (4.13) and (4.14) 
connect w, and yu, they connect modes with the 
opposite angular momenta, (2 ,m)  and (2,~-m). 
This means that the particles a re  created in pairs 
in the w and y modes with opposite angular mo- 
menta. Because the w modes have time dependence 

of the form e-'OU while the y modes have time de- 
pendence of the form efoU,  there is also a sense 
in which they have opposite signs of energy: The 
y particles have positive energy and can escape 
to infinity while the w particles have negative en- 
ergy and reduce the mass of the black hole. 

The particle creation that is observed at infinity 
comes about because an observer at infinity divides 
the modes of the scalar field in a manner which is 
discontinuous at  the event horizon and loses all in- 
formation about modes inside the horizon. An ob- 
server who was falling into the black hole would 
not make such a discontinuous division. Instead, 
he would analyze the field into modes which were 
continuous against the event horizon. When prop- 
agated back to the past horizon, these modes would 
merely be blue-shifted by some constant factor 
and therefore would still be purely positive fre- 
quency with respect to the afftne parameter U on 
the past horizon. Thus the observer falling into 
the black hole would not see any created particles. 

V. THE SUPERSCATI'ERING OPERATOR 8 

It was shown in Sec. III that observations at 
future infinity had to be described in terms of a 
density operator or matrix rather than a pure 
quantum state. The reason for this was that part 
of the information about the quantum state of the 
system was lost down the black hole. One might 
think that this information might reemerge during 
the final stages of the evaporation and disappear- 
ance of the black hole so that what one would be 
left with at future infinity would be a pure quantum 
state after all. However, this cannot be the case; 
there must be nonconservation of information in 
black- hole formation and evaporation just as there 
must be a nonconservation of baryon number. A 
large black hole formed by the collapse of a star 
consisting mainly of baryons will have a very low 
temperature. It will  therefore emit most of its 
rest-mass energy in the form of particles of zero 
rest mass. By the time it becomes hot enough to 
emit baryons it will have lost all but a small frac- 
tion of its original mass and there will be insuf- 
ficent energy avilable to emit the number of bar- 
yons that went into forming the black hole. Thus, 
i f  the black hole disappears completely, there will  
be nonconservation of baryon number. The SitUa- 
tion with regard to information nonconservation is 
similar. The black hole is formed by the collapse 
of some well-ordered body with low entropy. Dur- 
ing the quasistationary emission phase the black 
hole sends out random thermal radiation with a 
large amount of entropy. In order to end up in a 
pure quantum state the black hole would have to 
emit a similar amount of negative entropy or  in- 
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formation in the final stages of the evaporation. 
However, information like baryon number requires 
energy and there is simply not enough energy 
available in the final stages of the evaporation. 
To carry the large amount of information needed 
would require the emission in the final stages of 
about the same number of particles as had already 
been emitted in the quasistationary phase. 

Because one ends up with a density operator 
rather than pure quantum space, the process of 
black-hole formation and evaporation cannot be 
described by an S matrix. In general, the initial 
situation will  not be a pure quantum state either 
because of the evaporation of black holes a t  ear l ier  
times. What one has therefore is an operator, 
which will be called the superscattering operator 
8, that map8 density operators describing the ini- 
tial situation to density operators describing the 
final situation. By the superposition principle 
this mapping must be linear. Thus if one regards 
the initial and final density operators p1 and pa 
as second-rank tensors or  matrices plAB and hcD 
on the initial and final Hilbert spaces, respective- 
ly, the superscattering operator will be a 4-index 
tensor 8iABCD such that 

(5.1) 

When the initial situation is a pure quantum state 
e A  the initial density operator will be 

U the initial state is such as to have a very small 
probability of forming a black hole, the final situa- 
tion will also be a pure quantum state Cc which is 
related to the initial state by the S matrix. 

The final density operator will be 

PSCD f C t D *  

(5.3) 

(5.4) 
Thus the components of the 8 operator on these 
states can be expressed as the product of two S 
matrices: 

&AB= HSCASBD-' +s,"sCB). (5.5) 

However, for initial states that have a significant 
probability of forming a black hole, there i s  no S 
matrix and so one cannot represent S in the form 

Consider, for example, the scattering of two 
gravitons. In this case the initial situation is a 
plre quantum state and, if the energy is low, the 
final situation will be also a nearly pure state. 
This can be recognized by computing the entropy 
of the final situation which can be defined as 

(5.5). 

In this expression the logarithm is to be under- 
stood as the inverse of the exponential of a matrix. 
It can be computed by transforming to a basis in 
which hCD i s  diagonal. For energies for which 
there i s  a low probability of forming a black hole, 
the entropy S, will be nearly zero. However, as 
the center-of-mass energy of the gravitons is in- 
creased to the Planck mass ,  there will be a sig- 
nificant probability of a black hole forming and 
evaporating and the entropy S, will  be nonzero. 

The tensor S,,,, i s  Hermitian in the f i rs t  and 
second pa i rs  of indices. Any density matrix has 
unit trace hecause, in a basis in which it i s  di- 
agonal, the diagonal entr ies  are the probabilities 
of being in the different states of the basis. Since 
pacD must have unit t race f o r  any initial density 
matrix P ~ A B ,  

(5.7) 

One can regard this as saying that, starting from 
any initial state, the probabilities of ending up in  
different final s ta tes  must sum to unity. The cor- 
responding relation 

would imply that for any given final state, the 
probabilities of it arising from different initial 
states should sum to unity. Two arguments will 
be given for  Eq. (5.8). The f i rs t  is a thermody- 
namic argument based on the impossibility of con- 
structing perpetual-motion machines. The second 
is based on CPT invariance. 

served, the superscattering operator S will con- 
nect only initial and final s ta tes  with the same en- 
ergy. Thus (5.7) will hold when the initial and final 
state indices are restricted to states with some 
given energy E. Similarly, i f  (5.8) holds, it should 
also hold when restricted to initial and final states 
of energy E .  For convenience, in order  to  make 
the number of states finite, consider s ta tes  be- 
tween energy E and E + AE contained in a very 
large box with perfectly reflecting walls. Define 
J f c D  to be CSCDAA, where the summation is over 
the finite number of s ta tes  specified above. Sup- 
pose that 

Because the m a s s  measured from infinity is con- 

(5.9) 

By (5.7) restricted to the same states, CJfCC=N, 
where N is the number of states. By transforming 
to a basi6 in which J f c D  i s  diagonal, one can see 
that (5.9) would imply that there was some state 
tC  such that 
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(5.10) 

This would imply that the sum of the probabilities 
of arriving at  the final state tC  from all the differ- 
ent possible initial states was greater than unity. 
If one now left the energy E in the box for a very 
long time, the system would evolve to various dif- 
ferent configurations. For most of the time the 
box would contain particles in approximately ther- 
mal distribution. Occasionally, a large number of 
particles would get together in a small region and 
would create a black hole which would then evapor- 
ate again. To a good approximation one could re- 
gard the time development of the density matrix 
of the system as being given by successive applica- 
tions of the 8 operator restricted to the finite num- 
ber of states. On the normal assumptions of ther- 
mal equilibrium and ergodicity one would expect 
that after a long time the probability of finding the 
system in any given state would be K1 and the 
entropy would be In N. However, if (5.10) held, 
the probability of the system being in  the state 
t c  would be greater than N-’ and so the entropy 
would be less than InN. One could therefore ex- 
tract useful energy and run a perpetual-motion 
machine by periodically allowing the system to re- 
lax to entropy In N. If one assumes that this is 
impossible, (5.8) must hold. 

The eecond argument for Eq. (5.8) is based on 
CPT invariance. Because the Einstein equations 
a re  separately invariant under C, P, and T, pure 
quantum gravity will also be invariant under these 
operations if the boundary conditions at  hidden sur- 
faces are similarly invariant. The matter fields 

are not necessarily locally invariant under C , P, 
and T separately, but they a re  locally invariant 
under CPT because their Lagrangian density is a 
scalar under local proper Lorentz transforma- 
tions. Thus the quantum theory of coupled gravita- 
tional and matter fields will be invariant under 
CPT provided that the boundary conditions at hid- 
den surfaces a re  invariant under CPT. That the 
boundary conditions at hidden surfaces should be 
invariant under CPT would seem a very reason- 
able assumption. In fact, the assumption of CPT 
for quantum gravity and the assumption that one 
cannot build a perpetual-motion machine a re  equiv- 
alent in that each of them implies the other. With 
CPT invariance, Eq. (5.8) follows from (5.7). Be- 
cause black holes can form when there was no 
black hole present beforehand, CPT implies that 
they must also be able to evaporate completely; 
they cannot stabilize at the Planck mass, as has 
been suggested by some authors. CPT invariance 
also implies that for an observer at infinity there 
is no operational distinction between a black hole 
and a white hole: The formation and evaporation 
of a black hole can be regarded equally well in the 
reverse direction of time as the formation and 
evaporation of a white hole.” An observer who 
falls into a hole will always think that it is a black 
hole but he will not be able to communicate h i s  
measurements to an observer at infinity. 
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An interesting two-dimensional model themy has been proposed that allows one to consider black-hole 
evaporation in the semiclassical approximation. The semiclassical equations wi l l  give a singularity where 
the dilaton field reaches a certain critical value. This singularity w i l l  be hidden behind a horizon. As the 
evaporation proceeds, the dilaton field on the horizon will approach the critical value but the tempcra- 
ture and rate of emission wi l l  remain finite. These results indicate either that there is a naked singulari- 
ty, or (more likely) that the semiclassical approximation breaks down. 

PACS numbers: 97.60.U. 04.20.C~. 04.60.+n 

Callan. Giddings, Harvey, and Strominger (CGHS) 
[I] have suggested an interesting two-dimensional theory 
with a metric coupled to a dilaton field and N minimal 
scalar fields. The Lagrangian i s  

If one writes the metric in the form 

ds'-ebdx+dx-, 

the classical field equations are 

a+a-fr-o, 
2a+a-#-2a+@a-#- fkZeb-a+a-p, 

a+a-@ - 2a+@a-e - f k 2 e z p - 0 .  

@ = -bin( - x + x  - 1 - c  -Ink. 

p=-  + ln(-x+x-)+ln(2b/L), 

These equations have a solution 

where b and c are constants and b can be taken to be pos- 
itive without loss o f  generality. A change o f  coordinates 

u f -+- (Zb/k)ln(?x +_ 1 k (I/k)(e+Ln)c) 

gives a flat metric and a linear dilaton field 

P'O, 

@= - + A h +  - u - )  

This solution is known as the linear dilaton. The solution 
is independent of the constants b and c which correspond 
to freedom in  the choice of coordinates. Normally b i s  
taken to have the value f . 

These equations also admit a solution 

d 'p -c l -  f I n ( M - ' - A 2 e k x + x - ) .  

This represents a two-dimensional bIack hole with hor- 
izons at x * -0 and singularities at x +x - -Mi -*e -2e. 

Note that there is s t i l l  freedom to shift the p field on the 

horizon by a constant and compensate by rescaling the 
coordinates x k, but there i s  nothing corresponding to the 
freedom to choose the constant b. I n  terms of the coordi- 
nates u defined as before with b - i, 

This black-hole solution i s  periodic in the imaginary time 
with period 2Rk-'. One would therefore expect it to 
have a temperature 

T 9 k J 2 n  

and to emit thermal radiation 121. This i s  confirmed by 
CGHS. They considered a black holo formed by sending 
in  a thin shock wave of one o f  the fr fields from the 
weak-coupling region (large negative @) of the linear di- 
laton. One can calculate the energy-momentum tensors 
of the fi fields, using the conservation and trace anomaly 
equations. I f  one imposes the boundary condition that 
there is no incoming energy momentum apart from the 
shock wave, one finds that at late retarded times u - there 
i s  a steady flow of energy in  each field at the mass- 
independent rate 

I f  this radiation continued indefinitely, the black hole 
would radiate an infinite amount o f  energy, which seems 
absurd. One might therefore expect that the backre- 
action would modify the emission and cause it to stop 
when the black hole had radiated away its initial mass. A 
fully quantum treatment of the backreaction seems very 
difficult even in this two-dimensional theory. But CGHS 
suggested that in  the l imit o f  a large number N of scalar 
fields /I, one could neglect the quantum fluctuations of 
the dilaton and the metric and treat the backreaction of 
the radiation in the fr fields semiclassically by adding to 
the action a trace anomaly term 

Na+a-p. 
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The evolution equations that result from this action are 

8+8-9-(1- hNe2*)8+6-p, 

2(1-  & N ~ ~ * ) I J + ~ - # - ( I  - .ANe2*) 

~ ( 4 B + 4 8 - # + ~ ~ e * ) .  

In  addition, there are two equations that can be regarded 
as constraints on the data on characteristic surfaces of 
constant x 2. 

8 C #  - 28-p a -# - 4 Ne 2*la2p - a -p 8 -p - I  - ( X  - 11 , 
where I * (x * 1 are determined by the boundary condi- 
tions in a manner that will be explained later. 

Even these semiclassical equations seem too difficult to 
solve in closed form. CGHS suggested that a black hole 
formed from an f wave would evaporate completely 
without there being any singularity. The solution would 
approach the linear dilaton at late retarded times u - and 
there would be no horizons. They therefore claimed that 
there would be no loss of quantum coherence in the for- 
mation and evaporation of a two-dimensional black hole: 
The radiation would be in a pure quantum state, rather 
than in a mixed state. 

In  [3,41 it was shown that this scenario could not be 
correct. The solution would develop a singularity on the 
incoming f wave at the point where the dilaton field 
reached the critical value 

h- - I n ( ~ / 1 2 )  I 

This singularity will be spacelike near the f wave 141. 
Thus at least part of the final quantum state will end up 
on the sinpularity, which implies that the radiation at 
infinity in the weak-coupling region will not be in a pure 
quantum state. 

The outstanding question is: How does the spacetime 
evolve to the future of the f wave? There seem to be two 
main possibilities: (1) The singularity remains hidden 
behind an event horizon. One can continue an infinite 
distance into the future on a line of constant $ < # o  
without ever seeing the singularity. I f  this were the case, 
the rate of radiation would have to go to zero. (2) The 
singularity is naked. That is, it is visible from a line of 
constant 0 at a finite time to the future of the f wave. 
Any evolution of the solution after this would not be 
uniquely determined by the semiclassical equations and 
the initial data. Indeed, it is likely that the point at 
which the singularity became visible was itself singular 
and that the solution could not be evolved to the future 
for more than a finite time. 

In  what follows I shall present evidence that suggests 
the semiclassical equations lead to possibility (2). This 
probably indicates that the semiclassical approximation 
breaks down as the dilaton field on the horizon ap- 
proaches the critical value. 

Static black holes.--If the solution were to evolve 
without a naked singularity, it would presumably ap- 
proach a static state in which a singularity was hidden 
behind an event horizon. This motivates a study of static 
black-hole solutions of the semiclassical equations. One 
could look for solutions in which 4 and p were indepen- 
dent of the "time" coordinate r - x + + i -  and depended 
only on a "radial" variable u-x+ - x  - but this has the 
disadvantage that the Killing vector 8/& is timelike 
everywhere. This means the black-hole horizon is at 
u=--. Instead it seems better to choose the Killing 
vector to be that corresponding to boosts in the back- 
ground two-dimensional Minkowski space. Then the past 
and future horizons will be the null lines x *  -0 inter- 
secting at the origin. One can define a radial coordinate 
that is left invariant by the boost as 

r 4 -  -x+x- .  

It is straightforward to verify that r is regular on a space- 
like surface through the origin and has nonzero gradient 
there if one chooses the positive square root on one side of 
the intersection of the horizons at r -0  and the negative 
root on the other. In the r coordinate the field equations 
for a static solution are 

The boundary conditions for a regular horizon are 

~ " p " 0 .  

A static black-hole solution is therefore determined by 
the values of $I and p on the horizon. The value of p, 
however, can be changed by a constant by rescaling the 
coordinates x f. The physical distinct static solutions 
with a horizon are therefore characterized simply by q h ,  
the value of the dilaton on the horizon. 

I f  &, > 40, # would increase away from the horizon and 
would always be greater than its horizon value. This 
shows that to get a static black-hole solution that is 
asymptotic to the weak-coupling region of the linear dila- 
ton, #h must be less than the critical value qh~. One can 
then show that both # and p must decrease with increas- 
ing r. This means the backreaction terms proportional to 
N will become unimportant. For large r one can there- 
fore approximate by putting N - 0 .  This gives 

4 - p  - (2b - 1)  Inr - c  , 

$ I " + ( I / ~ ) $ I ' = ~ ( [ ~ ' - ( z ~ - I ) ~ - ' I ~ - x ~ ~ Z P ) .  

Asymptotically these have the solution 
p--lnr+fn- 26 -- K+LInr + , . . 

li r4b 
3 

where b, c, K, L are parameters that determine the solu- 
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tion. The parameters b and c correspond to the coordi- 
nate freedom in the linear dilaton that the solution ap- 
proaches at large r. I f  L-0. the parameter K can be re- 
lated to the Arnowitt-Deser-Misner (ADM) mass M of 
the solution. However, i f L#O, the A D M  mass will be 
infinite. This i s  what one would expect for a static black 
hole in  equilibrium with radiation at a nonzero tempera- 
ture because there wil l be incoming and outgoing radia- 
tion all the way to infinity. Of course a solution formed 
by sending in an f wave to the linear dilaton wil l  have a 
finite mass. But one might hope that i t  would settle down 
to a static black-hole solution which has finite mass be- 
cause there i s  no incoming radiation (by boundary condi- 
tions) and no outgoing radiation (because the rate of ra- 
diation has gone to zero). Indeed this is what would have 
to happen if the singularity were to remain hidden for all 
time. 

For @h <<go, the backreaction terms will be small at all 
values of r and the solutions of the semiclassical equa- 
tions wil l be almost the same as the classical black holes. 
so 

@h - - + In(M/h), 

where M is the mass at a finite distance from the black 
hole. 

Consider a situation in  which a black hole of large 
mass (M>>A%/12) is created by sending in  an f wave. 
One could approximate the subsequent evolution by a se- 
quence of static black-hole solutions with a steadily in- 
creasing value o f  @ on the horizon. However, when the 
value of @ on the horizon approaches the critical value &, 
the backreaction wil l become important and will change 
the black-hole solutions significantly. Let 

@-@o+& p 4 n 1 + p .  

Then N and 1 disappear and the equations for static 
black holes become 

As the dilaton field on the horizon approaches the criti- 
cal value @o, the term 1 -eZT  will approach 26, where 
e = h o - @ h .  This wil l cause the second derivative of $ to 
be very large until approaches -ep* in  a coordinate 
distance Ar of order 4 a  By the above equations, p' ap- 
proaches - 2 8  in the same distance. A power series 
solution and numerical calculations carried out by 
Jonathan Brenchley confirm that in  the l imit as 6 tends to 
zero, the solution tends to a limiting form &,&. 

The limiting black hole i s  regular everywhere outside 
the horizon, but has a fairly mild singularity on the hor- 
izon with R diverging like r -'. A t  large values of r, the 

solution will tend to the linear dilaton in  the manner of 
the asymptotic expansion given before. One or both of 
the constants K and L must be nonzero, because the solu- 
tion i s  not exactly the linear dilaton. Fitting to the 
asymptotic expansion gives a value 

b, 2: 0.4. 

If the singularity inside the black hole were to remain 
hidden at all times, as in  possibility ( 1 )  above, one might 
expect that the temperature and rate of evolution of the 
black hole would approach zero as the dilaton field on the 
horizon approached the critical value. However, this i s  
not what happens. The fact that the black holes tend to 
the limiting solution &,& means that the period i n  imagi- 
nary time will tend to 4xb,/1. Thus the temperature will 
be 

T, -l./4nb, . 
The energy-momentum tensor or one of the fi fields can 
be calculated from the conservation equations. I n  the x * 
coordinates, they are 

( T / + + ) - -  j€ [a+pa+p-afp+f+(X+) l ,  
(TL - ) -  - & [a-pa-p--aEp+r - ( x - ) l ,  

where I (x + 1 are chosen to satisfy the boundary condi- 
tions on the energy-momentum tensor. In the case of a 
black hole formed by sending in an f wave, the boundary 
condition i s  that the incoming flux (T/++) should be zero 
at large r. This would imply that 

I +  I / ~x$  

The energy-momentum tensor would not be regular on 
the past horizon, but this does not matter as the physical 
spacetime would not have a past horizon but would be 
different before the f wave. 

On the other hand, the energy-momentum tensor 
should be regular on the future horizon. This would im- 
ply that t - (x -) should be regular at x - -0. Converting 
to the coordinates u + ,  one then would obtain a steady 
rate 

of energy outflow in  each f field at late retarded times 

I n  conclusion, the fact that the temperature and rate of 
emission of the limiting black hole do not go to zero es- 
tablishes a contradiction with the idea that the black hole 
settles down to a stable state. Of course, this does not tell 
us what the semiclassical equations will predict, but it 
makes i t  very plausible that they wil l lead either to a 
naked singularity or to a singularity that spreads out to 
infinity at some finite retarded time. 

The semiclassical evalution of these two-dimensional 
black holes i s  very similar to that o f  charged black holes 
in  four dimensions with a dilaton field [51. I f  one sup- 

U -. 
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poses that there are no fields in the theory that can carry 
away the charge, the steady loss of mass would suggest 
that the black hole would approach an extreme state. 
However, unlike the case of the Reissner-Nordstrom solu- 
tions, the extreme black holes with a dilaton have a finite 
temperature and rate of emission. So one obtains a simi- 
lar contradiction. If the solution were to evolve to a state 
of lower mass but the same charge, the singularity would 
become naked. 

There seems to be no way of avoiding a naked singular- 
ity in the context of the semiclassical theory. If space- 
time is described by a semiclassical Lorentz metric, a 
black hole cannot disappear completely without there be- 
ing some sort of naked singularity. But there seem to be 
zero-temperature nonradiating black holes only in a few 
cases, for example, charged black holes with no dilaton 
field and no fields to carry away the charge. 

What seems to be happening is that the semiclassical 
approximation is breaking down in the strong-coupling 
regime. In conventional general relativity, this break- 
down occurs only when the black hole gets down to the 
Planck mass. But in the two- and fourdimensional dila- 
tonic theories, it can occur for macroscopic black holes 
when the dilaton field on the horizon approaches the criti- 
cal value. When the coupling becomes strong, the semi- 
classical approximation will break down. Quantum fluc- 
tuations of the metric and the dilaton could no longer be 
neglected. One could imagine that this might lead to a 
tremendous explosion in which the remaining mass ener- 
gy of the black hole was released. Such explosions might 
be detected as gamma-ray bursts. 

Even though the semiclassical equations seem to lead 
to a naked singularity, one would hope that this would 
not happen in a full quantum treatment. Exactly what it 
means not to have naked singularities in a quantum 
theory of gravity is not immediately obvious. One possi- 
ble interpretation is the no boundary condition l61: 
Spacctime is nonaingular and without boundary in the 
Euclidean regime. If this proposal is correct, some sort of 
Euclidean wormhole would have to occur. which would 

carry away the particles that went in to form the black 
hole, and bring in  the particles to be emitted. These 
wormholes could be in a coherent state described by al- 
pha parameters 171. These parameters might be deter- 
mined by the minimization of the effective gravitational 
constant G [7-91. In this case, there wyld  be no loss of 
quantum coherence if a black hole were to evaporate and 
disappear completely or the alpha parameters might be 
different moments of a quantum field a on superspace 
[lo]. In this case there would be. effective loss of quan- 
tum coherence, but it might be possible to measure all the 
alpha parameters involved in the evaporation of a black 
hole of a given mass. In that case, there would be no fur- 
ther loss of quantum coherence when black holes of up to 
that mass evaporated. 

I was greatly helped by talking to S. B. Giddings and 
A. Strominger who were working along similar lines. I 
also had useful discussions with G. Hayward, G. T. 
Horowitz, and J. Preskill. This work was carried out dur- 
ing a visit to Caltech as a Sherman Fairchild Dis- 
tinguished Scholar. This work was supported in part by 
the U.S. Department of Energy under Contract No. 
DEAC-03-8 I ER40050. 
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Cosmological event horizons, thermodynamics, and particle creation 
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the case of black holes can be extended to cosmological models with a repulsive cosmological constant. An 
ObKNCr in these models will have an event horizon whose area can be interpreted as the entropy or lack of 
information of the observer about the regions which he cannot we. Associated with the event horizon is a 
~urfice gravity K which enters a classical "first law of event horizons" in a manner similar to that in which 
temperature occurs in the first law of thermodynamics. It is shown that this similarity is more than an 
mdogy: An observer with a particle detector will indeed observe a background of thermal radiation coming 
apparently from the cosmological event horizon. If the observer absorbs some of this radiation, he will gain 
energy and entropy at the expense of the region beyond hi5 ken and the event horizon will shrink. The 
duivation of these results involves abandoning the idea that particles should be defined in an obsenzr- 
independent manner. They also suggest that one has to use something like the Everett-Wheeler interpretaxion 
of quantum mechanics becstw the back reaction and hence the spacetime metric itself appear to be observer- 
dependent, if one assumes, s seems reasonable, that the detection of a particle is accompanied by I change in 
tne gravitational field. 

It b shown that the close connection between event horizons and thermodynamics which has been found in 

1. INTRODUCIION 

The aim of this paper is to  extend t o  cosmologi- 
cal event horizons some of the ideas of thermo- 
dynamics and particle creation which have recently 
been successfully applied to black- hole event 
horizons. In a black hole the inward-directed 
gravitational field produced by a collapsing body i s  
so strong that light emitted from the body is drag- 
ged back fad does not reach an observer at a large 
distance. There is thus a region of spacetime 
which is not visible to an external observer. The 
boundary of the region is called the event horizon 
of the black hole. Event horizons of a different 
kind occur in cosmological models with a repul- 
sive A term. The effect of this term is to cause 
the universe to  expand so rapidly that for each ob- 
server  there a re  regions from which light can 
never reach him. W e  shall call the boundary of 
this region the cosmological event horizon of the 
observer. 

The "no hair" theorems (Israel: Muller zum 
Hagen el al. ,a Carter  Hawking,' Robinson'* ') 
imply that a black hole formed in a gravitational 
collapse will rapidly settle down to a quasistation- 
a r y  state characterized by only three parameters ,  
the m-6 M,, the angular momentum J,, and the 
charge Q,,. A black hole of a given M,,J,, Q H  
therefore haa a large number of possible unobserv- 
able internal configurations which reflect the dif- 
ferent possible initial configurations of the body 
that collspsed to  produce the hole. In purely clas- 
sical theory this number of internal configurations 
would be infinite because one could make a given 
black hole out of an infinitely large number of 

particles of indefinitely small mass. However, 
when quantum mechanics is taken into account, one 
would expect that in order to obtain gravitational 
collapse the energies of the particle would have to 
be  restricted by the requirement that their wave- 
length be less than the size of the black hole. It 
would therefore seem reasonable t o  postulate that 
the number of internal configurations is finite. In 
this  case one could associate with the black hole an 
entropy S, which would be the logarithm of this 
number of possible internal configurations.'* b9 
For this to be consistent the black hole would have 
to emit thermal radiation like a body with a tem- 
perature 

T , = G 2  [(%) ,, ,] - l *  

The mechanism by which this thermal radiation 
arises can be understood in te rms  of pair creation 
in the gravitational potential well of the black hole. 
Inside the black hole there a r e  particle states 
which have negative energy with respect to an ex- 
ternal stationary observer. It is therefore ener- 
getically possible for a pair of particles to be 
spontaneously created near the event horizon. One 
particle has positive energy and escapes to  infinity, 
the other particle has negative energy and falls 
into the black hole, thereby reducing its mass. 
The existence of the event horizon would prevent 
this happening classically but it is possible quan- 
tum-mechanically because one or other of the 
particles can tunnel through the event horizon. An 
equivalent way of looking at  the pair creation is 
to regard the positive- and negative-energy par- 
ticles as being the  same particle which tunnels 
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out f rom the black hole on a spacelike or past- 
directed timelike world line and is scattered onto 
a future-directed world line (Hartle and Hawkindo). 
When one calculates the rate of particle emission 
by thls process it turns out t o  be exactly what one 
would expect from a body with a temperature 
T,,=R(2nkc)"~,, where K ,  is the surface gravity 
of the black hole and is related to M,, J,, and 
Q,, by the formulas 

K,= ( r , -  r l )cz r0 - ' ,  

yt = c"[GMi (G'M - SJ~~'C'  - GQ')'''] , 
7 2 = Y + G~?PM"c' , 
A H = 4 r r ; .  

A ,  is the area of the event horizon of the black 
hole. 

Combining thls quantum- mechanical argument 
with the thermodynamic argument above, one 
finds that the total number of internal configura 
tlons is indeed finite and that the entropy is given 
by 

S,= (4G@-'kc'A,, . 
Cosmological models with a repulsive A t e r m  

which expand forever approach de Sitter space 
asymptotically at large times. In de Sitter space 
future infinity is spacelike.ll@'' This means that 
for each observer moving on a timelike world line 
there is an event horizon separating the region of 
spacetime which the observer can never see from 
the region that he can see i f  he waits long enough. 
In other words, the event horizon is the boundary 
of the past of the observer's world line. Such a 
cosmological event horizon has  many formal simi- 
larities with a black-hole event horizon. As we 
shall show in Sec. III it obeys laws very similar 
to  the zeroth, flrst,  and second laws of black- 
hole mechanlce in the classical theory." It also 
bounds the region In which partlcles can have nega- 
tlve energy wlth rerpect to  the observer. One 
might therefore expect that partlcle creatlon with 
a thermal spectrum would also occur in these 
cosmologlcal models. In Secs. W and V we shall 
show that thls Is Indeed the case: An observer 
wl l l  detect thermal radlatlon wlth a characteristic 
wavelength of the order  of the Hubble radlue. Thls 
would correspond to  a temperature of less than 
10-'BoK so that It 16 not of much practlcal rlgnlfl- 
cance. It Is, however, Important conceptually be- 
cause lt shows that thermodynamlc arguments can 
be applled to the unlverse as a whole and that the 
close relationehlp between event horizons, gravl- 
tatlonal flelde, and thermodynamlcs that was 
found for black holes has a wlder valldlty. 

One can regard the area of the cosmologlcal 

event horizon a s  a measure of one's lack of know- 
ledge about the rest  of the unlverse beyond one's 
ken. If one absorbs the thermal radlatlon, one 
galns energy and entropy at the @xpense of thls 
reglon and so, by the f l rs t  law mentioned above, 
the area of the horizon wlll go down. As the area 
decreases, t he  temperature of the cosmological 
radiatlon goes down (unlike the black-hole case), 
so the cosmologlcal event horlzon Is stable. On 
the other hand, If the observer chooses not to 
absorb any radiatlon, there Is no change in area 
of the horizon. Thls is another lllustratlon of the 
fact that the concept of partlcle production and 
the back reactlon assoclated with It seem not to 
be unlquely deflned but to be dependent upon the 
measurements that one wishes to  consider."-" 

The plan of the paper 1s a s  follows. In Sec. II 
we descrlbe the black-hole asymptotlcally d e  Sltter 
solutions found by Carter.'O In Sec. III w e  derive 
the classical laws governlng both cosmologlcal and 
black-hole event horizons. In Sec. IV we dlscuss 
partlcle creatlon in de Sltter space. We abandon 
the concept of partlcles a s  being observer-lnde- 
pendent and consider hs tead  what an observer 
movlng on a timellke geodeslc and equipped wlth 
a partlcle detector would actually measure. We 
flnd that he would detect an lsotroplc background 
of thermal radlatlon wlth a temperature (2R)-'Kc 
where ~ ~ = 1 \ ~ / ' 3 - ' / '  Is the surface gravity of the 
cosmologlcal event horizon of the observer. Any 
other observer movlng on a tlmrllke geodeslc wlll 
also see lsotroplc radlatlon with the same tem- 
perature even though he 1s moving relatlve to  the 
f l rs t  observer. Thls shows that they a r e  not ob- 
serving the same particles: Particles a r e  observ- 
er-dependent. In Sec. V w e  extend these results 
to asymptotically de Sltter spaces contalning black 
holes. The lmpllcatlons a r e  considered In Sec. VI. 
It seems necessary to adept somethlng llke the 
Everett-Wheeler lnterpretatlon of quantum mech- 
anlcs because the back reactlon and hence the 
spacetime metric wlll be observer-dependent, lf 
one assumes, a s  seems reasonable, that the de- 
tection of a partlcle Is accompanled by a change 
In the gravitational field. 

We shall adopt unlts In whlch G = A =  k =c= 1. We 
shall use a metrlc wlth slgnature + 2  and our con- 
ventions for  the Rlemann and the Rlccl tensors are 

v a : [ b : e l = k R d o b c  "d 8 

R ~ b = R / b c  

11. EXACT SOLUTIONS WlTH COSMOLOGICAL EVENT 
HORIZONS 

In thls sectlon we shall glve some exampleo of 
event horizons ln exact Solutions of the Elnsteln 
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equations 

Rob - f g,R + Agab = 8nTd . (2.1) 

We shall consider only the case of A positive (cor- 
responding to repulsion). Models with negative A 
do not, in general, have event horizons. 

i s  a solution of the field equations with T&=O. 
One can wrlte the metric in  the static form 

d s l =  -(1 -Ar23-')df * +d?(l -Av23-')" 

The simplest example is de Sitter space which 

+ r z ( d f f  + ~ l n ~ B d @ ~ ) .  (2.2) 

This metric has an apparent singularity at Y 
= 3"zA-1'2. This singularity caused considerable 
dlscussion when the metric w a s  flrst discov- 
ered.""' However, it was soon realized that it 
arose simply from a bad choice of coordinates 
and that there a r e  other coordinate systems in 
which the metric can be analytically extended to 
a geodesically complete space of constant curva- 
ture  with topology R ' x S 3 .  For a detailed descrip- 
tion of these coordinate systems the reader is  
referred to Refs. 12 and 19. For our purposes i t  
will be convenient to express the de Sitter metric 
in "Kruskal coordinates": 

dsz = 3h -'(U V - 1 ) -' 
x [ - 4 d U d V + ( U V + I l 2 ( d @  +sin28d@*)] 

(2.3) 

where 

r = 31'2A-1/2 (U V + 1 I (1-  C V I  , 

exp(2A1/'3 -1 1'1) = - W-' , 

(2.4) 

(2.5) 
The structure of this space is  shown in Fig. 1. In 
this diagram radial null geodesics a r e  at *45' to  
the vertical. The dashed curves U V = - 1  a r e  tlme- 
like and represent the origin of polar coordinates 
and the antipodal polnt on a three-sphere. The 
solid curves U V = + l  a r e  spacelike and represent 
past and future infinity 8- and g', respectlvely. 

In region I ( U < O ,  V>O,  U V > - I )  the Killing vec- 
tor  K = a/& is timelike and future-directed. How- 
ever, in region l" ( U > O ,  V < O ,  U V > - l ,  K is still 
timelike but past-directed. while in regions II and 
III ( O <  U V 4 )  K is  spacelike. The Killlng vector K 
is null on the two surfaces U-0, V=O.  These are 
respectively the future and past event horizons for 
any observer whose world line remains in region 
I; in particular for any observer moving along a 
curve of constant 7 in region I. 

By applying a suitable conformal transformation 
one can make the Kruskal diagram flnite and con- 
vert it to the Penrose-Carter form (Fig. 2). Radi- 
al null geodesics a r e  still x 45'- to the vertical but 
the freedom of the conformal factor has been used 

UV.. 1(#) 

u v = - 1 7 .  / @ 

1' I = o  / 

uv =. l ( 8 )  
r = w  

FIG. 1. Kruskal diagram of the f r . f )  plane of de 
Sitter space. In t M s  figure null geodeetcs are at * 45' 
to the vertical. The dashed curves Y = 0 are the anti- 
podal origlns of polar coordinates on a three-sphere. 
The solid curves r = - are past and future infinity g - 
and 9 +, respectlvely. The lines r = 31/2A-' /2 are the 
past and future event horizons of observers at the ori- 
gin. 

to make the origin of polar coordlnates, v = O ,  and 
future and past inflnlty, 9* and 9-, straight lines. 
Also shown a r e  some orbits of the Kliling vector 
K = @ / a t .  Because de Sitter space i s  invariant 
under the ten-parameter de Sitter group, SO@, 11, 
h' will not be unique. Any timeiike geodesic can 
be chosen a s  the origin of polar coordinates and 
the surfaces U = O  and V = O  in such coordinates 
will be the past and future event horizons of an 
observer moving on this geodesic. If one normal- 
izes K to have unit magnitude at the origin, one 
can define a "surface gravlty" for the horizon by 

K o ; b K b =  KCK4 (2.6) 

r = o 3 . 8 -  

FIG. 2. The Penrose-Carter diagram of de Sitter 
space. The dotted curves are orbits of the Kllling vec- 
tor. 
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on the horizon. Thls gives 

(2.7) 

Ac=12nA-'. (2.8) 

The area of the cosmological horizon is 

One can also construct solutions which general- 
ize the Kerr-Newman family to the case when A 
is 
Schwarzechlld-de Sltter metrlc. When A = 0 the 
unique spherlcally symmetric vacuum spacetlme 
is the Schwarzschiid solution. The metric of this 
can be written in static farm: 

The simplest of these is the 

ds2 = -(1 -2Mr -'ldf +dr2(l -2Mr-')-' 

+?(d@ +einlBd$z). (2.9) 

As is now well known, the apparent singularities 
at r = 2M correspond to a horizon and can be re- 
moved by changlng to Kruskal coordlnates ln which 
the metric has the form 

dsa = -32Mar"exp(-2"M-'r)dUdV 

+r'(dB +sinz&ipz), (2.10) 

UV= (1 -2-'M-'r) exp(t-'M''r) (2.l1) 

uv-'= -exp(-2"M-'t). (2.12) 

where 

and 

The Penrose-Carter diagram of the Schwarzschild 
solution is shown In Fig. 3. The wavy lines marked 
r = 0 are the past and future singularities. Region 
I is asymptotically flat and Is bounded on the right 
by past and future null infinity 0- and 8'. It is 
bounded on the left by the  surfaces U-0 and V = O ,  
r = 2M. These a r e  future and past event horizons 
for observers  who remain outside Y = 2M. On the 

i' 

FIG. 3. The Psnrose-Carter diagram of the Sahwarzs- 
c u d  solution. Th& wavy lines and the top and bottom 
are the future ud part singularitlea. The diagonal 
lines bounding the dingram on the right-hand side are 
the past and future null infinity of asymptotioally flat 
space. The reglon N on the left-had-aide is another 
asymptotically flat space. 

left-hand side of the diagram there is another a 
asymptotically flat reglon N. The Kllling vector 
K = a/al Is now uniquely defined by the condition 
that It be tlmelike and of unit magnitude near 0' 
and 0-. It 1s timelike and future-directed in re- 
gion I, timelike and past-directed In reglon N, 
and spacelike in regions lI and m. The Kiiilng 
vector K Is null on the horizons which have area 
A,,= 16nM'. The surface gravity, defined by (2.6\, 
is K H =  (4M)". 

The Schwarzschiid solution is usually Interpreted 
as a black hole of mass  M In an asymptotically flat 
space. There is a straightforward generalization 
to  the case of nonzero A which represents a black 
hole In asymptotically de  Sitter space. The metrlc 
can be written in the static form 

ds'=-(l -2M~"-A1.23-')dt~ 

+&(1 -2Mr- '  -A1.23-')-' 

+F"ddB +sinzBd$z). (2.13) 

If A > 0 and 9A MZ < 1, the factor (1 - 2Mr" A g 3 - I )  
is zero at two poslttve values of r. The smaller  02 
of these values, which w e  shall denote by Y,, can 
be regarded a s  the position of the black-hole event 
horizon, while the larger  value r , ,  represents the 
position of the cosmological event horlzon for ob- 
servers on world Iines of constant r between 7+ 

and r, ,. By using Kruskal coordinates a s  above 
one can remove the apparent singularities in the 
metric at r ,  and Y+, .  One has to  employ separate 
coordlnate patches at r ,  and r ,  ,. We shall not 
give the expressions in full because they are rath- 
er messy; however, the general structure can be 
seen from the Penrose-Carter diagram ahown In 
Flg. 4. Instead of having two regions (I and IV) ln 
which the Killing vector K = vat is timelike, there 
are now an infinite sequence of such regions, also 
labeled I and Tv depending upon whether K is 
future- or past-directed. There a r e  also inflnite 
sequences of r = 0 singularities and epacellke ln- 
flnitles 8+ and 8'. The surfaces Y = Y +  and r=T,, 

are black-hole and cosmological event horlzone 
for observers moving on world lines of constant 

r=co,#- r .0  

FIG. 4. The Penrose-Carter diagram for Suhwarzs- 
ohild-de Sltter space. There is an infinite sequenae of 
slngularities t = 0 and spacelike infintties I - 4. The 
Killing vector X =  8/8t  16 timelike and future-dlrected 
in regiona I. timelike and past-directed In region8 IV 
and spacelike in the others. 
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Y between Y ,  and Y ,  + .  

The Killing vector K = a/& i s  uniquely defined 
by the conditions that it be  null on both the black- 
hole and the cosmological horizons and that i t s  
magnitude should tend to  A 1 r 2 3 - 1 r 2 ~  a s  Y tends to 
infinity. One can define black-hole and cosmolo- 
logical surface gravities K~ and K~ by 

K , , , K ~  = I&, (2.14) 

on the horizons. These a r e  given by 

K # = A 6 - ' Y i - ' ( Y + +  -Yi)(Yi - Y - - ) ,  (2.15a) 

K ~ = A ~ - ' Y + + - ' ( Y * + - Y + ) ( Y , ,  - Y - - ) ,  (2.15b) 

where Y = Y _ _  is the negative root of 

3~ -6M -A? = O .  (2.16) 

The areas  of the two horizons a r e  

AH=4nr+'  (2.17'1 

and 

A c  = 4nr+ +'. (2.18) 

If one keeps A constant and Increases M ,  Y ,  will 
increase and Y ,  + will decrease. One can under- 
stand this in the foliowing way. When M = O  the 
gravitational potential g(a/W, a / a t )  is 1 -Ara3 - I .  

The introduction of a mass  M at the origin pro- 
duces an additional potential of - 2 M r - ' .  Horizons 
occur at the two values of Y at which g(a/af, a/al) 
vanishes. Thus a s  M increases, the black-hole 
horizon Y ,  increases and the cosmological hori- 
zon Y , ,  decreases. When 9A M' = 1 the two horl- 
zons coincide. The surface gravity K can be 
thought of as the gravitational field o r  gradient 
of the potential at the horizons. As M increases 
both K" and K~ decrease. 

The Kerr-Newman-de Sitter space can be ex- 
pressed in Boyer-Lindquist-type coordinates 
asao .z i 

ds'=p'(Ar-'df+A,-'d82) 

+ p %  "A,[adt -(? +a')d@]' 

- 4 Z - ' ~ - ~ ( d f  -nsinz6d@)', (2.19) 

(2 * 20) 

(2.22) 

where 

pa=? +aa cos'6, 

4. = ( r a + a Z ) ( 1 - A ~ 3 - ' ) - 2 M ~ + Q a ,  (2.21) 
A@ = 1 +Aua3-' c0s26, 

E=l+Aua3- ' .  ( 2 . m  

The electromagnetic vector potential A, is given by 

A , = Q Y ~ - ~ E - ' ( ~ :  -a sin'663. (2.24) 

Note that our A has the opposite sign to that in 
Ref. 21. 

There a r e  apparent singularitiee in the metric 
at the values of Y for which A,=& As before, 
these correspond to horizons and can be removed 
by using appropriate coordinate patches. The Pen- 
rose-Carter dlagram of the symmetry axis (6=0)  
of these spaces Is shown in Fig. 5 for the case 
that A +  has 4 distlnct roots: Y - - ,  Y - ,  r , ,  and 
Y , , .  As before, r , ,  and 7 ,  can be regarded a s  
the cosmological and black-hole event horlzons, 
respectively. In addltion, however, there i s  now 
an lnner black-hole horizon at  Y = Y - .  Passing 
through this, one comes to the ring singularity at 
Y = 0, on the other side of which there i s  another 
cosmological horizon at Y =  Y - -  and another Infin- 
lty. The diagram shown 1s the simplest one to 
draw but it i s  not simply connected; one can take 
covering spaces. Alternatively one can identify 
regions in this diagrafn. 

the condition that its orblts should be closed 
curves with parameter length 2n. The other Kill- 

The Kllling vector X = a/&#~ Is unlquely defined by 

FIG. 5. The Penrose-Carter dlagram of the symme- 
try axis of the Kerr-Newman-de Sitter solution for 
the case that 4 has four distinot real roots. The in- 
finities r = + - and Y = - - are not joined together. The 
external cosmological horizon occurs at r=r++ the ex- 
terior black-hole horizon at Y = Y * ,  the inner black-hole 
horizon at 7=?-- .  The open circles mark where the ring 
singularity occurs, although this is not on the symmetry 
axis. On the other slde of the ring at negative values of 
Y there is another cosmological horizon at Y = Y - -  and 
another infinity. 
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lng vector K = 8/81 Is not so specially picked out. 
One can add dlfferent constants multlples of k to  
K to  obtaln Kllllng vectors whlch are null on the 
different horizons and one can then deflne surface 
gravltles a s  before. We shall be Interested only 
in those for the r+ , Y +  + horizons. They are 
KH=A~- 'E - ' (Y+  - ~ - - ) ( r +  -Y-) (T++ -Y+) (Y+*+C?) - ' ,  

(2.25) 

K~ = A0'IF-l - (Y++ - 7 + U Y + +  - Y A Y + *  - Y J ( Y + ' + u ' ) - l .  

(2.26) 

The areas  of these horlzons are 

A,=4n(r,'+aa), (2.27) 

Ac=4n(~ ,+2+aa) .  (2.28) 

111. CLASSICAL PROPERTIES OF EVENT HORIZONS 

In this section we shall generalize a number of 
results about black-hole event horlzons in the 
classlcal theory to  spacetimes which a r e  not 
asymptotically flat and may have a nonzero cosmo- 
logical constant, and to  event horizons whlch a r e  
not black-hole horlzons. The event horlzon of a 
black hole In asymptotically flat spacetimes Is 
normally defined a s  the boundary of the reglon 
from which one can reach future null lnflnlty, 8', 
along a future-directed timellke or null curve. In 
other words It Is J-(8*)  [or equlvaientiy I - ( @ ) ] ,  
where an overdot Lndicates the  boundary and J' 
Is the causal past (I- Is the chronological past). 
Howevef, one can also define the black-hole hori- 
zon as [ - (A) ,  the boundary of the past of a tlme- 
llke curve A which has a future end polnt a t  future 
timellke infinity, i *  in Fig. 3. One can think of A 
as the world line of an observer who remalns out- 
side the black hole and who does not accelerate 
away to Inflnlty. The event horizon Is the bound- 
ary of the reglon of spacetlme that he can see If 
he waits long enough. It Is thls  deflnltlon of event 
horlzon that we shall extend to more general 
spacetimes whlch are not asymptotically flat. 

representing an observer's world Ilne. For our 
conslderatlons of particle creation In the next sec- 
tion we shall require that the observer have an In- 
definitely long time in which to detect particles. 
W e  shall therefore assume that A has Infinite prop- 
er length In the future dlrectlon. Thls means that 
It does not run lnto a alngularlty. The past of A, 
I - ( A ) ,  Is a termlnal Indecomposable past se t ,  of' 
TIP In the language of Geroch, Kronhelmer, and 
Penrose.'* It represents all the events that the ob- 
server can ever me. We shall assume that what 
the observer seeti at la te  t lmes can be predicted 
(classically at least) from a spacellke surface S, 

Let A be a future lnaxtenslble tlmellke curve 

i.e., I'(N n S ( S )  is contained in the future Cauchy 
development D'(S).'' We shall also assume that 
I - ( A )  n J ' ( S ) ,  the portlon of the event horizon to 
the future of S, is contalned In D'(8). Such an 
event horlzon wlll be said to be predlctable. The 
event horizon will be generated by null geodesic 
segments whlch have no future end polnts but 
whlch have past end polnts If and where they in- 
tersect other generators." In another pape?' It 
Is shown that the generators of a predictable event 
horlzon cannot be converging if the Elnsteln equa- 
tions hold (with or without cosrnologlcal constant), 
provlded that the energy-momentum tensor sat- 
isfies the strong energy condltlon T , b u a ~ b  
st ubub for  any tlmellke vector ua, Le., pro- 
vlded that p +Pi >O, p +Lf:iP, SO, where p Is 
the energy denslty and Pi  are the prlnclpal pres-  
sures. Thls glves lmmedlately the following re- 
sult, whlch, because of the very suggestive anal- 
ogy with thermodynarnlcs, we call: 

The second law of event horizons: The area of 
any connected two-surface in a predictable event 
horizon cannot demease with time. The area  may 
be inflnlte if the two-dimensional c ross  section Is 
not compact. However, in the examples In Sec. II, 
the natural two-sections a r e  compact and have con- 
stant area. 

In the case  of gravltatlonal collapse In asymp- 
totically flat spacetimes one expects the space- 
tlme eventually to settle down tb a quaaletatlonary 
s ta te  because all the avallable energy wlll elther 
fall through the event horlzon of the black hole 
(thereby lncreaslng Its area)  or be radiated away 
to Inflnlty. In a s imilar  way one would expect that 
where the intersection of I'(h) with a spacellke 
surface 8 had compact closure (whlch we shall as- 
sume henceforth), there would only be a flnlte 
amount of energy avallable to be radlated through 
the cosmologlcal event horizon of the observer 
and that therefore this spacetlme would eventually 
approach a stationary state. One Is t hus  lead to 
conslder solutions In which there  i s  a Kllllng vec- 
tor K whlch Is tlmellke in at leaet some reglon of 
1-b)  n J ' ( S ) .  Such solutlons would represent the 
asymptotic future limlt of general spacetimes with 
predlctable event horlzons. 

Several results about stationary empty asymp- 
totlcally flat black-hole solutlons can be general- 
ized to  stationary solutlons of the Elnsteln equa- 
tions, wlth cosmologlcal constant, which contaln 
predictable event horizons. The flrst such theo- 
rem Is that the null geodeslc generator# of each 
connected component of the event horlzon must 
colnclde wlth orbits of some Kllllng vector." *'I 

These Kllling vectors may not colnclde with the 
orlglnal Kllllng vector K and may be different for 
different components of the horlzon. In elther of 
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these two cases there a r e  a t  least two Killl?g vec- 
tors. One can chose a linear cornblnation K whose 
orblts a r e  spacelike closed curves In 1%) f l  ( 8 ) .  
One could interpret this a s  implying that the s o h -  
tion 1s axlsymmetric as well as being statlonary, 
though we have not been able to pcove that there  
Is necessarily any axis on which K vanishes. 

Let K be the Kliiing vector which coincides with 
the generators of one component of the event hori- 
zon. I fK Is not hypersurface orthogonal and If 
then space is  empty or contains only an electro- 
magentlc field, one can apply a generallzed 
Lichnerowicz theorem'2*21 to  show that 2 must be 
spacelike in some "ergoregion" of 1 - b ) .  One can 
then apply energy extraction arguments""' or 
the results of Hajicek" to show that this ergore- 
glon contains another component of the event hori- 
zon whose generators do not coincide with !he or- 
bits of I?. It therefore follows that either K Is 
hypersurface orthogonal (in which case the solu- 
tion is static) o r  that there a r e  at least two Kill- 
lng vectors (in which case the solution i s  axis- 
Symmetric as well as  stationary). If there  Is  
only a cosmological horizon and no black-hole 
horizon, then the solution is necessarily static. 

One would expect that i n  the static vacuum case  
one could generalize Israel 's theorem'*' to prove 
that the space was spherically symmetric. One 
could then generalize Birkhoff's theorem to ln- 
clude a cosmological constant and show that the 
space was necessarily the Schwarzschlld-de Sitter 
space described in Sec. n. In the case that there  
was only a cosmological event horizon, it would 
be de  Sitter space. In the stationary axisymme- 
t r ic  case one would expect that one couid general- 
ize  and extend the results of Carter  and Robln- 
son'"' to show that vacuum solutions were mem- 
bers  of the Kerr-de Sitter family described in 
Sec. 11. If there is matter present it wi l l  distort 
the spacetlme from the Schwarzschild-de Sitter 
or Kerr-de Sltter solutlon just a s  matter around 
a black hole In asymptotically flat space will dis- 
tort the spacetime away from the Schwarzschild 
or K e r r  solution. 

The proof given In Ref. 13 of the zeroth law of 
black holes can be generailzed lmmediately to 
the case of nonzero cosmological constant. One 
thus has: 

The zeroth law of event horizons: The swface  
grav f t y  of a connected component of the event hori-  
zon I - ( A )  i s  constant over  that component. This 
is anaiogous to. the zeroth law of nonrelathisttc 
thermodynamics which s ta tes  that the tempera- 
ture  1s constant over a body In thermal equlli- 
brium. We shall show in Secs. IV and V that 
quantum effects cause each component of the 
event horizon to radiate thermally with a 

temperature proportional to its surface gravlty. 
One can also generalize the first law of black 

holes. W e  shall do this for stationary axisymme- 
t r ic  solutions wlth no electromagnetic field and 
where f - ( A )  n J' (I) consists of two components, 
a black-hole event horizon and a cosmological 
event horizon. Let K be the Killing vector which 
i s  null on the cosmologlcai event horizon. The 
orbits of K will constitute the stationary frame 
which appears to  be nonrotating with respect to 
distant objects near the cosmological event hori- 
zon. In the general case the normalization of K 
is somewhat arbitrary but w e  shall assume that 
some partlcular normalization has  been chosen. 
The Killing vector 
e ra tors  of the black-hole horizon can be expressed 
in the form 

R = K  +51,i, (3.1) 

is the angular velocity of the black-hole 

whlch coincides with the gen- 

where 
horizon relative to the cosmological horizon in 
the units of time defined by the normalization of 
K and k is  the uniquely defined axial Killing vec- 
to r  whose orblts a r e  closed curves with parame- 
t e r  length 2n. 

For  any Killing vector fleld 5' one has 

[" :b;b=Rab E b .  ( 3 . 2 )  

Choose a three-surface S whlch is fangent to I?, 
and Integrate (3.2) over it with [=K. On using 
Einstein's equations this gives 

(8n) - ' i I?a :bdC. ,  + (en)-' L i i a ; b d E , =  T L x , d C , ,  

where the three-surface integral on the right-hand 
side i s  taken over the portions of 8 between the 
black-hole and cosmologlcal horlzons and the 
two-surface integrals marked X and C a r e  taken 
over the intersections of S with the respective 
horizons, the orientation being glven by the direc- 
tion out of I -(A).  One can interpret the right-hand 
side of (3.3) a s  the angular momentum of the 
matter  between the two horizons. One can there- 
fore  regard the second term on the left-hand aide 
of (3 .3)  a s  being the total angular momentum, J,,  
contained in the cosmological horison, and the 
first on the left-hand side term a8 the negative of 
the angular momentum of the black hole, J,. 

One can also apply Eq. (3.2) to the Kililng vec- 
to r  K to obtain 

(3.3) 
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me can regard the te rms  on the rlght-hand s lde  
of a. (3.4) as representing respecttvely the (post- 
tive) contribution of the matter and the (negative) 
contrlbutlon of the A term to the mass wlthln the 
cosmologlcal horlzon. One can therefore regard 
the second term on the left-hand slde as the (nega- 
tive) mass M c  wlthln the cosmological horlzon 
and the first term on the left-hand slde a s  the 
negative of the (positlve) mass  M H  of the black 
hole. As in Ref. 13, one can express M, and Mc 
a s  

M ,, = uHA ,,(4~)-' + 262, J,, , (3.5) 

Mc= -ucAc(4n)". (3.6) 

One therefore has the Smarr-typePe formulas 

Mc = -KCA c(4 R)-'  

+ (4 n) -1 j h  K. dZ* . (3.7) 

One can take the dlfferentlal of the mass formu- 
la In a manner s imilar  to that in Ref. 13. One ob- 
tains: 

The f i rst  law of event horizons. 

where bT,, is the variation in the matter energy- 
momentum tenso: between the horlzons ln a gauge 
In whlch bK'= bK*=O. 

From thls law one sees  that If one regards the 
area of a horlzon as belng proportional to the en- 
tropy beyond that horizon, then the correspondlng 
surface gravlty Is proportlonal to  the effectlve 
temperature of that horlzon, that 16, the tempera- 
ture at whlch that horizon would be  in thermal 
equlllbrlum and therefore the temperature a t  
which that horizon radiates. Xn the next section 
we shall show that the factor of proportionality 
between temperature and surface gravlty is (21rl-I. 
This means that the entropy Is the  area. In the 
case of the cosmological horizon In de  Sltter 
space the entropy 18 S ~ A ' ~ a 1 0 ~ ~ ~  because A < 

I". PARTICLE CREATION M DE SXTl'ER SPACE 

In thls section we shall calculate partlcle crea- 
tlon in solutions of the Einstein equations wlth 
posltive cosmologlcal constant. The slmplest ex- 
ample 1s de Sitter 6paCe and partlcle production 
In thls sltuatlon ha8 been etudled by Nachtmann:' 
Tagirov?' Candela6 and Ralne?' and Dowker and 
Crltchley,5° among others. They all used definit- 

ions of particles that were observer-independent 
and lnvarlant under the d e  Sitter group. Under 
these condltlons only two answer8 a r e  possible 
for the rate  of particle creatlon per unlt volume, 
zero  or lnflnity, because If there  1s nonzero pro- 
ductlon of particles with a certain energy, then 
by de  Sitter group lnvarlance there  must be the 
same ra te  of creatlon of particles wlth all other 
energles. It 1s therefore not surprising that the 
authors mentioned above chose their definitione 
of particles to get the zero answer. 

An observer-independent definition of particles 
is, however, not relevant to  what a glven observ- 
er would measure with a particle detector. This 
depends not only on the spacetlme and the quantum 
state  of the system, but also on the observer's 
world line. For example, Unruh" has shown that 
in Mlnkowskl space ln the normal vacuum state 
accelerated observer8 can detect and absorb par- 
tlcles. To a nonacceleratlng observer such an 
absorptlon wlll appear to be emission from the 
accelerated observer's detector. In a slmllar 
manner, an observer at a constant dlstance from 
a black hole wlll  detect a steady f l u  of particles 
comlng out from the hole wlth a thermal spectrum 
whlle an observer who falls into the hole WILL not 
see many partlcles. 

ly  accelerated observer in Mlnkowskl space and 
an observer a t  constant distance from the black 
hole 1s that both observers have ewnt horizons 
which prevent them from seeing the whole of the 
spacetlme and from measuring the complete quan- 
tum state of the system. It Is thls loss of lnforma- 
tion about the quantum state  whlch 1s responslble 
for the thermal radlatlon that the observers see. 
Because any observer in de  Sltter space also has 
an event horizon, one would expect that such an ob- 
server would also detect thermal radlatlon. W e  
shall show that this 1s lndeed the case. This can 
be  done elther by the  frequency-mtxlng method in 
whlch the thermal radlatlon from black holes was 
flrst derived:'." or by the path-lntegral method 
of Hartle and Hawklng." We shall adopt the latter 
approach because It 1s more elegant and gives a 
c learer  lntultlve plcture of what 1s happening. 
The same results can, however, be obtalned by 
the former method. 

As In the method of Hartle and Hawklng," we 
construct the propagator for a scalar fleld of 
mass  m by the path integral 

C ( x , x ' )  = llm (-dWF(W, x ,  x ' )  exp[-(imaW +cW-')], 

(4.1) 

A feature common to the examples of a uniform- 

( - 0  0 

where 

137 



15 2746 C .  W .  G I B B O N S  A N D  S .  W .  H A W K I N G  - 

and the integral is taken over all paths x(w) from 
x to x’ .  
As in the Hartie and Hawking paper ,lo this path 

Integral can be given a well-defined meaning by 
analtyically continuing the parameter W to nega- 
tlve imaginary values and analytically continuing 
the coordinates to a region where the metric is 
posltlve-deflnlte. A convenient way of dolng this 
1s to embed de Sltter space as the hyperboloid 

- T ’ +S2 + X 2  + Y 2  + Z’ = 3A (4.3) 

in  the five-dimensional space with a Lorentz me- 
trlc: 

d s 2 =  - d T 2  + d g  +dX2 +dY2 + d Z 2 .  (4.4) 

Taking T to  be i 7 ( r  real), w e  obtain a sphere in 
flve-dimensional Euclidean space. On this sphere 
the function F satisfies the diffusion equation 

(4.5) 

where = i W and 6’ is the Laplacian on the four- 
sphere. Because the four-sphere is compact there 
is a unique solution of (4.5) for the initial condition 

(4.6) F(0 ,  x ,  x ’ )  = 6 ( x ,  x‘) , 

where 6 ( x ,  x ‘ )  is  the Dirac 6 function on the four- 
sphere. One can then define the propagator 
C(x, x’ )  from (4.1) by analytically continuing the 
solutlon for  F back to real values of the parame- 
ter W and real coordinates x and x‘. Because the 
function F Is analytic for flnite points x and x ’ ,  
any sfngularities whlch occur in G ( x ,  x ‘ )  must 
come from the end points of the lntegratlon In 
(4.1). Ae shown In Ref. 10, there wlll be singu- 
laritles In C ( x , x ’ )  when, and only when, x and x’ 
can be joined by a null geodesic. Thls will be the 
case if and only if 

(T-T’)2= (S -S’ )Z+(X-X’ ) ’+ (Y-  Y ’ P + ( Z - Z ‘ ) ’ .  

(4.7) 

The coordinates, T ,  S , X ,  Y,Z can be  related to 
the statlc coordlnates t ,  r ,  0, Cp used in Sec. 11 by 

T = (A3 -’ -@)l/a slnhA’/*3 -’l2f , (4.8) 

S= (A3-I -?)I/’ ~ o s h A ~ ’ ’ 3 - ’ ~ ~ l ,  (4.9) 

X=rsinOcosCp, (4.10) 

Y=rslneelnq, ,  (4.11) 

z = r cose . (4.12) 

The horlzons A? = 3 a r e  the intersection of the 
hyperplanes T = i S  with t h e  hyperboloid. AS In 

Ref. 10 w e  define the complexified horizon by A 9  
‘3, 8, $J real. On the complexlfled horlzon X, Y, 
and Z a r e  real  and either T = S = I I - ’ / ~ ~ ~ ‘ ’ V ,  U = O  
or T=-S=h-’/’3’’’U, V=O.  By Eq. (4.7) a com- 
plex nullgeodesic from arealpolnt  ( T ’ , S ’ , X ‘ ,  Y‘, Z ’ )  
on the hyperbolold can Intersect the complex hori- 
zon only on the real sectlons T = i S  real. If the 
point ( T ’ , S ’ , X ‘ ,  Y ‘ , Z ’ )  Is In region I (S>ITI) the 
propagator Gb‘, x )  will have a slnguiarlty on the 
past horizon at the polnt where the past-directed 
null geodesic from x’  intersects the horizon. Aa 
shown i n  Ref. 10, the c convergence factor in (4.1) 
will displace the pole slightly below the real ax18 
in the complex plane on the complexified past hori- 
zon. The propagator G ( x ’ ,  r )  is therefore analytic 
In the upper half U plane on the past horizon. Slm- 
ilarly, it will be analytic In the lower V plane on 
the future hor Izon . 

tion 
The propagator G f r ‘ ,  x)  satisfies the wave equa- 

(0; - tn2)G(x‘ ,  x )  = - 6 ( x ,  x ‘ )  (4.13) 

Thus if x’ I s  a fixed polnt in region I, the value 
G ( x ’ ,  x )  for a polnt In reglon II will be determined 
by the values of G ( x ’ ,  x )  on a characterlstic Cauchy 
surface for region Il consistlng of the sectlon of 
the U s 0  horizon for real V 2 0  and t h e  sectlon of 
the V =  0 horizon for real U a0. The coordinates 
7 and I of the point x a r e  related t o  U and V by 

e2Kc‘ = m-1 (4.14) 

Y =  (1 +uv)(I -UV)-’Kc-’ (4.15) 

If one holds Y fixed at a real value but lets 1 = 7 +to, 
then 

U =  I u I  exp(-ion,), (4.16) 

V =  J ~ I e x p ( + i o n ~ ) .  (4.17) 

For a fixed value of u the metric (2.3) of de  Sltter 
space remalns real  and unchanged. Thus the val- 
ue of G ( x ’ ,  XI atra complex coordlnate t of the polnt 
x but real I ,  8, + can be  obtalned by solving the 
Kleln-Gordon equation wlth real coefflclents and 
with lnltlal data on the Cauchy surface V = O ,  
~ = ~ U l e x p ( - i ~ ~ o )  and U=o, V= ) V ( e x p ( + / ~ ~ U ) .  
Because Ck’, x )  is analytic in the upper half U 
plane on V - 0  and the lower half Vplane on U=O, 
the data and hence the solutlon wlll be regular pro- 
vided that 

-llKC-’CO 6 0 .  (4.18) 

The operator 

(4.19) 

commutes with the Klein-Gordon operator 0: - m2 
and is zero when acting on the initial data for u 
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satisfying (4.18). Thus the solution C(w' ,x)  de- 
termined by the initial data will be analytic In the 
coordinates t of the point x for u satisfying Eq. 
(4.18). 

This  is the basic result which enables us  to  
show that an observer moving on a timelike geo- 
desic in de Sitter space will detect thermal radi- 
ation. 

The propagator we have defined appears to be 
similar to  that constructed by other a ~ t h o r s . ~ ~ - ~ ~  
However, our use of the propagator will be dif- 
ferent: Instead of trying to  obtain some observer- 
independent measure of particle creation, we sha l l  
be concerned with what an observer moving on a 
timelike geodesic in de Sitter space would mea- 
sure  with a particle detector which is confined to 
a small  tube around his world line. Without loss 
of generality we can take the observer's world 
line to be at the origin of polar coordinates in 
region 1. Within the world tube of the particle 
detector the spacetlme can be taken as flat. 

The results we shall obtain are independent of 
the detailed nature of the particle detector. How- 
ever, for explicitness we shall consider a particle 
model of a detector similar to that discussed by 
Unruh" for  uniformly accelerated observers in 
flat space. This will consist of some system such 
as an atom which can be described by a nonrela- 
tivistic Schrbdinger equation 

where t' is the proper time along the observer's 
world line, H, ie the Hamiltonian of the undis- 
turbed particle detector and g@ i s  a coupling 
term to the scalar  field 9. The undisturbed par- 
ticle detector will have energy levels E, and 
wave functions @,(g')e-'E,', where 8' represents 
the spatial position of a point in the detector. 

By first-order perturbation theory the ampli- 
tude to  excite the detector f rom energy level E, 
to a higher-energy level E ,  is proportional to  

In other words, the detector responds to compo- 
nents of field 9 which are positive frequency along 
the observer's world line with respect to  his  
proper time, By superimposing detector levels 
wfth different energies one can obtain a detector 
response function of a form 

where f(t') i s  a. purely positive-frequency func- 
tion of the observer's proper time t' and h is zero 
outside some value of r' corresponding to the 
radius of the particle detector. Let B be a three- 

surface which completely surrounds the observ- 
er's world line. If the observer detects a par- 
ticle, it must have crossed B in some mode k, 
which is a solution of the Klein-Gordon equation 
with unit Klein-Gordon norm over the hypersur- 
face 6. The amplitude for the observer to  detect 
such a particle will be 

/ J f b ( x ' ) G ( x ' , x ) &  L,(x)dV'dC', (4.20) 

where the volume integral in Y' is taken over the 
volume of the particle detector and the surface 
integral in x is taken over 6'. 

like surface of large constant r in the past in 
region JII and a spacelike surface of large con- 
stant Y in the future in region 11. In the limit that 
Y tends to infinity these surfaces tend to  past in- 
finity (I' and future infinity #', respectively. We 
shall assume that there were no particles present 
on the surface in the distant past. Thus the only 
contribution to the amplitude (4.20) comes from 
the surface in the future. One can interpret this 
as the spontaneous creation of a pair of particles, 
one with positive and one with negative energy 
with respect to the Killing vector K = a / W  The 
particle with positive energy propagates to the 
observer and is detected. The particle with neg- 
ative energy crosses  the event horizon Into region 
I1 where K is spacelike. It can exist there as a 
real particle with timelike four-momentum. 
Equivalently, one can regard the world lines of 
the two particles as being the world line of a 
single particle which tunnels through the event 
horizon out of region II and is detected by the 
observer. 

a certain energy E .  In this case the positive- 
frequency-response function f ( t )  will be propor- 
tional to e-"'. By the stationarity of the metric, 
the propagator G(x',  x )  can depend on the coordi- 
nates t' and t only through their difference. This 
means that the amplitude (4.20) will be zero ex- 
cept for modes k, of the form x(r, 8, cp)  e"". If 
one takes out a 6 function which ar ises  from the 
integral over t - t ' ,  the amplitude for detection 
is proportional to 

The hypersurface 6 can be taken to be a space- 

Suppose the detector i s  sensitive to particles of 

where B' and denote respectively (r ' ,  6', 9') and 
(r, 8, p) and the radial and angular integrals over 
the functions h and x have been factored out. 
Using the result derived above that G ( x ' , x )  is 
analytic in a s t r ip  of width ' I I K ~ - '  below the real 
1 axis, one can displace the contour in (4.21) 
down nk-' to obtain 
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(4.22) 

By Eqs. (4.16) and (4.17) the point ( f -  ~ W K , - ’ , ? - ,  0,cp) is the point in region III obtained by reflecting in the 
origin of the U, Y plane. Thus 

amplitude for  particle with energy 

be absorbed by observer 
E to propagate from region III and amplitude for particle of energy E t o  propagate 

from region I1 and be absorbed by observer 

(4.23) 

By time-reversal invariance the latter amplitude i s  equal to  the amplitude for the observer’s detector in 
an excited state t o  emit a particle with energy E which travels to region 11. Therefore 

(4.24) 
>‘ 

probability for detector to emit 
a particle to region II 

probability for  detector to absorb 
a particle f rom region I1 ) = exp(-2nE rc, -I)  

This  is just the condition for  the detector to  be in 
thermal equilibrium at a temperature 

T = ( 2 n ) - ’ ~ ,  = (12)-1/2n-’A’/2 . (4.25) 

The observer will therefore measure an isotropic 
background of thermal radiation with the above 
temperature. Because all timelike geodesics a r e  
equivalent under the de Sitter group, any other 
observer will also see an isotropic background 
with the same temperature even though he is 
moving relative to the f i rs t  observer. This i s  
yet another illustration of the fact that different 
observers have different definitions of particles. 
It would seem that one cannot, as some authors 
have attempted, construct a unique observer- 
independent renormalized energy-momentum ten- 
sor which can be put on the right-hand side of 
the classical Einstein equations. This subject 
will be dealt with i n  another paper.” 

Another way in which one can derive the result 
that a freely moving observer in de Sitter space 
will see thermal radiation is to note that the 
propagator G ( r ,  w’) i s  an analytic function of the 

I 

r 
coordinates T, S, T’, S’, o r  alternatively U, V, U’, V’ 
except when x and Y’ can be joined by null geo- 
desics. On the other hand, the static-time co- 
ordirxite t is a multivalued function of T and S or 
U and V, being defined only up to an integral mul- 
tiple of 2ni~,-’ .  Thus the propagator G ( % ’ , r )  is 
a periodic function of t with period 2 n i ~ , ” .  This 
behavior is characteristic of what are known as 
“thermal Green’s  function^."^^ These may be de- 
fined (for interacting fields as well a s  the non- 
interacting case considered here) as the expecta- 
tion value of the time-ordered product of the field 
operators, where the expectation value is  taken 
not in the vacuum state but over a grand canonical 
ensemble at some temperature T = @ - I .  Thus 

GT(w’ ,  x )  = i  Tr[e-’”J +(i)p(%)]flre-’”, 

(4.26) 

where d denotes Wick time-ordering and H is the 
Hamiltonian in the observer’s static frame. is 
the quantum field operator and T r  denotes the 
trace taken over a complete set  of states of the 
system. Therefore 

Since 

+(ii, t )  = e-8“+@, t - ip)ea”.  (4.28) 

Thus the thermal propagator is periodic In t - t ’  
with period iT-l .  One would expect G&’, %) to 
have singularities when % and x‘ can be connected 
by a null geodesic and these singularities would 
be repeated periodically in the complex t‘ - t 
plane. It therefore seems that the propagator 

(4.27) 

G ( x ’ , x )  that we have defined by a path integral is 
the same as the thermal propagator Gr(x‘ ,%) for  
a grand canonical ensemble at temperature T 
T = (2n)”~ ,  in the observer’s static frame. Thus 
to  the observer it will seem as if he is in a bath 
of blackbody radiation a t  the above temperature. 
It is interesting to  note that a s imilar  result was 
found for  two-dimensional de Sitter space by 
Figari, Hoegh-Krohn, and Nappis‘ although they 
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did not appreciate its significance i n  t e r m s  of 
particle creation. 

The correspondence between G ( x ' , x )  and the  
thermal Green's function is the  same as that 
which has been pointed out in the black-hole case 
by Gibbons and Perry?' As in their paper, one 
can argue that because the free-field propagator 
G(x',  w)-is.,identical with the free-field thermal 
propagator C&', x), any n-point interacting 
Green's function & which can be constructed by 
perturbation theory from C in a renormalizable 
field theory will be identical to the n-point inter- 
acting thermal Green's function constructed from 
Gc in  a similar manner. This  means that the re- 
sult that an observer will think himself to  be 
immersed in blackbody radiation at temperature 
T = e ( 2 ~ ) - '  will be t rue not only in the free-field 
case that we have treated but also for fields with 
mutual interactions and self-interactions. In 
particular, one would expect it to be t rue for the 
gravitational field, though this is, of course, not 
renormalizable, at least in the ordinary sense. 

It is more difficult to  formulate the propagator 
for higher-spin fields in  te rms  of a path integral. 
However, it seems reasonable o define the prop- 

inhomogeneous wave equation with the boundary 
conditions that the propagator f rom a point x' in 
region I is an analytic function of x in the upper 
half U plane and lower half V plane on the com- 
plexified horizon. With this definition one ob- 
tains thermal radiation just as in  the scalar case. 

agators f o r  such fieids as solut 1, ns of the relevant 

V. PARTICLE CREATION IN BLACK-HOLE 
DE Sl'lTER SPACES 

For the reasons given in Sec. I11 one would ex- 
pect that a solution of Einstein's equations with 
positive cosmological constant which contained 
a black hole would settle down eventually to one 
of the Kerr-Newman-de Sitter solutions descrlbed 
in Sec. 11. We  shall therefore consider what would 
be seen by an observer in such a solution. Con- 
sider f i rs t  the Schwarzschild-de Sitter solution. 
Suppose the observer moves along a world line A 
of constant 7, 0, and $ in region I of Fig. 4. The 
world line A coincides with an orbit of the static 
Killing vector K=B/Bt .  Let cpz =g(K,K)  on A. One 
would expect that the observer would see thermal 
radiation with a temperature T, = (2aJ,)"~, coming 
from all direction8 except that of the black hole 
and thermal radiation of temperature T M =  (Zrg)"~,*r 
coming from the black hole. The factor J, appears 
in order  to normalize the static Killing vector to 
have unit magnitude at the observer. The varia- 
tion of i$ with Y can be interpreted as the normal 
red-shifting of temperature. 

There  are, however, certain problems in  show- 
ing that this is the case. These ditficulties arise 
f rom the fact that when one has two or more sets 
of horizons with different surface gravitles one 
has  to introduce separate Kruskal-type coordi- 
nate patches to cover each set of horizons. The 
coordinates of one patch will be real analytic func- 
tions of the coordinates of the next patch in some 
overlap region between the horizons in the real 
manifold. However, branch cuts ar ise  if one 
continues the coordinates to complex values. To 
see this, let U1, V, be Kruskal coordinates in a 
patch covering a pair of intersecting horizons 
with a surface gravity K ,  and let U,, V, be a neigh- 
boring coordinate patch covering horizons with 
surface gravity $. In the overlap region one has 

v 1 1  u -1 = -e=zl 

vzUz-'= -ea-t . (5.2) 

-vzv,-'=(-v,)pv,-p, (5.3) 

(5.1) 

Thus 

where P= $ K ~ - ' .  There is thus a branch cut in 
the relation between the two coordinate patches if 
Ka f K1. 

One way of dealing with this problem would be to 
imagine perfectly reflecting walls between each 
black-hole horizon and each cosmological horizon. 
These walls would divide the manifold up into a 
number of separate regions each of which could 
be covered by a single Kruskal-coordinate patch. 
In each region one could construct a propagator 
as before but with perfectly reflecting boundan 
conditions at  the walls. By arguments s imilar  
t o  those given in the previous section, these p r o p  
agators will have the appropriate periodic and 
analytic properties to  be thermal Green's functions 
with temperatures given by the surface gravities 
of the horizons contained within each region.. Thus 
an observer on the black-hole side of a wall will 
see thermal radiation with the black-hole tempera- 
ture, while an observer on the cosmological side 
of the wall wIll see radiation with the cosmological 
temperature. One would expect that, if the walls 
were removed, an observer would see a mixture 
of radiation as described above. 

Another way of dealing with the problem would 
be to  define the paopagator C ( d ,  x )  to be a solution 
of the inhomogeneous wave equation on the real 
manifold which was  such that if the point were  
extended to  com'plex values of a Krushal-type- 
coordinate patch covering one set of intersecting 
horizons, it would be analytic on the complexified 
horizon in the upper half or lower half U or  V 
plane depending on whether the point x was re- 
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spectively to the future or the past Of V =o or 
U = O .  Then, using a s imilar  argument to that in 
the previous section about the dependence of the 
propagator on initial data on the complexified 
horizun, one can show that the propagator C(x',  x )  
between a point x' in region I and a point x in re- 

gion Ik is analytic in a s t r ip  of width I&-' below 
the real axis of the complex t plane, Similarly, 
the propagator G(%', x )  between a point x' in re- 
gion I and a point x in region 11, will be analytic 
in a s t r i p  of width TK,-'. Using these resul ts  one 
can show that 

~ ~~ ~ 

probability of a particle of energy E, 

from observer to a+ 
relative to the observer, propagating = exp[ - ( E 2 n + ~ , ' * ) ]  relative to the observer, 
probability of a particle of energy E, 

from d' to  observer 

I 

and similarly the probability of propagating from 
the future singularity of the black hole will be 
related by the appropriate factor to the probability 
for a similar particle to  propagate from the ob- 
server  intb the black hole. These results estab- 
lish the picture described at  the beginning of this 
section. 

One can derive similar results for the Kerr- 
de Sitter spaces. There is an additional complica- 
tion in this case because there is a relative angular 
velocity between the black hole and the cosmologi- 
cal horizon. An observer in region I who is a t  a 
constant distance Y f rom the black hole and who is  
nonrotating with respect to distant s t a r s  will 
move on an orbit of the Kllling vector K which is 
null on the cosmological horizon. For such an 
observer the probability of a particle of energy E, 
relative to  the observer, propagating to him from 
beyond the future cosmological horizon will be 
em[- (2n&E~,-~)] times the probability for a sim- 
ilar particle to propagate from the observer to  
beyond the cosmological horizon. The probabili- 
ties for  emission and absorption by the black hole 
will be similarly related except that in this case 
the energy E will be replaced by E - MH, where 
n i s  the aximuthal quantum number or angular mo- 
mentum of the particle about the axis of rotation of 
LhQ black hole and 0, is the angular velocity of the 
black-hole horizon relative to the cosmological 
horizon. As in the ordinary black-hole case, the 
black hole will exhibit superradlance f o r  modes 
for which E < nn,. In the case that the observer 
is moving on the orbit of a Killing vector K which 
is rotating with respect to the cosmological hori- 
zon, one agaln gets  s imilar  results for the radia- 
tion from the cosmological and black-hole hori- 
zons with E replaced by E - noc and E -an,, re- 
spectively. Where 0, and $2, are the angular 
velocities of the cosmological and black-hole hori- 
zons relative to  the observers frame_ and are de- 
fined by the requirement that K + t2,K and K + hl,w 
should be null on the cosmological and black-hole 
horizons. 

VI. IMPLICATIONS AND CONCLUSIONS 

We have shown that the close connection be- 
tween event horizons and thermodynamics has a 
wider validity than the ordinary black-hole situa- 
tions in which it was f i rs t  discovered. As observer 
in a cosmological model with a positive cosmo- 
logical constant will have an event horizon whose 
area can be interpreted as the entropy or lack of 
information that the observer has about the regions 
of the universe that he cannot see. When the solu- 
tion has  settled down to a stationary state, the 
event horizon will have associated with it a surface 
gravity K which plays a role s imilar  to tempera- 
ture In the classical f i rs t  law of event horizons 
derived in Sec. III. As was shown in Sec. IV., 
this similarity is more than an analogy: The ob- 
se rver  will detect an isotropic background of 
thermal radiation with temperature (2n)"x coming, 
apparently, from the event horizon, This  result 
was obtained by considering what an observer 
with a particle detector would actually measure 
rather  than by trying to define particles in an 
observer-independent manner. An Illustration of 
the observer dependence of the concept of particle 
is the result that the thermal radiation in de Sitter 
apace appears isotropic and a t  the same tempera- 
ture to every geodeelc observer. If particles had 
an observer-independent existence and if the radi- 
ation appeared isotropic to one geodeeic observer, 
it would not appear isotropic to any other geodesic 
observer. Indeed, as an observer approached the 
f i rs t  observer's future event horizon the radiation 
would diverge. It seems clear  that this observer 
dependence of particle creation holds in the case 
of black holes as well: An observer at wnstant 
distance f rom a black hole will observe a steady 
emission of thermal radiation but an observer 
falling into a black hole will not observe any di- 
vergence in the radiation as he  approaches the 
firet-observer's event horizon. 
A consequence of the observer dependence of 

particle creation would seem to be that the back 
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reaction muat be okerver-dependent aleo, if one 
assumes, as seems reasonable, that the mass of 
the detector increases when J t  absorbs a particle 
and therefore the gravitational field changes. 
This will be discussed further in another paper,le 
but we remark here  that it involves the abandoning 
of the concept of an observer-independent metric 
for  spacetime and the adoption of something like 
the Everett-Wheeler interpretation of quantum 
mechanics.se The latter viewpoint seems to be 
required anyway when dealing with the quantum 
mechanic8 of the whole universe ra ther  than an 
isolated system. 

If a geodesic observer in de Sitter space chooses 
not to absorb any of the thermal radiation, h i s  
energy and entropy do not change and so one would 
not expect any change in the solution. However, 
if he does absorb some of the radiation, h i s  en- 
ergy and hence his  gravitational mass will in- 
crease. If the solution now settles dawn again to 
a new stationary state, it follows from the f i rs t  

law of event horizons that the area of the cosmo- 
logical event horizon will be less than it appeared 
to be before. One can interpret this gs a reduc- 
tion in the entropy of the universe beyond the 
event horizon caused by the propagation of some 
radiation from this region to the observer. Un- 
like the black-hole cam, the surface gravity of 
the cosmological horizon decreases 88 the horizon 
shrinks. There is thus no danger of the observer's 
cosmological event horizon shrinking c a t a s t r q h -  
i c d y  around him because of his absorbing 
too much thermal radiation. He has, however, to  
be careful that he does not absorb so much radia- 
tion that his particle detector undergoes gravita- 
tional collapse to produce a black hole. If this 
were to happen, the black hole would always have 
a higher temperature than the surrounding uni- 
verse and so would radiate energy faster  than it 
absorbs it. It would therefore evaporate, leaving 
the universe as it was before the observer began 
to absorb radiation. 
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The horizon, flatness and monopole problems can be solved if the universe underwent an exponentially expanding stage 
which ended with a Higgs scalar field running slowly down an effective potential. In the downhill phase irregularities would 
develop in the scalar field. These would lead to fluctuations in the rate of expansion which would have the right spectrum 
to account for the existence of galaxies. However the amplitude would be too high to be consistent with observations of the 
isotropy of the microwave background unless the effective coupling constant of the H i s s  scalar was very small. 

Observations of the microwave background and of 
the abundances of helium and deuterium indicate that 
the standard hot big-bang model is probably a good 
description of the universe, at least back to the time 
when the temperature was 1010 K.  However this mod- 
el leaves unanswered a number of questions including 
the following. 

(1) Why does the ratio of the number of baryons 
to the number of photons in the universe have the ob- 
served value of about 10-8-10-10? 

( 2 )  Why is the universe so homogeneous and iso- 
tropic on a large scale if different regions were out of 
contact with each other at early times as they are in 
the standard model? 

(3) Why is the present density of the universe so 
near the critical value that divides recollapse from in- 
defmite expansion? 

(4) Why are there not many more superheavy mo- 
nopoles formed when the grand unified symmetry 
was broken? 

isotropy, were there sufficient irregularities to give 
rise to stars and galaxies? 

A possible answer to the first question has been 
provided by grand unified theories which predict the 
creation of a non-zero baryon number if there are CP 
violating interactions. In attempts to answer the sec- 
ond, third and fourth questions, various authors have 
suggested that the universe underwent a period of ex- 

(5) Why; despite the large scale homogeneity and 

ponential expansion [l-31. In order not to conflict 
with the explanation of the baryon number, this ex- 
ponential expansion would have had to have taken 
place before the last time the universe was at a tem- 
perature of the order of the grand unification energy, 
M - 1014-101S GeV. A detailed scenario for such an 
inflationary or exponential expansion phase has been 
provided by Cuth [3]. At very early times the tem- 
perature of the universe is supposed to have been 
above the grand unification energy M and the sym- 
metry of the grand unified theory would have been 
unbroken. As the universe expanded, the temperature 
T would have fallen below M but the Higgs scalar fields 
may have been prevented from acquiring a symmetry 
breaking expectation value by the existence of a bar- 
rier in the effective potential. In this situation the uni- 
verse would supercool in the metastable unbroken 
symmetry phase. The vacuum energy of the unbre 
ken phase would act as an effective A term and would 
lead to an exponential expansion of the universe with 
a Hubble constant H of the order of (i n)*12M2/mp 
where mp is the Planck mass, 1019 GeV. 

The universe is obviously not now expanding at 
this rate, so something must have happened to end 
the exponentially expanding stage. Guth’s original 
suggestion was that there would be a first order phase 
transition in which bubbles of the broken symmetry 
phase would form. Most of the vacuum energy of the 
unbroken phase would be converted into the kinetic 
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energy of walls of the bubble which would expand at 
nearly the speed of light. The region inside the bubble 
would be at a low temperature and would be nearly 
empty. The energy in the bubble walls would be re- 
leased and the universe reheated to the GUT temper- 
ature only if the bubble collided with other bubbles. 
However, because of the exponential expansion of 
the universe, the probability of more than a few bub- 
bles colliding would be small. This would lead to a 
very inhomogeneow universe which would not be 
compatible with the observations of the microwave 
background. 

In order to avoid this difficulty several authors 
[4-81 have suggested that the barrier in the effec- 
tive potential becomes very small or disappears alto- 
gether: 

V(@) = f CrV i- flog (@2/#;, - f 1 i- v, 1 
where p2 includes rest mass, thermal and curvature 
contributions and lpl is small compared to the expan- 
sion rate H. Quantum field theory in the exponential- 
ly expanding stage can be defined on S4, the euclidean 
version of de Sitter space [6,9]. Thus the fluctuations 
of the scalar field around the unbroken symmetry val- 
ue can be decomposed into four.sphere harmonics. 
The homogeneous 1 = 0 mode will be unstable if p2 < 0 
and neutrally stable i fp2 = 0. If0 < p2 4 H2, the uni- 
verse will make a quantum transition to a state of con- 
stant $ at the maximum of the potential [6 ] .  In all 
three cases the I = 0 mode witl then start to run down 
the hill to the global minimum at $ = 40 in a timescale 
t - cH1'.  Provided that 1p21 5 H2, the constant c 
w1u be greater than about 60. In this case any initial 
spatial curvature of the hypersurfaces of constant time 
on which $ is constant will be reduced to a sufficient- 
ly small value by the time the scalar field reaches @, 
that the universe will expand until the present time 
as a nearly k = 0 model. 

because of the gradient terms in the action. However 
they will have quantum fluctuations which wil l  be SU- 
perimposed on the downhiu career of the I = 0 mode. 
They are described by a two-point correlation func- 
tion C(x,y) = <t$(x)c#(v))' where the prime indicates 
that the 1 = 0 modes have been projected out. This 
obeys the equation 

1. - 

The higher I modes on the four-sphere will be stable 

2 4  (-0 + P2>G(X,Y) = %,Y) - (318a )H 

on the four-sphere of radius H-' . When analytically 
continued to de Sitter space 

G(~, .Y)  * -n -2 2 H log(Hlx - YI), 
where the pointsx,y lie on a surface of constant time 
in a k = 0 coordinate system at a separation greater 
than the horizon H-' . The Fourier transform of 
G(x,y) in a surface of constant time is 

g(k) = -H2k-3 , k<H.  

Thus a Fourier component of the @ field with a wave 
number k has an amplitude of the order of Hk-3I2. 

These inhomogeneous fluctuations mean that on 
a surface of constant time there will be some regions 
in which the $ field has run further down the hill of 
the effective potential than in other regions. How- 
ever, when one is dealing with fluctuations with wave- 
lengths much longer than the horizonH-1 i.e. with 
k 4 H, such variations can be removed by choosing a 
new time coordinate such that the surfaces of con- 
stant time are surfaces of constant $. The amount by 
which the time coordinate has to be shifted is of the 
order of 

S'T = Hk-3/2 [(d/dt)(t$))l - l .  

The 1 = 0 mode represented by (4) will obey the equa- 
tion 

(a2/at2)(#)  + 3 ~ ( a / a t ) c @  = -aV/acg) .  
Thus 
($)= [ 3 H / 8 a 2 ( t o - r ) ] 1 / 2 ,  

for r < to - H where to is the time at which the field 
reaches the global minimum ($) = 4,. A comoving 
region with a present length k-l will cross the event 
horizon of the de Sitter space at a time t = r0-H-l 

6 * aH-1 [k-110g(Hk-1)]3/2. 

log(rn-l). Thus 

The surfaces of constant time will now be surfaces of 
nearly constant energy-momentum tensor. However, 
the change of time coordinate will have introduced 
inhomogeneous fluctuations in the rate of expansion 
H. 

S ' i  = k26t = orH-lkl/2[log(Hk-l)]3/2 . 
The two-point correlation function of S H ~  therefore 
has a Fourier transform of the order of 
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a2 [ iog (~-1 )13  . 
This is just the scale-independent spectrum of fluctua- 
tions that Harrison and Zeldovich [10,1 I ]  have sug- 
gested could account for galaxy formation. However 
observations of the microwave background place an 
upper limit of about 10-8 on the dimensionless am- 
plitude of these fluctuations on scales of the order of 
the present Hubble radius. For such scales log(Hk-') 
* 50 so the fluctuations would be too large to be 
compatible with observations unless the coupling con- 
stant (Y were very small. What is needed is a potential 
of a different form with a region of nearly constant 
slope -aV/a$9 H 3 .  Such a potential might arise in 
a supersymmetric theory. 

[2] J.R. Cott, Nature 295 (1982) 304. 
131 A.H. Guth, Phys. Rev. D23 (1981) 347. 
141 W.H. Press, Galaxies may be single particle fluctuations 

from an early, false-vacuum era, Harvard preprint (1981) 
1491. 

431. 

35. 

(1982) 1220. 

Phys. Rev. Lett. 48 (1982) 1437. 

273. 

[S] A.D. Linde, Phys. Lett. 108B (1982) 389; 114B (1982) 

[6] S.W. Hawking and I.G. Moss, Phys. Lett. l l O B  (1982) 

(71 A. Albrecht and P.J. Steinhardt, Phys. Rev. Lett. 48 

[S] A. Albrecht, P.J. Steinhardt, M.S. Turner and F. Wilczek, 

191 G.W. Gibbons and S.W. Hawking, Phys. Rev. D15 (1977) 

[ 101 E.R. Harrison, Phys. Rev. D1 (1970) 2726. 
[ l l ]  Ya.B. Zeldovich, Mon. Not. R. Astr. SOC. 160 (1972) 

1P. 

References 

[ I ]  A.A. Starobmku, Phys. Lett. 91B (1980) 99. 



Commun. math. Phys. 55. 133-148 (1977) 
Communicaqons in 
Ma- 

physics 
@ by Springer-Verlag 1977 

Zeta Function Regularization of Path Integrals 
in Curved Spacetime 

S. W. Hawking 
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Cambridge CB3 9EW. England 

Abstract. This paper describes a technique for regulariziiig quadratic path 
integrals on a curved background spacetime. One forms a generalized zeta 
function from the eigenvalues of the differential operator that appears in the 
action integral. The zeta function is a meromorphic function and its gradient at 
the origin is defined to be the determinant of the operator. This technique agrees 
with dimensional regularization where one gencralises to I I  dimensions by 
adding extra flat dimensions. The generalized zeta function can be expressed as 
a Mellin transform of the kernel of the heat equation which describes diffusion 
over the four dimensional spacetime manifold in ii fith dimension of parameter 
t he .  Using the asymptotic expansion for the heat kernel, one can deduce the 
behaviour of the path integral under scale transformations of the background 
metric. This suggests that there may be a natural cut off in the integral over all 
black hole background metrics. By functionally differentiating the path integral 
one obtains an energy momentum tensor which is finite even on the horizon ofa 
black hole. This energy momentum tensor has an anomalous trace. 

1. Introduction 
The purpose of this paper is to describe a technique for obtaining finite values to 
path integrals for fields (including the gravitational field) on a curved spacetime 
background or, equivalently, for evaluating the determinants of differential 
operators such as the four-dimensional Laplacian or D’ Alembertian. One forms a 
gemerafised zeta function from the eigenvalues A, of the operator 

n 

In four dimensions this converges for Re(s) > 2 and can be analytically extended to a 
meromorphic function with poles only at s = 2 and s = 1. It is regular at s =O. The 
derivative at s=O is formally equal to -Clog;.,. Thus one can define the 

determinant of the operator to be exp( - d[/ds)(,= o. 
n 

147 



I34 S .  W. Hawking 

In situations in which one knows the eigenvalues explicitly one can calculate the 
zeta function directly. This will be done in Section 3, for the examples of thermal 
radiation or the Casimir effect in flat spacetime. In more complicated situations one 
can use the fact that the zeta function is related by an inverse Mellin transform to 
the trace of the kernel of the heat equation, the equation that describes the diffusion 
of heat (or ink) over the four dimensional spacetime manifold in a fifth dimension of 
parameter time t.  Asymptotic expansions for the heat kernel in terms of invariants 
of the metric have been given by a number of authors [ 1-41. 

In the language of perturbation theory the determinant of an operator is 
expressed as a single closed loop graph. The most commonly used method for 
obtaining a finite value for such a graph in flat spacetime is dimensional 
regularization in which one evaluates the graph in n spacetime dimensions, treats n 
as a complex variable and subtracts out the pole that occurs when n tends to four. 
However it is not clear how one should apply this procedure to closed loops in a 
curved spacetime. For instance, i f  one was dealing with the four sphere, the 
Euclidean version of de Sitter space, it would be natural to generalize that S4 to S" 
[5 ,  61. On the other hand if  one was dealing with the Schwarzschild solution, which 
has topology R2 x S2, one might generalize to R2 x S"-'. Alternatively one might 
add on extra dimensions to the R2. These additional dimensions might be either flat 
or curved. The value that one would obtain for a closed loop graph, would be 
different in these different extensions to n dimensions so that dimensional 
regularization is ambiguous in curved spacetime. In fact it will be shown in Section 
5 that the answer given by the zeta function technique agrees up to a multiple of the 
undetermined renormalization parameter with that given by dimensional re- 
gularization where the generalization to n dimensions is given by adding on extra 
flat dimensions. 

The zeta function technique can be applied to calculate the partition functions 
for thermal gravitons and matter quanta on black hole and de Sitter backgrounds. 
It gives finite values for these despite the infinite blueshift of the local temperature 
on the event horizons. Using the asymptotic expansion for the heat kernel, one can 
relate the behaviour of the partition function under changes of scale of the 
background spacetime to an integral of a quadratic expression in the curvature 
tensor. In the case of de Sitter space this completely determines the partition 
function up to a multiple of the renormalization parameter while in the 
Schwarzschild solution it determines the partition function, up to a function ofr,/M 
where ro is the radius of the box containing a black hole of mass M in equilibrium 
with thermal radiation. The scaling behaviour of the partition function suggests 
that there may be a natural cut off at small masses when one integrates over all 
masses of the black hole background. 

By functional differentiating the partition function with respect to the 
background metric one obtains the energy momentum tensor of the thermal 
radiation. This can be expressed in terms of derivatives of the heat kernel and is 
finite even on the event horizon of a black hole background. The trace of the energy 
momentum is related to the behaviour of the partition function under scale 
transformations. It is given by a quadratic expression in the curvature and is non 
zero even for conformally invariant fields [7-121. 
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The effect of the higher order terms in the path integrals is discussed in Section 9. 
They are shewn to make an insignificant contribution to the partition function for 
thermal radiation in a black hole background that is significantly bigger than the 
Planck mass. Generalised zeta functions have also been used by Dowker and 
Critchley [ 113 to regularize one-loop graphs. Their approach is rather different 
from that which will be given here. 

2. Path Integrals 

In the Feynmann sum over histories approach to quantum theory one considers 
expressions of the form 

where d b ]  is a measure on the space of metrics g. 4 4 1  is a measure on the space of 
matter fields 4 and I [ g ,  93 is the action. The integral is taken over all fields y and 4 
that satisfy certain boundary or periodicity conditions, A situation which is of 
particular interest is that in which the fields are periodic in imaginary time on some 
boundary at large distance with period /j [ 131. In this case Z is the partition function 

for a canonical ensemble at the temperature T =  -. 
The dominant contribution to the path integral (2.1) will come from fields that 

are near background fields yo and 9, which satisfy the boundary or periodicity 
conditions and which extremise the action i.e. they satisfy the classical field 
equations. One can expand the action in a Taylor series about the background 
fields : 

1 
P 

I [ g , ~ ] - I ~ 0 , ~ 0 ] + f 2 [ ~ ]  + I 2 [ $ ]  +higher order terms, 

Y ' . ( l O + B ,  4=40+6 

(2.2) 

where 

and f,[a] and I,[4] are quadratic in the fluctuations 4 and 6. Substituting (2.2) 
into (2.1) and neglecting the higher order terms one has 

The background metric yo will depend on the situation under consideration but 
in general it will not be a real Lorentz metric. For example in de Sitter space one 
complexifies the spacetime and goes to a section (the Euclidean section) on which 
the metric is the real positive definite metric on a four sphere. Because the imaginary 
time coordinate is periodic on this four sphere, Z will be the partition function for a 
canonical ensemble. The action I[yo, 90] of the background de Sitter metric gives 
the contribution of the background metric to the partition function while the 
second and third terms in Equation (2.3) give the contributions of thermal gravitons 
and matter quanta respectively on this background. In the case of the canonical 
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ensemble for a spherical box with perfectly reflecting walls the background metric 
can either be that of a Euclidean space or it can be that of a section (the Euclidean 
section) of the complexified Schwarzschild solution on which the metric is real 
positive definite. Again the action of the background metric gives the contribution 
of the background metric to the partition function. This corresponds to an entropy 
equal to one quarter of the area of the event horizon in units in which G = c = h  
=&= 1. The second and third terms in Equation (2.3) give the contributions of 
thermal gravitons and matter quanta on a Schwarzschild background. In the case of 
the grand canonical ensemble for a box with temperature T=P-' and angular 
velocity S2 oneconsiders fields which, on the walls of the box, have the same value at 
the point (t, r,O, $) and at the point ( t  + is, r, 8,+ + $Q). This boundary cannot be 
filled in with any real metric but it can be filled in with a complex flat metric or with 
a complex section (the quasi Euclidean section [13]) of the Kerr solution. In both 
cases the metric is stronglyelliptic(1 am grateful to Dr. Y. Manor for this point) [ 143 
if the rotational velocity of the boundary is less than that of light. A metric g is said 
to be strongly elliptic if there is a function f such that Re(jg) is positive definite. I t  
seems necessary to use such strongly elliptic background metrics to make the path 
integrals well defined. One could take this to be one of the basic postulates of 
quantum gravity. 

The quadratic term f2[q5] will have the form 

where A is a second order differential operator constructed out of the background 
fields go,$o. (In the case of the fermion fields the operator A is first order. For 
simplicity I shall deal only with boson fields but the resultscan easily beextended to 
fermions.) The quadratic term IJ j j ]  in the metric fluctuations can be expressed 
similarly. Here however, the second order differential operator is degenerate i.e. it 
does not have an inverse. This is because of the gauge freedom to make coordinate 
transformations. One deals with this by taking the path integral only over metrics 
that satisfy some gauge condition which picks out one metric from each equivalence 
class under coordinate transformations. The Jacobian from the space of all metrics 
to the space of those satisfying the gauge condition can be regarded in perturbation 
theory as introducing fictitious particles known as Feynmann-de Witt [15,16] or 
Fadeev-Popov ghosts [ 171. The path integral over the gravitational fluctuations 
will be treated in another paper by methods similar to those used here for matter 
fields without gauge degrees of freedom. 

In the case when the background metric go is Euclidean i.e. real and positive 
definite the operator A in the quadratic term IZ[4] will be real, elliptic and self- 
adjoint. This means that it will have a complete spectrum of eigenvectors & with 
real eigenvalues 1,: 

The eigenvectors can be normalized so that 
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Note that the volume element which appears in the (2.6) is because go is 
positive definite. On the other hand the volume element that appears in the action I 
is (- g)1'2 = - i(g)"2 where the minus sign corresponds to a choice of the direction 
of Wick rotation of the time axis into the complex plane. 

If the background metric go is not Euclidean, the operator A will not be self- 
adjoint. However I shall assume that the eigen functions 4,, are still complete. If this 
is so, one can express the fluctuation 4 in terms of the eigen functions. 

The measure d[4] on the space of all fields 4 can then be expressed in terms of the 
coefficients a,: 

dC#I = n Pdan 9 (2.8) 
n 

where p is some normalization constant with dimensions of mass or inverse length. 
From (2.5)-(2.8) it follows that 

3. The Zeta Function 
The determinant of the operator A clearly diverges because the eigenvalues 1. 
increase without bound. One therefore has to adopt some regularization procedure. 
The technique that will be used in this paper will be called the zeta function method. 
One forms a generalized zeta function from the eigenvalues of the operator A :  

Us)= * (3.1) 
I9 

In  four dimensions this will converge for Re@)> 2. It can be analytically extended to 
a merophorphic function of s with poles only at s= 2 and s = 1 [ 181. In particular it 
is regular at s =O. The gradient of zeta at s = 0 is formally equal to - logl,. One 

can therefore define detA to be exp( -dC/dsl,,,) [19]. Thus the partition function 
n 

logZCdI= tC'(O)+ t log(av2)C(o) * (3.2) 

In situations in which the eigenvalues are known, the zeta function can be 
computed explicitly. To illustrate the method, I shall treat the case of a zero rest 
mass scalar field 4 contained in a box of volume V in flat spacetime at the 
temperature T-B-  I .  The partition function will be defined by a path integral over 
all fields Q, on the Euclidean space obtained by putting T = it which are zero on the 
walls of the box and which are periodic in T with period 8. The operator A in the 
action is the negative of the four dimensional Laplacian on the Euclidean space. If 
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the dimensions of the box are large compared to the characteristic wavelength B, 
one can approximate the spatial dependence of the eigenfunctions by plane waves 
with periodic boundary conditions. The eigenvalues are then 

and the density of eigenvalues in the continuum limit is 

when n>O and half that when n=O. The zeta function is therefore 

The second term can be integrated by parts to give 

Put k = 2 ~ n j ? -  I sinhy. This gives 

1 f( 1 / 2 ) f ( s  - 3 /2 )  
* (2-2s) - '  x - 

2 T(s-1) ' (3.7) 

where C R  is the usual Riemann zeta function n-'. The first term in (3.5) seems to 
n 

diverge at k=O when s is large and positive. This infra red divergence can be 
removed if one assumes that the box containing the radiation is large but finite. In 
this case the k integration has a lower cut off at some small value E. I f  s is large, the k 
integration then gives a term proportional to E ~ - ~ ' .  When analytically continued to 
s=O, this can be neglected in the limit E+O, corresponding to a large box. 

The gamma function f(s- 1) has a pole at s=O with residue - 1. Thus the 
generalised zeta fun6tion is zero at s=O and 

thus the partition function for scalar thermal radiation at temperature Tin a box of 
volume V is given by 

x 2  VT' 
90 

logZ= ~ . 
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Note that because [(O)=O, the partition function does not depend on the 
undetermined normalization parameter p. However, this will not in general be the 
case in a curved space background. 

From the partition function one can calculate the energy, entropy and pressure 
of the radiation. 

d n2 E =  - -logZ= - vT4 , dB 30 
(3.10) 

(3.11) 
2n2 
45 

S=fiE+logZ=---VTJ, 

d rr2 
d V 90 

P = / ? - l  -logZ= - P .  (3.12) 

One can calculate the partition functions for other fields in flat space in a similar 
manner. For a charged scalar field there are twice the number of eigenfunctions so 
that logZ is twice the value given by Equation (3.9). In the case of the 
electroniagnetic field the operator A in the action integral is degenerate because of 
the freedom to make electromagnetic gauge transformations. One therefore has, as 
in the gravitational case, to take the path integral only over fields which satisfy some 
gauge condition and to take into account the Jacobian from the space of all fields 
satisfying the gauge condition. When this is done one again obtains a value log2 
which is twice that of Equation (3.9). This corresponds to the fact that the electro- 
magnetic field has two polarization states. 

One can also use the zeta function technique to calculate the Casimir effect 
between two parallel reflecting planes. In this case instead of summing over all field 
configurations which are periodic in imaginary time, one sums over fields which are 
zero on the plates. Defining 2 to be the path integral over all such fields over an 
interval of imaginary time r one has 

xz A7h- 
720 ' 

l0gZ = (3.13) 

where h is the separation and A the area of the plates. Thus the force between the 
plates is 

(3.14) 

4. The Heat Equation 

In situations in which one does not know the eigenvalues of the operator A, one 
can obtain some information about the generalized zeta function by studying the 
heat equation. 

(4.1) 

here .Y and y represent points in the four dimensional spacetime manifold, t is a fifth 
dimension of parameter time and the operator A is taken to act on the first 

d 
- F ( x ,  y, t )  + AF(x,  y, t ) = O  
dt 

153 



I 40 S. W. Hawking 

argument of F. With the initial conditions 

F(x,y,0)=6(x,y) (4.2) 

the heat kernel F represents the diffusion over the spacetime manifold in parameter 
time t of a unit quantity of heat (or ink) placed at the pointy at t = 0. One can express 
F in terms of the eigenvalues and eigenfunctions of A : 

(4.3) 

In the case of a field 4 with tensor or spinor indices, the eigenfunctions will carry a 
set of indices at the point x and a set at the point y. If one puts x = y, contracts over 
the indices at x and y and integrates over all the manifold one obtains 

Y ( f ) =  jTrF(x, x, t)@o)1/2d4~= xexp( - A n t ) .  
n 

The generalized zeta function is related to Y(t)  by a Mellin transform: 

(4.4) 

A number of authors e.g. [ 1-43 have obtained asymptotic expansions for F and 
Y valid as t -*O+.  In the case that the operator A is a second order Laplacian type 
operator on a four dimensional compact manifold. 

where the coefficients B, are integrals over the manifold of scalar polynomials in the 
metric, the curvature tensor and its covariant derivatives, which are of order 2n in 
the derivatives of the metric 

i.e. B, = ~b , (g , )1 ’Zd4~  . 

DeWitt [1,2] has calculated the b, for the operator - O+rR 

h,=(4x)-’ 

b = ( 4 ~ ) -  ’(k - r )  R 
b, = (28801~’)- ’ 

* [RakdRabcd- RobRob+30(1 -6t)2R2+(6-30()OR]. 

(4.7) 

acting on scalars, 

(4.8) 

Note that b ,  is zero when t = which corresponds to a conformally invariant scalar 
field. 

In the case of a non-compact spacetime manifold one has to impose boundary 
conditions on the heat equation and on the eigenfunctions of the operator A. This 
can be done by adding a boundary to the manifold and requiring the field or its 
normal derivative to be zero on the boundary. An example is the case of a black hole 
metric such as the Euclidean section of the Schwarzschild solution in which one 
adds a boundary at some radius r=rW This boundary represents the walls of a 
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perfectly reflecting box enclosing the black hole. For a manifold with boundary the 
asymptotic expansion for Y takes the form [20]. 

Y ( t )  = c (B ,  + c,y- , 
n 

where, as before, B, has the form (4.7) and 

(4.9) 

where cn is a scalar polynomial in the metric, the normal to the boundary and the 
curvature and their covariant derivatives of order 2n- 1 in the derivatives of the 
metric and It is the induced metric on the boundary. The first coefficient co is zero 
because their is no polynomial of order - 1. McKean and Singer [3] showed that 

c - K when 5 = O  where K is the trace of the second fundamental form of the 

boundary. I n  thc case of a Schwarzscliild black hole in a spherical box of radius 
ro, t2 must be zero in the limit of large ro because all polynomials of degree 3 in the 
derivatives of the metric go down faster than 1-6 '. 

I n  a compact manifold with or without boundary with a strongly elliptical 
metric go the eigenvalues ofa Laplacian type operator A will bediscrete. I f  thereare 
any zero cipcnvalues they have to be omitted from the definition of the generalized 
zeta function and dealt with separately. This can be done by defining a new operator 
2 = A  - P where P denotes projection on the zero eigenfunctions. Zero eigenvalues 
have important physical effects such as the anomaly in the axial vector current 
conservation [21,22]. Let c>O be the lowest eigenvalue of (from now on I shall 
simply use A and assume that any zero eigenfunctions have beem projected out). 
Then 

- 1  
' - 48n 

(4.10) 

As f+cc, ,  Y - v - " .  Thus thesecond intcgrai in Equation (4.lO)converges for all s. I n  
the first integral one can use the asymptotic cxpression (4.9). This gives 

(4.1 1) 

Thus has a pole at s = 2  with residue B, and a pole at s= 1 with residue B ,  +C,. 
There would be a pole at s = O  but i t  is cancelled out by the pole in T(s). Thus 
((O)= Bz + Cz. Similarly thc valucs of 5 at ncgativc integer values of s arc given by 
(4.1 1) and (4.10). 

5. Other Methods of Regularization 

A commonly used method to evaluate the determinant of the operator A is to start 
with the integrated heat kernel 

Y ( t ) =  xexp(-l , t) .  
n 
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Multiply by exp(-m2t) and integrate from t = O  to t =  00 

then integrate over mz from d = O  to m Z = a  and interchange the orders of 
integration to obtain 

m 

f - Y(t)dt = [ c' log(l, + / I ? , ) ]  . 
0 n 0 

(5.3) 

One then throws away the value of the righthand side of (5.3) at the upper limit and 
claims that 

log det A = C logrl, 
oc 

= -  jt-'Y(t)dr 
0 

(5.4) 

This is obviously a very dubious procedure. One can obtain the same result from the 
zeta function method in the following way. One has 

log det A = - c(0) 

Near s = 0 

1 
- =s+ys2+0(sJ), w 

where y is Euler's constant. 
Thus 

r a 

logdetA=-Lim (1+2ys)S F ' Y ( r ) d r  
s-0  I 0 

a, 

+ ( s + y s 2 )  j I"-  I logr Y(r)&].  
0 

(5.7) 

I f  one ignores the fact that the two integrals in Equation (5.7) diverged when s=O, 
one would obtain Equation (5.4). Using the asymptotic expansion for Y, one sees 
that the integral in Equation (5.4) has a t - ' ,  t - ' ,  and a logt divergence at the lower 
limit with coefficients i B o ,  B,, and B, respectively. The first of these is often 
subtraced out by adding an infinite cosmological constant to the action while the 
second is cancelled by adding an infinite multiple of the scalar curvature which is 
interpreted as a renormalization of the gravitational constant. The logarithmic term 
requires an infinite counter term of a new type which is quadratic in the curvature. 

To obtain a finite answer from Equation (5.4) dimensional regularization is 
often used. One generalizes the heat equation from 4 +  1 dimensions to 2 0 +  1 
dimensions and then subtracts ou t  the pole that occurs in (5.4) at 20=4.  As 
mentioned in the introduction, this is ambiguous because there are many ways that 
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one could generalize a curved spacetime to 2 0  dimensions. The simplest generali- 
zation would be to take the product of the four dimensional spacetime manifold 
with 20-4 flat dimensions. In this case the integrated heat kernel Y would be 
multiplied by ( 4 ~ t ) ~ - ~ .  Then (5.4) would become 

OD 

log detA = - t'-"'(4~)~-"'Y(t)dt 
0 

This has a pole at 2 0  =4 with residue i(0) and finite part - i'(O)+ (8 + log4lr) x ((0). 
Thus, the value of the log Z derived by the dimensional regularization using flat 
dimensions agrees with the value obtained by the zeta function method up to a 
multiple of ((0) which can be absorbed in the normalization constant. However, 
if one extended to h+ I dimensions in some more general way than mercly 
adding flat dimensions, the integrated heilt kernel would have the form 

where the coefficients Bn(w) depend on the dimensions 20.  The finite part at w = 2 
would then acquire an extra term B;(2) .  This could not be absorbed in the 
normalization constant p. One therefore sees that the zeta function method has the 
conceptual advantages that it avoids the dubious procedures used to obtain 
Equation (5.4), it does not require the subtraction of any pole term or the addition of 
infinite counter terms, and it is unambiguous unlike dimensional regularization 
which depends on how one generalizes to 2~ dimensions. 

6. Scaling 

In this Section I shall consider the behaviour of the partition function 2 under a 
constant scale transformation of the metric 

4ab = b a , ,  * (6.1) 
If A is a Laplacian type operator for a zero rest mass field, the eigenvalues transform 
as 

A m = k - ' A n  . (6.2) 

Thus the new generalized zeta function is 

t ( S )  = W s )  

and 

log det A = log det A - logkC(0) . 
Thus 

log2 = log2 + t logkC(0) 

+ (logP - logp)C(O) * 

(6.3) 

(6.4) 
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If one assumed that the normalization constant p remained unchanged under a 
scale transformation, the last term would vanish. This assumption is equivalent to 
assuming that the measure in the path integral over all configurations of the field 4 
is defined not on a scalar field but on a scalar density of weight $. This is because the 
eigenfunctions of the operator A would have to transform according to 

(6.6) I& = k -  ' +,, 
in order to maintain the normalization condition (2.6). The coefficients Q, of the 
expansion of a given scalar field 4 would therefore transform according to 

ii, = ka, (6.7) 

j j = k - ' p  (6.8) 

and the normalization constant p would transform according to 

if the measure is defined on the scalar field itself, i.e. i f  

dC41= n,d+(x) * (6.9) 

However if  the measure is defined on densities of weight i, i.e. 

(6.1 0) 

then the normalization parameter 
The weight of the measure can be deduced from considerations of unitarity. In 

the case of a scalar field one can use the manifestly unitary formalism of summing 
over all particle paths. This gives the conformally invariant scalar wave equation if 
the fields are taken to be densities of weight $ [23). By contrast, the "minimally 
coupled" wave equation &=O will be obtained i f  the weight is 1. In  the case of a 
gravitational field itself one can use the unitary Hamiltonian formalism. From this 
Fadeev and Popov El71 deduce that the measure is defined on densities of weight $ 
and is scale invariant. Similar procedures could be used to find the weight of the 
measure for other fields. One would expect it to be 4 for massless fields. 

These scaling arguments give one certain amounts of information about the 
partition function. In DeSitter space they determine it up to the arbitrariness of the 
normalization parameter p because DeSitter space is completely determined by the 
scale. Thus 

(6.11) 

where r is the radius of the space and ro is related t o p  In the case of a Schwarzschild 
black hole of mass M in a large spherical box of radius r,, 

is unchanged. 

log2 = B ,  logr/ro , 

logZ = B ,  log M/M, + J(ro  M - ') , (6.1 2) 

where again M, is related to p. I f  the radius of the box is large compared to M, one 
would expect that the partition function should approach that for thermal radiation 
at temperature T=(8nM)- '  in flat space, Thus one would expect 
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It should be possible to verify this and to calculate the lower order terms by 
developing suitable approximations to the eigenvalues of the radial equation in the 
Schwarzschild solution. In particular f and log2 will be finite. This contrasts with 
the result that one would obtain if one naively assumed that the thermal radiation 
could be described as a fluid with a density of log2 equal to n2/90T3 where 
F= T(1- 2Mr-  ')- is the local temperature. Near the horizon would get very 
large because of a blueshift effect and so log2 would diverge. 

For a conformally invariant scalar field B ,  = - & for DeSitter space and & for 
the Schwarzschild solution. The fact that B, is positive in the latter case may 
provide a natural cut off in the path integral when one integrates over background 
metrics will all masses M. If the measure on the space of gravitational fields is scale 
invariant then the action of the background fields will give an integral of the form 

W 

exp(-4aM2)M-'dM. 
0 

(6.14) 

This converges nicely at large M but has a logarithmic divergence at M = O .  
However if one includes a contribution of the thermal radiation the integral is 
modified to 

W 

e~p( -4aM' )M- '+~~dM . 
0 

(6.15) 

This converges if B ,  is positive. Such a cut off can however be regarded as suggestive 
only because it ignores the contributions of high order terms which will be 
important near M =O. One might hope that these terms might in turn be represented 
by further black hole background metrics. 

7. Energy-Momeaturn Tensor 

By functionally differentiating the partition function one obtains the energy 
momentum tensor of the thermal radiation 

The energy momentum tensor will be finite even on the event horizon ofa black hole 
background metric despite the fact that the blueshifted temperature T diverges 
there. This shows that the energy momentum tensor cannot be that of a perfect fluid 
with pressure equal to one third the energy density. 

One can express the energy momentum tensor in terms of derivatives of the heat 
kernel F: 

(7.2) 
The second term on the right of (7.2) will vanish i f  one assumes that p does not 
change under variations of the metric. This will be the case if  the measure is defined 
on densities of weight 4. The third term can be expressed as the variation of an 

s log2 = iSC'(0) - p- 'Spt;(O) - t Iog($ap2)sy(o). 
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integral quadratic in the curvature tensor and can be evaluated directly. To 
calculate the first term one writes 

Therefore 

To calculate 6 F  one uses the varied heat equation 

( A  + k) 6F(s,j:r)+SAF(x,y,t)=O 

with 6 [ ( g o ( y ) ) 1 / 2 F ( x ,  y,  O)] =O. The solution is 

(7.5) 

t 

S[(go(y)”2F(x ,  y, t ) ]  = - F(x, z, t - t ‘ )SAF(z,  y ,  t‘)g0Cy)B0(z)’~2d4zdt’ . (7.6) 
0 

Therefore 

Where the operator 6A acts on the first argument of F. 

metric. Integrating by parts, one obtains an expression for 
covariant derivatives. For a conformally invariant scalar field. 

The operator 6A involves S$b and its covariant derivatives in the background 
in terms of F and its 

6B, 
- log(iap2) - (go) -  . 

’guh 

Where indices placed before or after F indicates differentiation with respect to the 
first or second arguments respectively and the two arguments are taken at the point 
x at which the energy momentum tensor is to be evaluated. In an empty spacetime 
the quantity 8, is the integral of a pure divergence so B ,  vanishes. 

8. The Trace Anomaly 

Naively one would expect c, the trace of the energy momentum tensor, would be 
zero for a zero rest mass field. However this is not the case as can be seen either 
directly from (7.8) or by the following simple argument. Consider a scale 
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transformation in which the metric is multiplied by a factor k =  1 + E .  Then 
&ab "&gab and 

if the measure is defined on densities of weight i. Thus for the case of a conformally 
invariant scalar field 

[R,,, Rukd - R,, Rnb -k OR J . 1 
2880~' 

q=- 

The trace anomalies for other zero rest mass fields can be calculated in a similar 
manner. 

These results for the trace anomaly agree with those of a number of other 
authors [7-121. However, they disagree with some calculations by the point 
separation method [24] which do not obtain any anomaly. The trace anomaly for 
DeSitter completely determines the energy momentum because it must be a 
multiple of the metric by the symmetry. In a two dimensional black hole in a box the 
trace anomaly also determines the energy momentum tensor and in the four 
dimensional case it  determines it up to one function of position [25]. 

9. Higher Order Terms 

The path integral over the terms in the action which are quadratic in the 
fluctuations about the background fields are usually represented in perturbation 
theory by a single closcd loop without any vertices. Functionally differentiating 
with respect to thc background metric to obtain the energy momentum tensor 
corresponds to introducing a vertex coupling the field to the gravitational field. If 
one then feeds this energy momentum tensor as a perturbation back into the 
Einstein equations for the background field, the change in the logZ would be 
described by a diagram containing two closed loops each with a gravitational vertex 
and with the two vertices joined by a gravitational propagator. Under a scale 
transformation in which the metric was multiplied by a constant factor k, such a 
diagram would be multiplied by k -  '. Another diagram which would have the same 
scaling behaviour could be obtained by functionally differentiating logZ with 
respect to the background metric at two different points and then connecting these 
points by a gravitational propagator. In fact all the higher order terms have scaling 
behaviour k-"  where n22. Thus one would expect to make a negligible 
contribution to the partition function for black holes of significantly more than the 
Planck mass. The higher order terms will however be important near the Planck 
mass and will cause the scaling argument in Section 6 to break down. One might 
nevertheless hope that just as a black hole background metric corresponds to an 
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infinite sequence of higher order terms in a perturbation expansion around flat 
space, so the higher order terms in expansion about a black hole background might 
in turn be represented by more black holes. 
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15. The path-integral approach to quantum gravity 

S. W. HAWKING 

15.1 Introduction 

Classical general relativity is a very complete theory. It prescribes not 
only the equations which govern the gravitational field but also the 
motion of bodies under the influence of this field. However it fails in two 
respects to give a fully satisfactory description of the observed universe. 
Firstly, it treats the gravitational field in a purely classical manner 
whereas all other observed fields seem to be quantized. Second, a number 
of theorems (see Hawking and Ellis, 1973) have shown that it leads 
inevitably to singularities of spacetime. The singularities are predicted to 
occur at the beginning of the present expansion of the universe (the big 
bang) and in the collapse of stars to form black holes. At these singulari- 
ties, classical general relativity would break down completely, or rather it 
would be incomplete because it would not prescribe what came out of a 
singularity (in other words, it would not provide boundary conditions for 
the field equations at the singular points). For both the above reasons one 
would like to develop a quantum theory of gravity. There is no well 
defined prescription for deriving such a theory from classical general 
relativity. One has to use intuition and general considerations to try to 
construct a theory which is complete, consistent and which agrees with 
classical general relativity for macroscopic bodies and low curvatures of 
spacetime. It has to be admitted that we do not yet have a theory which 
satisfies the above three criteria, especially the first and second. However, 
some partial results have been obtained which are so compelling that it is 
difficult to believe that they will not be part of the final complete picture. 
These results relate to the conection between black holes and thermo- 
dynamics which has already been described in chapters 6 and 13 by 
Carter and Gibbons. In the present article itwill be shown how this 
relationship between gravitation and thermodynamics appears also when 
one quantizes the gravitational field itself. 

There are three main approaches to quantizing gravity: 
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1 The operator approach 

In this one replaces the metric in the classical Einstein equations by a 
distribution-valuec‘ operator on some Hilbert space. However this would 
not seem to be a very suitable procedure to follow with a theory like 
gravity, for uhich the field equations are non-polynomial. It is difficult 
enough to make sense of the product of the field operators at the same 
spacetime point let alone a non-polynomial function such as the inverse 
metric or the square root of the determinant. 

2 The canonical approach 

In this one introduces a family of spacelike surfaces and uses them to 
construct a Hamiltonian and canonical equal-time commutation rela- 
tions. This approach is favoured by a number of authors because it seems 
to be applicable to strong gravitational fields and it is supposed to ensure 
unitarity. However the split into three spatial dimensions and one time 
dimension seems to be contrary to the whole spirit of relativity. 
Moreover, it restricts the topology of spacetime to be the product of the 
real line with some three-dimensional manifold, whereas one would 
expect that quantum gravity would allow all possible topologies of 
spacetime including those which are not products. It is precisely these 
other topologies that seem to give the most interesting effects. There is 
also the problem of the meaning of equal-time commutation relations. 
These are well defined for matter fields on a fixed spacetime geometry but 
what sense does it make to say that two points are spacelike-separated if 
the geometry is quantized and obeying the Uncertainty Princ$le? 
For these reasons I prefer: 

3 The path-integral approach 

This too has a number of difficulties and unsolved problems but it seems 
to offer the best hope. The starting point for this approach is Feynman’s 
idea that one can represent the amplitude 

to go from a state with a metric g, and matter fields 4, on a surface SI to a 
state with a metric g2 and matter fields 4 2  on a surface S2, as a sum over all 
field configurations g and 4 which take the given values on the surfaces SI 
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R.4 

Figure 15.1. The amplitude (g2, &, &lgl, S,) to go from a metric gl and matter fields 
4,. on a surface s1 to 8 metric gz and matter fields tp2 on a surface sz is given by a path 
integral over all fields g. 6 which have the given values on S1 and Sz. 

and S2 (figure 15.1). More precisely 

(829 42, Szlgl,41, S1) = j D[g, 41 exp ( i rk ,  411, 

where D[g, 41 is a measure on the space of all field configurations g and 
4, I[g, 41 is the action of the fields, and the integral is taken over all fields 
which have the given values on S1 and S2. 

In the above it has been impticitly assumed either that the surfaces S1 
and S2 and the region between them are compact (a ‘closed’ universe) or 
that the gravitational and matter fields die off in some suitable way at 
spatial infinity (the asymptotically flat space). To make the latter more 
precise one should join the surfaces SI and Sz by a timelike tube at large 
radius so that the boundary and the region contained within it are 
compact, as in the case of a closed universe. It will be seen in the next 
section that the surface at infinity plays an essential role because of the 
presence of a surface term in the gravitational action. 

Not all the components of the metrics gl and g2 on the boundary are 
physically significant, because one can give the components gdnb arbi- 
trary values by diff eomorphisms or gauge transformations which move 
points in the interior, M, but which leave the boundary, dM, fixed. Thus 
one need specify only the three-dimensional induced metric h on dM and 
that only up to diffeomorphisms which map the boundary into itself. 

In the following sections it will be shown how the path integral 
approach can be applied to the quantization of gravity and how it leads to 
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the concepts of black hole temperature and intrinsic quantum mechanical 
entropy. 

15.2 The action 

The action in general relativity is usually taken to be 

1 112 4 1/2 4 I = - J  ( R  -2A)(-g) d x +  J L,,,(-g) d x, (15.1) 
167rG 

where R is the curvature scalar, A is the cosmoIogica1 constant, g is the 
determinant of the metric and L, is the Lagrangian of the matter fields. 
Units are such that c = h = k = 1. G is Newton’s constant and I shall 
sometimes use units in which this also has a value of one. Under variations 
of the metric which vanish and whose normal derivatives also vanish on 
dM, the boundary of a compact region M, this action is stationary if and 
only if the metric satisfies the Einstein equations: 

Rob - tgabR 4- Agab = 8nGTcs6, (15.2) 

where Tab = 4(-g)-1’2(6Lm/6g&) is the energy-momentum tensor of 
the matter fields. However this action is not an extremum if one allows 
variations of the metric which vanish on the boundary but whose normal 
derivatives do not vanish there. The reason is that the curvature scalar R 
contains terms which are linear in the second derivatives of the metric. By 
integration by parts, the variation in these terms can be converted into an 
integral over the boundary which involves the normal derivatives of the 
variation on the boundary. In order to cancel out  this surface integral, and 
so obtain an action which is stationary for solutions of the Einstein 
equations under all variations of the metric that vanish on the boundary, 
one has to add to the action a term of the form (Gibbons and Hawking, 
1977 a): 

K(*h)”’ d3x + C, --I 87rG (15.3) 

where K is the trace of the second fundamental form of the boundary, h is 
the induced metric on the boundary, the plus or minus signs are chosen 
according to whether the boundary is spacelike or timelike, and C is a 
term which depends only on the boundary metric h and not on the values 
of g at the interior points. The necessity for adding the surface term (15.3) 
to the action in the path-integral approach can be seen by considering the 

166 



Chapter 15. The path-integral approach to quantum gravity 

R. I Time1 i ke 
tube 

Figure 15.2. Only the induced metric h need be given on the boundary surface. In the 
asymptotically flat case the initial and final surfaces should be joined by a timelike tube at 
large radius to obtain a compact region over which to perform the path integral. 

Figure 15.3. The amplitude to go from the metric h ,  on the surface S1 to the metric k, on 
the surface S, should be the sum of the amplitude to go by all metrics h2 on the intermediate 
surface &. This will be true only if the action contains a surface term. 
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situation depicted in figure 15.3, where one considers the transition from 
a metric h l ,  on a surface S , ,  to a metric h2 o n  a surface S2 and then to a 
metric h3 o n  a later surface &. One would want the amplitude to go from 
the initial to the final state to be obtained by summing over all states on 
the intermediate surface Sz, i.e. 

@3, Sdhi,  SI)= c (hz ,  S21h1, Si)(h,, S31hz. s2). (15.4) 
hi 

This will be true if  and only if  

(1 5.5)  

where g, is the metric between SI and SZ. gZ is the metric between S2 and 
S3, and [gl +g2) is the metric on the regions between S1 and SS obtained 
by joining together the two regions. Because the normal derivative of g1 
at SZ will not in general be equal to that of g2 at SZ, the metric [gl + g2] will 
have a &function in the Ricci tensor of strength 2(K:b - K:b), where Kfb 
and K qb are the second fundamental forms of the surface S2 in the metrics 
gl and gZ respectively, defined with respect to the future-directed normal. 
This means that the relation (15.5) will hold if and only if the action is the 
sum of (15.1) and (15.3), i.e. 

112 4 1 
16nG 

(R - 21I)(-g)’’~ d4x + I L,(-g) d x 

+L K(*h)’l2 d’x + C. 
8nG 

(15.6) 

The appearance of the term C in the action is somewhat awkward. One 
could simply absorb it into the renormalization of the measure D(g, 41. 
However, in the case of asymptotically flat metrics it is natural to treat it 
so that the contribution from the timelike tube at large radius is zero when 
g is the flat-space metric, q. Then 

C=-- K0(*h)’/* d3x, 
87rG 

(15.7) 

where KO is the second fundamental form of the boundary imbedded in 
flat space. This is not a completely satisfactory prescription because a 
general boundary metric h cannot be imbedded in flat space. However in 
an asymptotically flat situation one can suppose that the boundary will 
become asymptotically imbeddable as one goes to larger and larger radii. 
Ultimately I suspect that one should do away with all boundary surfaces 
and should deal only with closed spacetime manifolds. However, at the 
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present state of development it  is very convenient to use non-compact, 
asymptotically flat metrics and to evaluate the action using a boundary at 
large radius. 

A metric which is asymptotically flat in the three spatial directions but 
not in time can be written in the form 

ds2 = -( 1 - 2A4,r-I) dt2 + (I  + 2M,r-') dr2 

+r2(dBZ+sinZ 8 d42)+O(r-2). (15.8) 

If the metric satisfies the vacuum Einstein equations (A = 0) near infinity 
then M, = M,, but in the path integral one considers all asymptotically flat 
metrics. whether o r  not they satisfy the Einstein equation. In such a 
metric it is convenient to  choose the boundary dM to be the t-axis times a 
sphere of radius to. The area of aM is 

(-h)'l2 d3x = 47rrt (1 - M,ro' + O(ri2)) dt.  (15.9) J 
The integral of the trace of the second fundamental form of dM is given 
by I K(-h)'/' d3x = 2 I ( - h )  1 / 2  d 3 x, 

an 
(15.10) 

where d/an indicates the derivative when each point of dM is moved out 
along the unit normal. Thus 

K(-h)'12 d3x = (8mr0-4~M, -87rMs+ O(rG2)) dt. (15.1 I )  J 
For the flat space metric, q, KO= 2r i* .  Thus 

( K  - Ko)(-h)"2 d3x = - I (Mt-2M,)dt. (15.12) 'I 815G 2 G  

In particular for a solution of the Einstein equation with mass M as 
measured from infinity, M, = M, = M and the surface term is 

-&I dt+O(ri ').  
2 G  

(I 5.13) 

15.3 Complex spacetime 

For real Lorentzian metrics g (i.e. metrics withsignature - +++)and real 
matter fields 4, the action I[g, 41 will be real and so the path integral will 
oscillate and will not converge. A related difficulty is that to find a field 
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configuration which extremizes the action between given initial and final 
surfaces, one has to solve a hyperbolic equation with initial and final 
boundary values. This is not a well-posed problem: there may not be any 
solution or there may be an infinite number, and if there is a solution i t  
will not depend smoothly on the boundary values. 

in ordinary quantum field theory in flat spacetime one deals with this 
difficulty by rotating the time axis 90" clockwise in the complex plane, i.e. 
one replaces t by -iT. This introduces a factor of -i into the volume 
integral for the action I. For example, a scalar field of mass m has a 
Lagrangian 

(15.14) L=-&.d$.bg -2m 4 . tab 1 2 2  

Thus the path integral 

(15.15) 

becomes 

where 1 = - i l  is called the 'Euclidean' action and is greater than or equal 
to zero for fields d, which are real on the Eudidean space defined by real 7, 

x, y, z. Thus the integral over all such configurations of the field 4 will be 
exponentially damped and should therefore converge. Moreover the 
replacement of t by an imaginary coordinate 7 has changed the metric qab 
from Lorentzian (signature - + + +) to Euclidean (signature + + + +). 
Thus the problem of finding an extremum of the action becomes the 
well-posed problem of solving an elliptic equation with given boundary 
values. 

The idea, then, is to perform all path integrals on the Euclidean section 
(T, x,  y,  I real) and then analytically continue the results anticlockwise in 
the complex r-plane back to Lorentzian or Minkowski section (t, x ,  y,  t 
real). As an example consider the quantity 

Z ( J ]  = D[4] exp-(&$A4 + J 4 ) d x  dy d r  d7, (15.17) 

where A is the second-order differential operator- -0+ m2, 0 is the 
four-dimensional Laplacian and J ( x )  is a prescribed source field which 
dies away at large Euclidean distances. The path integral is taken over all 
fields 4 that die away at large Euclidean distances. One can write Z [ J ]  
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where A-'(xl, x2) is the unique inverse or Green's function for A that 
dies away at large Euclidean distances, 

A-'J(x) = I A-'(x, x'Y(x') d'i,' (15.19) 

JA-'J = JJ' J(x)A-'(x, x')J(x') d4x d4x'. (1 5.20) 

The measure D(q5 J is invariant under the translation 4 --* 4 - A-'J. Thus 

Z [ J ]  = exp (iJA-'J)Z[O]. (15.21) 

Then one can define the Euclidean propagator or two-point correlation 

= A-1(~2r~I ) .  (1 5.22) 

One obtains the Feynman propagator by analytically continuing 
A-'(xz, xl)anticlockwise in the complex r2 - tl-plane. 

It should be pointed out  that this use of the Euclidean section has 
enabled one to define the vacuum state by the property that the fields q5 
die off at large positive and negative imaginary times r. The time-ordering 
operation usually used in the definition of the Feynman propagator has 
been automatically achieved by the direction of the analytic continuation 
from Euclidean space, because if Re ( r 2 -  t l ) > O ,  ( O ~ ~ ( X Z ) ,  4(x1)10) is 
holomorphic in the lower half t2 - tl-plane, i.e. it is positive-frequency (a 
positive-frequency function is one which is holomorphic in the lower half 
r-plane and which dies off at large negative imaginary t). 

Another use of the Euclidean section that will be important in what 
follows is to construct the canonical ensemble for a field 4. The amplitude 
to propagate from a configuration on a surface at time rl to a 
configuration 42 on a surface at time t2 is given by the path integral 

(15.23) 

Using the Schrodinger picture, one can also write this amplitude as 

(4zlexP (-iH(12 - t1))141). 
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Put r2 - I l  = -i@, 42 = 41 and sum over a complete orthonormal basis of 
configurations 4,. One obtains the partition function 

= C exp (-PEn ) (15.24) 

of the field 4 at a temperature T = o-', where En is the energy of the state 
4". However from (15.23) one can also represent Z as a Euclidean path 
integral 

(15.25) 

where the integral is taken over all fields 4 that are real on the Euclidean 
section and are periodic in the imaginary time coordinate 7 with period p. 
As before one can introduce a source J and obtain a Green's function by 
functionally differentiating Z [ J ]  with respect to J at two different points. 
This will represent the two-point correlation function or propagator for 
the field 4, not this time in the vacuum state but in the canonical ensemble 
at temperature T = p-'.  In the limit that the period p tends to infinity, 
this thermal propagator tends to the normal vacuum Feynman propa- 
gator. 

It seems reasonable to apply similar complexification ideas to the 
gravitational field, i.e. the metric. For example, supposing one was 
considering the amplitude to go from a metric hl on a surface S1 to a 
metric hl on a surface Sl ,  where the surfaces S1 and S2 are asymptotically 
flat, and are separated by a time interval t at infinity. As explained in 
section 15.1, one would join S1 and S2 by a timelike tube of length t at 
large radius. One could then rotate this time interval into the complex 
plane by introducing an imaginary time coordinate 7 = ir. The induced 
metric on the timelike tube would now be positive-definite so that one 
would be dealing with a path integral over a region M on whose boundary 
the induced metric h was positive-definite everywhere. One could there- 
fore take the path integral to be over all positive-definite metrics g which 
induced the given positive-definite metric h on dM. With the same choice 
of the direction of rotation into the complex plane as in flat-space 
Euclidean theory, the factor (-g)'/' which appears in the volume element 
becomes -i(g)'l2, so that the Euclidean action, f = -iI, becomes 

167rG 

172 

(15.26) 



Chapter 15. The path-integral approach to quantum gravity 

The problem arising from the fact that the gravitational part of this 
Euclidean action is not positive-definite will be discussed in section 15.4. 

The state of the system is determined by the choice of boundary 
conditions of the metrics that one integrates over. For example, it would 
seem reasonable to expect that the vacuum state would correspond to 
integrating over all metrics which were asymptotically Euclidean, i.e. 
outside some compact set as they approached the flat Euclidean metric on 
R4. Inside the compact set the curvature might be large and the topology 
might be different from that of R'. 

As an example, one can consider the canonical ensemble for the 
gravitational fields contained in a spherical box of radius ro at a tempera- 
ture T, by performing a path integral over all metrics which would fit 
inside a boundary consisting of a timelike tube of radius ro which 
was periodically identified in the imaginary time direction with period 
p = T-'. 

In compiexifying the spacetime manifold one has to treat quantities 
which are complex on the real Lorentzian section as independent of their 
complex conjugates. For example, a charged scalar field in real Lorent- 
zian spacetime may be represented by a comglex Eeld 4 and its complex 
conjugate 6. When going to complex spacetime one has to analytically 
continue 4 as a new field 6 which is independent of 4. The same applies 
to spinors. In real Lorentzian spacetime one has unprimed spinors AA 
which transform under SL(2, C) and primed spinors which transform 
under the complex conjugate group SL(2, C). The complex conjugate of 
an unprimed spinor is a primed spinor and vice versa. When one goes to 
complex spacetime, the primed and unprimed spinors become indepen- 
dent of each other and transform under independent groups SL(2, C) and 
cL(2, C) respectively. If one analytically continues to a section on which 
the metric is positive-definite and restricts the spinors to lie in that 
section, the primed and unprimed spinors are still independent but these 
groups become SU(2) and St (2 )  respectively. For example, in a Lorent- 
zian metric the Weyl tensor can be represented as 

When one complexifies, $A'B*c'D* is replaced by an independent field 
&ASECD.. In particular one can have a meMc in which JIABCD # 0, but 
(LIA'B~cw 0. Such a metric is said to be pnfonnafly self-dual and 
satisfies 

(15.28) 
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The metric is said to be self-dual if 

Rabcd = *Rabcd 

which implies 
R o b  = 0. Cabcd = * C a b c d .  (1 S .29) 

A complexified spacetime manifold M with a complex self-dual or 
conformally self-dual metric gab may admit a section on which the metric 
is real and positive definite (a ‘Euclidean’ section) but it will not admit a 
Lorentzian section, i.e. a section on which the metric is real and has a 
signature - + + +. 

15.4 The indefiniteness of the gravitational action 

The Euclidean action for scalar or Yang-Mills fields is positive-definite. 
This means that the path integral over all configurationsof such fields that 
are real on the Euclidean section converges, and that only those 
configurations contribute that die away at large Euclidean distances, 
since otherwise the action would be infinite. The action for fermion fields 
is not positive-definite. However, one treats them as anticommuting 
quantities (Berezin, 1966) so that the path integral over them converges. 
On the other hand, the Euclidean gravitational action is not positive- 
definite even for real positive-definite metrics. The reason is that 
although gravitational waves carry positive energy, gravitational poten- 
tial energy is negative because gravity is attractive. Despite this, in 
classical general relativity it seems that the total energy or mass, as 
measured from infinity, of any asymptotically flat gravitational field is 
always non-negative. This is known as the positioe energy conjecture (Brill 
and Deser, 1968; Geroch, 1973). What seems to happen is that whenever 
the gravitational potential energy becomes too large, an event horizon is 
formed and the region of high gravitational binding undergoes gravita- 
tional collapse, leaving behind a black hole of positive mass. Thus one 
might expect that the black holes would play a role in controlling the 
indefiniteness of the gravitational action in quantum theory and there are 
indications that this is indeed the case. 

To see that the action can be made arbitrarily negative, consider a 
conformal transformation gab = R2&b, where R is a positive function 
which is equal to one on the boundary aM. 

d = Q-’R - 6R%Q 

R = R-’ K + 3 ~ - ’ ~ . , n  a, 

(1 5.30) 

( 1 5 . 3 1 )  
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where n B  is the unit outward normal to the boundary dM. Thus 

(n2R +6fLafLbgab -2Afl4)(g)'/* d4x 
1 f[gJ = -- 16nG I, 

- & I,, R2(K - K')(~I)'/~ d3x. (15.32) 

One sees that f may be made arbitrarily negative by choosing a rapidly 
varying conformal factor a. 

To deal with this problem it seems desirable to split the integration over 
all mctrics into an integration over conformal factors, followed by an 
integration over conformal equivalence classes of metrics. I shall deal 
separately with the case in which the cosmological constant A is zero but 
the spacetime region has a boundary aM, and the case in which A is 
nonzero but the region is compact without boundary. 

is 
governed by the conformally invariant scalar wave operator, A = 
-El+& Let {An, &}  be the eigenvalues and eigenfunctions of A with 
Dirichlet boundary conditions, i.e. 

A& = An4,, q5,, = 0 on aM. 

If A 1  = 0, then R-'dl is an eigenfunction with zero eigenvalue for the 
metric gab = R2gab. The nonzero eigenvalues and corresponding eigen- 
functions do not have any simple behaviour under conformal trans- 
formation. However they will change continuously under a smooth 
variation of the conformal factor which remains positive everywhere. 
Because the zero eigenvalues are conformally invariant, this shows that 
the number of negative eigenvalues (which will be finite) remains 
unchanged under a conformal transformation R which is positive every- 
where. 

In the former case, the path integral over the conformal factor 

Let a =  1 + y, where y = 0 on aM. Then 

=- - [ { (y -A- lR)A(y -A- lR) ) (g )  6 1/2 d 4 x 
16nG 
6 

16trG +-RA-'R +I[*] 

where y = ( y  -A-'R).  
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Thus one can write 

where I' is the first and second term on the right of (15.33) and I2 is the 
third term. 

I' depends only on the conformal equivalence class of the metric g, 
while I2 depends on the conformal factor. One can thus define a quantity 
X to be the path integral of exp (-I2) over all conformal factors in one 
conformal equivalence class of metrics. 

If the operator A has no negative or zero eigenvalues, in particular if g 
is a solution of the Einstein equations, the inverse, A-', will be well 
defined and the metric g:b = (1 +A-lR)'g,, will be a regular metric with 
R'= 0 everywhere. In this case I' will equal &I, which in turn will be 
given by a surface integral of K' on the boundary. It seems plausible to 
make the positive action conjecture : any asymptotically Euclidean, posi- 
tive-definite metric with R = O  has positive or zero action (Gibbons, 
Hawking and Perry, 1978). There is a close connection between this and 
the positive energy conjecture in classical Lorentzian general relativity. 
This claims that the mass or energy as measured from infinity of any 
Lorentzian, asymptotically flat solution of the Einstein equations is 
positive or zero if the solution develops from a non-singular initial 
surface, the mass being zero if and only if the metric is identically flat. 
Although no complete proof exists, the positive energy conjecture has 
been proved in a number of restricted cases or under certain assumptions 
(Brill, 1959; Brill and Deser, 1968; Geroch, 1973; Jang and Wald, 1977) 
and is generally believed. If it held also for classical general relativity in 
five dimensions (signature -++++), it would imply the positive action 
conjecture, because a four-dimensional asymptotically Euclidean metric 
with R = O  could be taken as time-symmetric initial data for a five- 
dimensional solution and the mass of such a solution would be equal to 
the action of the four-dimensional metric. Page (1978) has obtained some 
results which support the positive action conjecture. However he has also 
shown that it does not hold for metrics like the Schwarzschild solution 
which are asymptotically flat in the spatial directions, but are not in the 
Euclidean time direction. The significance of this will be seen later. 

Let go be a solution of the field equations. If I' increases under all 
perturbations away from go that are not purely conformal trans- 
formations, the integral over conformal classes will tend to converge. If 
there is some non-conformal perturbation, Sg, of go which reduces I ' ,  
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then in order to make the path integral converge one will have to inte- 
grate over the metrics of the form go+iSg. This will introduce a factor i 
into Z for each mode of non-conformal perturbations which reduces 1'. 
This will be discussed in the next section. For metrics which are far from a 
solution of the field equation, the operator A may develop zero or 
negative eigenvalues. When an eigenvalue passes through zero, the 
inverse, A-' ,  will become undefined and I' will become infinite. When 
thore are negative eigenvalues but not zero eigenvalues, A-' and I' will 
be well defined, but the conformal factor R = 1 + A-'R,  which transforms 
g to the metric g' with R '=  0, will pass through zero and so g' will be 
singular. This is very similar to what happens with three-dimensional 
metrics on time-symmetric initial surfaces (Brill. 1959). If h is a three- 
dimensional positive-definite metric on the initial surface, one can make a 
conformal transformation 6 = n4h to obtain a metric with d = 0 which 
will satisfy the constraint equations. If the three-dimensional conformally 
invariant operator B = -A + R / 8  has no zero or negative eigenvalues 
(which will be the case for metrics h sufficiently near flat space) the 
conformal factor R needed will be finite and positive everywhere. If, 
however, one considers a sequence of metrics h for which one of the 
eigenvalues of B passes through zero and becomes negative, the cor- 
responding R will first diverge and then will become finite again but will 
pass through zero so that the metric 6 will be singular. The interpretation 
of this is that the metric h contained a region with so much negative 
gravitational binding energy that it cut itself off from the rest of the 
universe by forming an event horizon. To describe such a situation one 
has to use initial surfaces with different topologies. 

It seems that something analogous may be happening in the four- 
dimensional case. In some sense one could think that metrics g for which 
the operator A had negative eigenvalues contained regions which cut 
themselves off from the rest of the spacetime because they contained too 
much curvature. One could then represent their effect by going to 
manifolds with different topologies. Anyway, metrics for which A has 
negative eigenvalues are in some sense far from solutions of the field 
equations, and we shall see in the next section that one can in fact evaluate 
path integrals only over metrics near solutions of the field equations. 
The operator A appears in I' with a min? sign. This means that in 

order to make the path integral over the conformai factors converge at a 
solution of the field equations, and in particula; at flat space, one has to 
take y to be purely imaginary. The prescription, therefore, for making the 
path integral converge is to divide the space of all metrics into conformal 

177 



The indefiniteness of the gravitational action 

equivalence classes. In each equivalence class pick the metric g' for which 
R' = 0. Integrate over all metrics g' = R'g', where 0 is of the form 1 +is. 
Then integrate over conformal equivalence classes near solutions of the 
field equations, with the non-conformal perturbation being purely 
imaginary for modes which reduce 1'.  

The situation is rather similar for compact manifolds with a A-term. In 
this case there is no surface term in the action and n o  requirement that 
f2 = 1 o n  the boundary. If g' = R2g, 

6 1/2 4 f[i] = -- (R2R +60;,fLbgab - 2 m 4 ) ( g )  d x. 
16wG 

(1 5.34) 

Thus quantum gravity with a A-term on a compact manifold is a sort of 
average of A44 theory over all background metrics. However unlike 
ordinary A44 theory, the kinetic term (VR)', appears in the action with a 
minussign. This means that the integration over the conformal factors has 
to be taken in a complex direction just as in the previous case. 

One can again divide the space of all the positive-definite metrics g on 
the manifold M into conformal equivalence classes. In each equivalence 
class the action will have one extremum at the vanishing metric for which 

= 0. In genera1 there will be another extremum at a metric g' for which 
R' = 4A, though in some cases the conformal transformation g' = n'g, 
where g is a positive-definite metric, may require a complex R. Putting 
g' = (1 + y)2g', one obtains 

f[d= -=-= (6yiay;bgab - 8 y 2 A  - 8y3A-  2y4A)(g')''2 d4x, 

(15.35) 

where V = I (g')' '2 d4x. 
If A is negative and one neglects the cubic and quartic terms in y ,  one 

obtains convergence in the path integral by integrating over purely 
imaginary y in a similar manner to what was done in the previous case. It 
therefore seems reasonable to adopt the prescription for evaluating path 
integrals with A-terms that one picks the metric g' in each conformal 
equivalence class for which R'  = 4A, and one then integrates over con- 
formal factors of the form a=  1 + is about g'. 

If A is positive, the operator -60-8A, which acts on the quadratic 
terms in 6, has at least one negative eigenvalue, 8 =constant. In fact it  
seems that this is the only negative eigenvalue. Its significance will be 
discussed in section 15.10. 
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15.5 The stationary-phase approximation 

One expects that the dominant contribution to the path integral will come 
from metrics and fields which are near a metric go, and fields 40 which are 
an extfemum of the action, i.e. a solution of the classical field equations. 
Indeed this must be the case if one is to recover classical general relativity 
in the limit of macroscopic systems. Neglecting for the moment, questions 
of convergence, one can expand the action in a Taylbr series about the 
background fields go. &, 

f [ g ,  41 = ![go, 401 +I&, 81 + higher-order terms, (15.36) 

where 

gob = gOab + gab, 4 = 40 8, 
and I& 61 is quadratic in the perturbations g and 4. If one ignores the 
higher-order terms, the path integral becomes 

log z = -f[go, 401 +log D[g, 81 exp (-Zz[#, 81). (15.37) 

This is known variously as the stationary-phase, WKB or one-loop 
approximation. One can regcrd the first term o?T the right of (15.37) as the 
contribution of the background fields to log 2. This will be discussed in 
sections 15.7 and 15.8. The second term on the right of (15.37) is called 
the one-loop term and represents the effect of quantum fluctuations 
around the background fields. The remainder of this section will be 
devoted to describing how one evaluates it. For simplicity I shall consider 
only the case in which the background matter fields, c$~,  are zero. The 
quadratic term I&, 61 can then be expressed as 12[g] + 12141 and 

log z = - f [ g o l +  log J exp (-lZ[+l)+log exp (-12[11). 

(1 S .38) 

I shall consider first the one-loop term for the matter fields, the second 
term on the right of (15.38). One can express fz[r$] as 

(1 s. 39) 

where A is a differential operator dependingon the background metric 
go. In the case of boson fields, which I shall consider first, A is a 
second-order diff erentiai operator. Let {A", &} be the eigenvalues and 
the corresponding eigenfunctions of A, with t$,, = 0 on dM in the case 
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where there is a boundary surface. The eigenfunctions, 4n,  can be 
normalized so that 

One can express an arbitrary field 4 which vanishes on aM as a linear 
combination of these eigenfunctions: 

(15.41) 

Similarly one can express the measure on the space of all fields q5 as 

(15.42) 

Where p is a normalization factor with dimensions of mass or (length)-'. 
One can then express the one-loop matter term as 

2 4  = I D [ ~ I  exp (-12141) 

2 -1  112 ' n ( 2 ~  A n  ) 
n 

= (det (&r-1p-zA))-"'2. (15.43) 

In the case of a complex field 4 like a charged scalar field, one has to treat 
q5 and the analytic continuation 4 of its complex conjugate as indepen- 
dent fields. The quadratic term then has the form 

(1 5.44) 

The operator A will not be self-adjoint if there is a background electro- 
magnetic field. One can write d in terms of eigenfunctions of the adjoint 
operator A ': 

d = c fn&n* (15.45) 
n 

The measure will then have the form 

(15.46) 
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Because one integrates over y n  and f n  independently, one obtains 

2, = (det (4a-'fi-*A))-'. (15.47) 

To treat fermions in the path integrals one has to regard the spinor 4 
and its independent adjoint 4 as anticommuting Grassman variables 
(Berezin, 1966). For a Grassman variable x one has the following 
(formal) rules of integration 

I d x = O ,  j x d x = l .  (15.48) 

These suffice to determine all integrals, since x2 and higher powers of x 
are zero by the anticommuting property. Notice that (15.48) implies that 
if y = ax, where a is a real constant, then dy = a-' dx. 

One can use these rules to evaluate path integrals over the fermion 
fields (I and 4. The operator A in this case is just the ordinary first-order 
Dirac operator. If one expands exp ( -12 )  in a power series, only the term 
linear in A will survive because of the anticommuting property. Integra- 
tion of this respect to d 4  and d$ gives 

Z, = det (ifi-'A). (15.49) 

Thus the one-loop terms for fermion fields are proportional to the 
determinant of their operator while those for bosons are inversely 
proportional to determinants. 

One can obtain an asymptotic expansion for the number of eigenvalues 
N(A) of an operator A with values less than A : 

N(A)-  ;BOA ' + BlA + B2 + O(A -'), (15.50) 

where Bo, Bl and Bz are the 'Hamidew' coefficients referred to by 
Gibbons in chapter 13. They can be expressed as Bn =I  bn(g0) d x,  
where the b,, are scalar polynomials in the metric, the curvature and its 
covariant derivatives (Gilkey, 1975). In the case of the scalar wave 
operator, A = -0 + (R + m ', they are 

112 4 

1 
b 0 = m  (15.5 1) 

(15.52)  

(RhdR&,+-Rdab + ( 6 - 3 O f ) O R  +3(66- 1)'R' 
1 

28801~' b2= 

+ 30m '( 1 - 6 6 ) R  + 90m4). (15.53) 
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When there is a boundary surface a M, this introduces extra contributions 
into (15.50) including a A "2-term. This would seem an additional reason 
for trying to do away with boundary surfaces and working simply with 
closed manifolds. 

From (15.50)one can see that the determinant of A, the product of its 
eigenvalues, is going to diverge badly. In order to obtain a finite answer 
one has to regularize the determinant by dividing o u t  by the product of 
the eigenvalues corresponding to the first two terms on the right of 
(15.50) (and those corresponding to a A "2-term if it is present). There are 
various ways of doing this - dimensional regularization (t'Hooft and 
Veltman, 1972). point splitting (DeWitt, 1975). Pauli-Villars (Zeldovich 
and Starobinsky, 1972) and the zeta function technique (Dowker and 
Critchley, 1976; Hawking, 1977). The last method seems the most 
suitable for regularizing determinants of operators on a curved space 
background. It will be discussed further in the next section. 

For both fermion and baryon operators the term Bo is (nV/16.rr2), 
where V is the volume of the manifold in the background metric, go, and 
n is the number of spin states of the field. If, therefore, there are an equal 
number of fermion and boson spin states, the leading divergences in 2 
produced by the Eo-terms will cancel between the fermion and boson 
determinants without having to regularize. If in addition the B1-terms 
either cancel or are zero (which will be the case for zero-rest-mass, 
conformally invariant fields), the other main divergence in 2 will cancel 
between fermions and bosons. Such a situation occurs in theories with 
supersymmetry, such as supergravity (Deser and Zumino, 1976; 
Freedman, van Nieuwenhuizen and Ferrara, 1976) or extended super- 
gravity (Ferrara and van Nieuwenhuizen, 1976). This may be a good 
reason for taking these theories seriously, in particular for the coupling of 
matter fields to gravity. 

Whether or not the divergences arising from BO and B 1  cancel or are 
removed by regularization, the net 8 2  will in general be nonzero, even in 
supergravity, if the topology of the spacetime manifold is non-trivial 
(Perry, 1978). This means that the expression for Z will contain a finite 
number (not necessarily an integer) of uncancelled eigenvalues. Because 
the eigenvalues have dimensions (length)-2, in order to obtain a dimen- 
sionless result for 2 each eigenvalue has to be divided by p ', where p is 
the normalization constant or regulator mass. Thus Z will depend on I.(. 
For renormalizable theories such as quantum electrodynamics or 
Yang-Mills in flat spacetime, B2 is proportional to the action of the field. 
This means that one can absorb the p-dependence into an effective 
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coupling constant g ( p )  which depends on the scale at which it is 
measured. If g ( p ) +  0 as p + 00, i.e. for very short length scales or high 
energies, the theory is said to be asymptotically free. 

In curved spacetime however, BZ involves terms which are quadratic in 
the curvature tensor of the background space. Thus unless one supposes 
that the gravitational action contains terms quadratic in the curvature 
(and this seems to lead to a lot of problems including negative energy, 
fourth-order equations and no Newtonian limit (Stelle, 1977, 1978)) one 
cannot remove the @-dependence. For this rebson gravity is said to be 
unrenormalizable because new parameters occur when one regularizes 
the theory. 

If one tried to regularize the higher-order terms in the Taylor series 
about a background metric, one would have to introduce an infinite 
sequence of regularization parameters whose values could not be fixed by 
the theory, However it will be argued in section 15.9 that the higher- 
order terms have no physical meaning and that one ought to consider only 
the one-loop quadratic terms. Unlike A44 or Yang-Mills theory, gravity 
has a natural length scale, the Planck mass. It might therefore seem 
reasonable to take some multiple of this for the one-loop normalization 
factor p. 

15.6 Zeta function regularization 

In order to regularize the determinant of an operator A with eigenvalues 
and eigenfunctions {A,, &}, one forms a generalized zeta function from 
the eigenvalues 

C A b )  = c A is. (15.54) 

From (15.50) it can be seen that C will converge for Res>2. It can be 
analytically extended to a meromorphic function of s with poles only at 
s = 2 and s = 1. In particular it is regular at s = 0. Formally one has 

CIS (0)  = - C log A,. (15.55) 

Thus one can define the regularized value of the determinant of A to be 

det A = exp (-[k (0)). (15.56) 

The zeta function can be related to the kernel c ( x ,  x ' ,  t )  of the heat or 

E+ A,F = 0, (15.57) 

diffusion equation 

at 
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where A, indicates that the operator acts on the first argument of F. With 
the initial condition 

F(x, x', 0) = S(x,  x ' ) ,  (15.58) 

F represents the diffusion over the manifold M, in a fifth dimension of 
parameter time t,  of a point source of heat placed at x' at t = 0. The heat 
equation has been much studied by a number of authors including DeWitt 
(1963). McKean and Singer (1967) and Gilkey (1975). A good exposition 
can be found in Gilkey (1974). 

It can be shown that if A is an elliptic operator, the heat kernel 
F(x, XI. I )  is a smooth function of x ,  x ' ,  and t, for 1 > 0. As t + 0, there is an 
asymptotic expression for F(x, x ,  t): 

F(x, x, I ) -  b,fn-2, 
n -0 

(15.59) 

where again the b, are the 'Hamidew' coefficients and are scalar poly- 
nomials in the metric, the curvature and its covariant derivatives of order 
2n in derivatives of the metrics. 

One can represent F in terms of the eigenfunctions and eigenvalues 
of A 

(15.60) F(x, 1'. t ) = C  dn(X)dn(Xf)exp ( - A n t ) .  

Integrating this over the manifold, one obtains 

1/2 4 Y(t)  = F(x, x ,  t)(go) d x = c exp ( - A n t ) .  (15.61) 

The zeta function can be obtained from Y ( t )  by an inverse Mellin 
transform 

1 "  
((s) = T(S) jo Y(r)rs-' dr. (15.62) 

Using the asymptotic expansion for F, one sees that ((s) has a pole at s = 2 
with residue Bo and a pole at s = 1 with residue B I .  There would be a pole 
at s =O but it is cancelled by the pole in the gamma function. Thus 
l (0)  = B2. In a sense the poles at s = 2 and s = 1 correspond to removing 
the divergences caused by the first two terms in (15.50). 

If one knows the eigenvalue explicitly, one can calculate the zeta 
function and evaluate its derivative at s = 0. In other cases one can obtain 
some information from the asymptotic expansion for the heat kernel. For 
example, suppose the background metric is changed by a constant scale 
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factor & = k2go,  then the eigenvalues, A n ,  of a zero-rest-mass operator A 
will become A,, = k-*A,. Thus 

SA (s)= k2 ' [A(S)  

and 

S k ( O ) = 2  log kL(O)+SI4(0). (15.63) 

therefore 

log (det A )  = -2C(O) log k +log (det A ) .  (15.64) 

Because B2, and hence l(O), are not in general zero, one sees that the path 
integral is not invariant under conformal transformations of the back- 
ground metric, even for conformally invariant operators A. This is known 
as a conformal anomaly and arises because in regularizing the deter- 
minant one has to introduce a normalization quantity, p, with dimensions 
of mass or inverse length. Alternatively, one could say that the measure 
D[q5 J = n p dy, is not conformally invariant. 

Further details of zeta function regularization of matter field deter- 
minants will be found in Hawking (1977), Gibbons (1977c),  and Lapedes 
(1978).  

The zeta function regularization of the one-loop gravitational term 
about a vacuum background has been considered by Gibbons, Hawking 
and Perry (1978).  I shall briefly describe this work and generalize it to 
include a A-term. 

The quadratic term in the fluctuations g about a background metric, go, 
is 

where 

(1 5.65) 

(1 5.66) 

and 

16mAabcd = $ g c d v a v b  - s g a c v d v b  +Q(gacgbd +gabgcd)VeVe +!!&d& 

-$&bgcd 4- ?&abgcd - QRgacgbd - QAgabgcd + SAgocgbd 

+(a t* b)+  (c - d ) +  (a c, b, c c+ d ) .  (1 5.67) 

One cannot simply take the one-loop term -to be (det ( i~ - 'p - 'A ) ) ' ' ~ ,  
because A has a large number of zero eigenvalues corresponding to the 
fact that the action is unchanged under an infinitesimal diffeomorphism 

- -  
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(gauge transformation) 

x a  -B x a  +&.fa 

gab gab + 2 E f ( a ; b ) .  

(15.68) 

One would like to factor out the gauge freedom by integrating only over 
gauge-inequivalent perturbations g .  One would then obtain an answer 
which depended on the determinant of A o n  the quotient of all fields g 
modulo infinitesimal gauge transformations. The way to do this has been 
indicated by Feynman (1972), DeWitt (1967) and Fade'ev and Popov 
(1967). One adds a gauge-fixing term to the action 

(15.69) 

The operator B is chosen so that for any sufficiently small perturbation g 
which satisfies the appropriate boundary condition there is a unique 
transformation, [", which vanishes on the boundary such that 

B,kd(gcd +2['c'd')= 0. (1 5.70) 

I shall use the harmonic gauge in the background metric 

16mBabcd '= $gbdv,vc - k c d V a v b  - b , b v c v d  
(15.71) 

The operator ( A + B )  will in general have no zero eigenvalues. 
However, det (A + B )  contains the eigenvalues of the arbitrarily chosen 
operator B. To cancel them out one has to divide by the determinant of B 
on the subspace of all g which are pure gauge transformations, i.e. of the 
form gab = 2@";*) for some [ which vanishes on the boundary. The 
determinant of B on this subspace is equal to the square of the deter- 
minant of the operator C on the space of all vector fields which vanish on 
the boundary, where 

+$g,*gcdO + (a 4+ b )  + (c * d ) +  (a  - b, c @ d ) .  

16~C,b = -gabs- Rob. (1 5.72) 

Thus one obtains 

log2  = -f[go]-$logdet ($.n-'p-'(A +B))+logdet ( $ T - ' ~ - ~ C ) .  

(15.73) 

The last term is the so-called ghost contribution. 
In order to use the zeta function technique it is necessary to express 

A + B as K - L where K and L each have only  a finite number of negative 

186 



Chapter 15. The path-integral approach to quantum gravity 

eigenvalues. To do this, let 

A + B = -F +G,  (1 5.74) 

where 

F = -&(VaVa +2A), (1 5.75) 

which operates o n  the trace, 4. of g, d, = ga6g0a6 

G h d  = -' S(g0Cgbd +gad&c)vcve -i(Cdcab + C d b a c ) + h a b g c d ,  (15.76) 

which operates on the trace-free part, 6, of g, 6a6 = gab -;goab& 
If A C 0, the operator F will have only positive eigenvalues. Therefore 

in order to make the one-loop term converge, one has to integrate over 
purely imaginary 4. This corresponds to integrating over conformal 
factors of the form fi = 1 + ie. if A > 0, F wi11 have some finite number, p, 
of negative eigenvalues. Because a constant function will be an eigen- 
function of F with negative eigenvalue (in the case where there is no 
boundary), p will be at least one. In order to make the one-loop term 
converge, one will have to rotate the contour of integration of the 
coefficient of each eigenfunction, with a negative eigenvalue to lie along 
the real axis. This will introduce a factor of ip into Z. 

If the background metric go is flat, the operator G will be positive- 
definite. Thus one will integrate the trace-free perturbations 6 along the 
real axis. This corresponds to integrating over real conformal equivalence 
classes. However for non-flat background metrics, G may have some 
finite number, q, of negative eigenvalues because of the A and Weyl 
tensor terms. Again one will have to rotate the contour of integration for 
these modes (this time from real to imaginary) and this will introduce a 
factor of i-* into 2. 

The ghost operator is 

(1 5.77) 

If A>O, C will have some finite number, r, of negative eigenvalues. 
Because it is the determinant of C that appears in 2 rather than its square 
root, the negative eigenvalues will contribute a factor (- 1)'. 

One has 

log = - h ? o l  +km+ i l & ( O ) - l m  

From the asymptotic expansion for the heat kernel one has to evaluate 
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the zeta functions at s = 0. From the results of Gibbons and Perry (1979) 
one has 

(15.79) 

From this one can deduce the behaviour of the one-loop term under scale 
transformations of the background metric. Let gOab = k2gOab, then 

log 2 = log 2 + (1 - k 2 ) f [ g o ]  +Iy log k ,  (15.80) 

where y is the right-hand side of (15.79). Providing f[go] is positive, 2 
will be very small for large scales, k .  The fact that y is positive will mean 
that it is also small for very small scales. Thus quantum gravity may have a 
cut-off at short length scales. This will be discussed further in section 
15.10. 

15.7 The background fields 

In this section I shall describe some positive-definite metrics which are 
solutions of the Einstein equations in vacuum or with a A-term. In some 
cases these are analytic continuations of well-known Lorentzian solu- 
tions, though their global structure may be different. In particular the 
section through the complexified manifold on which the metric is posi- 
tive-definite may not contain the singularities present on the Lorentzian 
section. In other cases the positive-definite metrics may occur on mani- 
folds which do not have any section on which the metric is real and 
Lorentzian. They may nevertheless be of interest as stationary-phase 

The simplest non-trivial example of a vacuum metric is the Schwarz- 
schild solution (Hartle and Hawking, 1976; Gibbons and Hawking, 
1977~). This is normally given in the form 

‘ points in certain path integrals. 

ds2 = - (1 -9 dt2 + (1 -?)-’ dr2 + r2 dQ2. (15.81) 

Putting t = -iT converts this into a positive-definite metric for r > 2M. 
There is an apparent singularity at r = 2M but this is like the apparent 
singularity at the origin of polar coordinates, as can be seen by defining a 
new radial coordinate x = 4M(1- 2Mr-’)’’2. Then the metric becomes 

d s = -  (4L)2 d ? + -  ( 4 ~ 2 ) 2 d ~ 2 + r 2 d f 1 2 .  
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This will be regular at x = 0, r = 2M, if 7 is regarded as an angular variable 
and is identified with period 8vM (I am using units in which the 
gravitational constant G = 1). The manifold defined by x a0, O S T  s 
87rM.i~ called the Euclidean section of the Schwarzschild solution. On it 
the metric is positive-definite, asymptotically flat and non-singular (the 
curvature singularity at r = 0 does not lie on the Euclidean section). 

Because the Schwarzschild solution is periodic in imaginary time with 
period 0 = 8wM, the boundary surface dM at radius ro will have topology 
S' x S2 and the metric will be a stationary-phase point in the path integral 
for the partition function of a canonical ensemble at temperature T = 
p-' = (87rM)-'. As shown in section 15.2, the action will come entirely 
from the surface term, which gives 

f = ; P M = 4 w M 2 .  (1 5.82) 

One can find a similar Euclidean section for the Reissner-Nordstrom 
solution with Q2 + P 2  < M2, where Q is the electric charge and P is the 
magnetic monopole charge. In this case the radial coordinate has the 
range r+ s r < 00. Again the outer horizon, r = r+, is an axis of symmetry in 
the r-T-plane and the imaginary time coordinate, 7, is identified with 
period 0 = 2 m - ' ,  where K is the surface gravity of the outer horizon. The 
electromagnetic field, Fob, will be real on the Euclidean section if Q is 
imaginary and P is real. In particular if Q = iP, the field will be self-dual or 
anti-self-dual, 

(15.83) 

where E p h d  is the alternating tensor. If Fob is real on the Euclidean 
section, the operators governing the behaviour.of charged fields will be 
elliptic and so one can evaluate the one-loop terms by the zeta function 
method. One can then analytically continue the result back to real Q just 
as one analytically continues back from positive-definite metrics to 
hrentzian ones. 

Because R = 0, the gravitational part of the action is unchanged. 
However there is also a contribution from the electromagnetic Lagran- 
gian, -( 1 /8n)Fafid. Thus 

I=  @(A4 -@Q + $P), (15.84) 

where @ = Q/r+  is the electrostatic potentiatof the horizon and 4 = P/r+ 
is the magnetostatic potential. 

In a similar manner one can find a Euclidean section for the Kerr metric 
provided that the mass M is real and the angular momentum J is 
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imaginary. In this case the metric will be periodic in the frame that 
co-rotates with the horizon, i.e. the point (7, r, 8,4) is identified with 
(T +p,  r,  8’4 + i P 0 )  where 0 i s  the angular velocity of the horizon (0 will 
be imaginary if J is imaginary). As in the electromagnetic case, i t  seems 
best to evaluate the one-loop terms with J imaginary and then analyti- 
cally continue to real 1. The presence of angutar momentum does not 
affect the asymptotic metric to leading order to that the action is 

f = $OM with p = ~ T K - ’ ,  

where K is the surface gravity of the horizon. 
Another interesting class of vacuum solutions are the Taub-NUT 

metrin (Newman, Unti and Tamburino, 1963; Hawking and Ellis, 1973). 
These can be regarded as gravitational dyons with an ordinary ‘electric’ 
type mass M and a gravitational ‘magnetic’ type mass N. The metric can 
be written in the form 

ds2 = - V(dt + 4 N  sin’ d4)2 + V-‘  dr2 + ( r 2  + N2)(dd2 + sin2 8 d42), 
2 

(15.85) 

where V = 1 - (2Mr + N2)/(r2 + N2). This metric is regular on half-axis 
8 = 0 but it has a singularity at 8 = T because the sin’ (8/2) term in the 
metric means that a small loop around the axis does not shrink to zero 
length as 8 = w. This singularity can be regarded as the analogue of a 
Dirac string in electrodynamics, caused by the presence of a magnetic 
monopole charge. One can remove this singularity by introducing a new 
coordinate 

t‘= 1+4N4. (15.86) 

The metric then becomes 
2 

ds2 = - V(dr’ - 4 N  cos2 _B dd) + V-’  dr2 + ( r2  + N2)(d8’ +sin2 8 d42). 
2 

(15.87) 

This is regular at 8 = r  but not at 8=0 .  One can therefore use the 
(t, r, 8 , 4 )  coordinates to cover the north pole (8  = 0) and the (I‘, r, 8 , 4 )  
co-ordinates to cover the south pole (0 = T) .  Because 4 is identified with 
period 27r. (15.86) implies that I and I’ have to be identified with period 
87rN. Thus if (k is a regular field with t-dependence of the form exp( - iwt), 
then w must satisfy 

4Nw =an integer. (15.88) 
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This is the analogue of the Dirac quantization condition and relates the 
‘magnetic’ charge, N, of the Taub-NUT solution to the ‘electric’ charge 
or energy, w, of the field @. The process of removing the Dirac string 
singularity by introducing coordinates t and t’ and periodically identify- 
ing, changes the topology of the surfaces of constant r from S2 x R’ to S3 
on which ( f / 2 N ) ,  8 and 4 are Euler angle coordinates. 

The metric (15.85) also has singularities where V = 0 or 00. As in the 
Schwarzschild case V = 00 corresponds to an irremovable curvature 
singularity but V’= 0 corresponds to a horizon and can be removed by 
periodically identifying the imaginary time coordinate. This identification 
is compatible with the one to remove the Dirac string if the two periods 
are equal, which occurs if N = *iM. If this is the case, and if M is real, the 
metric is real and is positive-definite in the region r > M and the curva- 
ture is self-dual or anti-self-dual 

The apparent singularity at r = M becomes a single point, the origin of 
hyperspherical coordinates, as can be seen by introducing new radial and 
time variables 

x = 2(2M(r  - M))l’’, 
(15.90) 

it  (I= -- 
2M 

The metric then becomes 

ds2 = Mx2 (d+ + cos 9 dd)’ 
2(r + M) 

+- f+‘dx2+x’(fCM)(d82+sin28 dd2). (15.91) 
2M 8M 

Thus the manifold defined by x 3 0, 0 d (I. c 477, 0 zz 8 S 7r* 0 G 4 G 27r, 
with $, 8, q5 interpreted as hyperspherical Euler angles, is topologically 
R4 and has a non-singular, positive-definite metric. The metric is asymp- 
totically flat in the sense that the Riemann tensor decreases as r-3 as r + 43 
but it is not asymptotically Euclidean, which would require curvature 
proportional to r-4. The surfaces of the constanti are topologically S’ but 
their metric is that of a deformed sphere. The orbits of the d/d$ Killing 
vector define a Hopf fibration 77; S’ + S2, where the S2 is parametrized by 
the coordinates 8 and 4. The induced metric on the S2 is that of a 
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2-sphere of radius ( r 2 - M 2 ) ’ / 2 ,  while the fibres are circles of circum- 
ference ~ T M V ” ~ .  Thus, in a sense the boundary at large radius is S’  x S2 
but is a twisted product. 

It is also possible to combine self-dual Taub-NUT solutions (Hawking, 
1977). The reason is that the attraction between the electric type masses 
M is balanced by the repulsion between the imaginary magnetic type 
masses N. The metric is 

d s 2 =  U-’(dT+U * dx)2+ U dx + dx, (1 5.92) 

where 
2Mi u= 1+c- 

ri 
and 

curl o = grad U. (15.93) 

Here ri denotes the distance from the ith ‘NUT’ in the flat, three- 
dimensional metric dx - dx. The curl and grad operations refer to this 
3-metric, as does the vector u. Each NUT has Ni = Mi. 

The vector fields w will have Dirac string singularities running from 
each NUT. If the masses Mi are all equal, these string singularities and the 
horizon-type singularities at ri = 0 can all be removed by identifying 7 
with period 8vM. The boundary surface at large radius is then a lens 
space (Steenrod, 1951). This is topologically an S3 with n points 
identified in the fibre S’ of the Hopf fibration S3+Sz, where n is the 
number of NUTs. 

The boundary surface cannot be even locally imbedded in flat space so 
that one cannot work out the correction term KO in the action. If one tries 
to imbed it as nearly as one can, one obtains the value of 47rnM2 for the 
action, the same as Schwarzschild for n = 1 (Davies, 1978). In fact the 
presence of a gravitational magnetic mass alters the topology of the space 
and prevents it from being asymptotically flat in the usual way. One can, 
however, obtain an asymptotically flat space containing an equal number, 
n, of NUTs (N = iM) and anti-NUTS (N = - iM). Because the NUTs and 
the anti-NUTS attract each other, they have to be held apart by an 
electromagnetic field. This solution is in fact one of the Israel-Wilson 
metrics (Israel and Wilson, 1972; Hartle and Hawking, 1972). The 
gravitational part of the action is 87rnMZ, so that each NUT and anti- 
NUT contributes 4?rMz. 

I now come on to positive-definite metrics which are solutions of the 
Einstein equations with a A-term on manifolds which are compact 
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without boundary. The simplest example is an S4 with the metric induced 
by imbedding it as a sphere of radius (3A")"' in five-dimensional 
Euclidean space. This is the analytic continuation of de Sitter space 
(Gibbons and Hawking, 19776). The metric can be written in terms of a 
Killing vector a / d ~ :  

ds2=(1  -3Ar2)dT2+(1 -;Ar2)-' d r 2 + r Z d n 2 .  (15.94) 

There is a horizon-type singularity at r = (3A ) . This is in fact a 
2-sphere of area 12nA-' which is the locus of zeros of the Killing vector 
8/87. The action is - 3.rrA-I. 

One can also obtain black hole solutions which are asymptotically 
de Sitter instead of asymptotically flat. The simplest of these is the 
Schwarzschild-de Sitter (Gibbons and Hawking, 19776). The metric is 

ds2 = V dT2 + V-I dr2 $. r 2  do', 

V = 1 - 2 M r - I  - $Ar2. 

If Ac(9M2)- ' ,  there are two positive values of r for which V = O .  
The smaller of these corresponds to the black hole horizon, while the 
larger is similar to the 'cosmological horizon' in de Sitter space. One can 
remove the apparent singularities at each horizon by identifying 7 

periodically. However, the periodicities required at the two horizons are 
different, except in the limiting case A=(9M2)-'. In this case, the 
manifold is S2 x S2 with the product metric and the action is -27rA-'. 

One can also obtain a Kerr-de Sitter solution (Gibbons and Hawking, 
19776). This will be a positive-definite metric for values of c lying 
between the cosmological horizon and the outer black hole horizon, if the 
angular momentum is imaginary. Again, one can remove the horizon 
singularities by periodic identifications and the periodicities will be 
compatible for a particular choice of the parameters (Page, 1978). In this 
case one obtains a singularity-free metric on an S2 bundle over S2. The 
action is -0.9553 (2aA-I). 

One can also obtain T a u b d e  Sitter solutions. These will have a 
cosmological horizon in addition to the ordinary Taub-NUT ones. One 
can remove all the horizon and Dirac string singularities simultaneously 
in a limiting case which is CP2, complex, projective 2-space, with the 
standard Kaehler metric (Gibbons and Pope, - 1978). The action is 

One can also obtain solutions which are the product of two two- 
dimensional spaces of constant curvature (Gibbons, 19776). The case of 

-1 1/2 

(1 5.95) 
where 

- % T I P .  
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Sz x Sz has already been mentioned, and there is also the trivial flat torus 
T 2  x T2.  In the other examples the two spaces have genera gl and g2 > 1 
and the A-term has to be negative. The action is - (2n/A)(g1-  I)(& - 1). 

Finally, to complete this catalogue of known positive-definite solutions 
on the Einstein equations, one should mention K3,  This is a compact 
four-dimensional manifold which can be realized as a quartic surface in 
CP3, complex projective 3-space. It can be given a positive-definite 
metric whose curvature is self-dual and which is therefore a solution of 
the Einstein equation with A = O  (Yau, 1977). Moreover K3 is, up to 
identifications, the only compact manifold to admit a self-dual metric. 
The action is 0. 

There are two topological invariants of compact four-dimensional 
manifolds that can be expressed as integrals of the curvature: 

1 R R E ~ ~ ~ E ~ ~ ~ ~ ( ~ )  1/2 d 4 x, 
obcd efgh 1 2 8 ~  

(15.96) 

(15.97) 

x is the Euler number of the manifold and is equal to the alternating sum 
of the Betti numbers: 

Thepth Betti number, B,,, is the number of independent closed p-surfaces 
that are not boundaries of some p + 1-surface. They are also equal to the 
number of independent harmonic p-forms. For a closed manifold, B, = 
B.-, and B1 = B4 = 1. If the manifold is simply connected, B1= B3 = 0, so 
xa2 .  
The Hirzebruch signature, 7, has the following interpretation. The B2 

harmonic 2-forms can be divided into B t  self-dual and B;  anti-self-dual 
2-forms. Then 7 = B l -  B; .  It determines the gravitational contribution 
to the a . il-current anomaly (Eguchi and Freund, 1976; Hawking, 1977; 
Hawking and Pope, 1978). 

S4 has x = 2 and T = 0; CP2 has ,y = 3, T = 1; the S2 bundle over S2 has 
x '4, T = 0;  K3 has x = 24, 7 = 16 and the product of two-dimensional 
spaces with genera gl, g2 has x = 4(gl - l)(g2 - l),  7 = 0. 

In the non-compact case there are extra surface terms in the formulae 
for ,y and 7. Euclidean space and the self-dual Taub-NUT solution has 
x = 1, 7 = 0 and the Schwarzschild solution has x = 2, 7 = 0. 
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15.8 Gravitational thermodynamics 

As explained in section 15.3, the partition function 

Z =C exp ( -@En) 

for a system at temperature T = P - ' ,  contained in a spherical box of 
radius ro, is given by a path integral over all metrics which fit inside the 
boundary, aM, with topology Sz x S * ,  where the S2 is a sphere of radius ro 
and the S' has circumference 6. By the stationary-phase approximation 
described in section 15.5, the dominant contributions will come from 
metrics near classical solutions go with the given boundary conditions. 
One such solution is just flat space with the Euclidean time coordinate 
identified with period p. This has topology R3XS' .  The action of the 
background metric is zero, so it makes no contribution to the logarithm of 
the partition function. If one neglects small corrections arising from the 
finite size of the box, the one-loop term also can be evaluated exactly as 

5 3  3 4.rr roT 
135 

log 2, = (1 5.99) 

This can be interpreted as the partition function of thermal gravitons on a 
flat-space background. 
The Schwarzschild metric with M = (87rT)-' is another solution which 

fits the boundary conditions. It has topology R 2 x S 2  and action f- 
(3'/16.rr = 47rM2. The one-loop term has not been computed, but by the 
scaling arguments given in section 15.6 it must have the form 

(1 5.100) 

where PO is related to the normalization constant p. If ro#3-' is much 
greater than 1, the box will be much larger than the black hole and one 
would expect f(ro@-') to approach the flat-space value (15.99). Thus f 
should have the form 

(15.101) 

From the partition function one can calculate the expectation value of 
the energy -- 

(1 5.102) 
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Applying this to the contribution ( -P2/16rr) to log 2 from the action of 
the action of the Schwarzschild solution, one obtains (E) = M, as one 
might expect. One can also obtain the entropy, which can be defined to be 

S = -C Pn log Pn. (1 5.103) 

where p. = Z- '  exp ( - @ E n )  is the probability that the system is in the nth 
state. Then 

s = P(E)  +log 2. (1 5.104) 

Applying this to the contribution from the action of the Schwarzschild 
metric, one obtains 

(1 5.105) 1 S = 4wM2 = aA, 

where A is the area of the event horizon. 
This is a remarkable result because it shows that, in addition to the 

entropy arising from the one-loop term (which can be regarded as the 
entropy of thermal gravitons on a Schwarzschild background), black 
holes have an intrinsic entropy arising from the action of the stationary- 
phase metric. This intrinsic entropy agrees exactly with that assigned to 
black holes on the basis of particle-creation calculations on a fixed 
background and the use of the first law of black hole mechanics (see 
chapters 6 and 13 by Carter and Gibbons). It shows that the idea that 
gravity introduces a new level of unpredictability or randomness into 
physics is supported not only by semi-classical approximation but by a 
treatment in which the gravitational field is quantized. 

One reason why classical solutions in gravity have intrinsic entropy 
while those in Yang-Mills or do not is that the actions of these 
theories are scale-invariant, unlike the gravitational action. If go is an 
asymptotically flat solution with period #I and action ![go], then k 2 g o  is a 
solution with a period k p  and action k 2 f  This means that the action, f ,  
must be of the form cp2, where c is a constant which will depend on the 
topology of the solution. Then (E) = 2c@, #I(,??) = 2c@*, while log Z = 
- f = -c@. Thus S = cp2. The reason that the action f is equal to $@(I?) 
and not #I@), as one would expect for a single state with energy (E), is 
that the topology of the Schwarzschild solution is not the same as that of 
periodically identified flat space. The fact that the Euler number of the 
Schwarzschild solution is 2 implies that the time-translation Killing 
vector, d / h ,  must be zero on some set (in fact a 2-sphere). Thus the 
surfaces of a constant T have two boundaries: one at the spherical box of 
radius ro and the other at the horizon r = 2M. Consider now the region of 
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f 
/ r = 2 M  x\ r = r 0  

Figure 15.4. The r--I plane of the Schwarzschild solution. The amplitude ( T ~ ( T , )  to go from 
the surface rl to the surface T = 7 2  is dominated by the actiomof the Shaded portion of the 
Schwanschiki sokttion. 

the Schwarzschild solution bounded by the surfaces T = T ~ ,  r = r2 and 
f = ro (figure 15.4). The amplitude (&) to go from the surface T~ to the 
surface 12 will be given by a path integral over all metrics which fit inside 
this boundary, with the dominant contribution coming from the sta- 
tionary-phase metric - which is just the portion of the Schwarzschild 
solution bounded by these surfaces. The action of this stationary-phase 
metric will be given by the surface terms because R = 0. The surface terms 
from the surfaces T = T ~  and T = T ~  will cancel out. There will be a 
contribution of hW(72-71)  from the surface r = ro. However there will 
also be a contribution from the ‘corner’ at r = 2M where the two surfaces 
T = T I  and T = 7 2  meet, because the second fundamental form, K, of the 
boundary will have a S-function behaviour there. By rounding off the 
corner slightly one can evaluate this contribution, and it turns out to be 
~ M ( T Z  - 71). n u s  the total action is ( E )  (72 - TI) and (72171) = exp ( - ( E )  
(72 -71)). as one would expect for a single state with energy E = (E). 
However, if one considers the partition function one simply has the 
boundary at r = ro and so the action equafs f@E rather than BE. This 
difference, which is equal to iA, gives the entropy of the black hole. 

From this one sees that qualitatively new effects arise from the fact that 
the gravitational field can have different topologies. These effects would 
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not have been found using the canonical approach, because such metrics 
as the Schwarzschild solution would not have been allowed. 

The above derivation of the partition function and entropy of a black 
holy has been based on the iise of the canonical ensemble, in which the 
system is in equilibrium with an infinite reservoir of energy at tempera- 
ture T. However the canonical ensemble is unstable when black holes 
are present because if a hole were to absorb a bit more energy, it would 
cool down and would continue to absorb more energy than it emitted. 
This pathology is reflected in the fact that (AE’) = (E’) - (E)’ = 
(l/Z)(d’Z/ap’)-(d logZ/dB)’ = - 1 / 8 ~ ,  which is negative. To obtain 
sensible results with black holes one has to use the micro-canonical 
ensemble, in which a certain amount of energy E is placed in an insulated 
box and one considers all possible configurations within that box which 
have the given energy. Let N ( E ) d E  be the number of states of the 
gravitational field with energies between E and E + d E  in a spherical box 
of radius ro. The partition function is given by the Laplace transform of 

Z@)= ImN(E)exp(-pE)dE.  0 (1 5,106) 

Thus, formally, the density of states is given by an inverse Laplace 
transform, 

N(E),  

(1 5.107) 

For large @, the dominant contribution to Z @ )  comes from the action 
of the Schwarzschild metric, and is of the form exp ( -p2/167r). Thus the 
right-hand side of (15.107) would diverge if the integral were taken up 
the imaginary B-axis as it is supposed to be. To obtain a finite value for 
(15.107)one has to adopt the prescription that the integral be taken along 
the real @-axis. This is very similar to the procedure used to evaluate the 
path integral in the stationary-phase approximation, where one rotated 
the contour of integration for each quadratic term, so that one would 
obtain a convergent Gaussian integral. With this prescription the factor 
1/27ri in (15.107) would give an imaginary value for the density of states 
N(E)if the partition function Z ( g )  were real. However, as mentioned in 
section 5.6, the operator G which governs non-conformal or trace-free 
perturbations has one negative eigenvalue in the Schwarzschild metric. 
This contributes a factor i to the one-loop term for 2. Thus the partition 
function is purely imaginary but the density of space is real. This is what 
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one might expect: the partition function is pathological because the 
canonical ensemble is not well defined but the density of states is real 
and positive because the micro-canqnical ensemble is well behaved. 

It is not appropriate to go beyond the stationary-phase approximation 
in evaluating the integral in (15.107) because the partition function, 2, 
has been calculated in this approximation only. If one takes just the 
contribution exp ( - P 2 / 1 6 r )  from the action of the background metric, 
one finds that a black hole of mass M has a density of states N(M)= 
2 ~ - " ~  exp (4wM2). Thus the integral in (15.106) does not converge 
unless one rotates the contour integration to lie along the imaginary 
E-axis. If one includes the one-loop term Z,, the stationary-phase point 
in the @ integration in (15.107) occurs when 

(1 5.108) 

for the flat background metric, and 

(1 5.109) 

for the Schwarzschild background metric. 05e can interpret these equa- 
tions as saying that E is equal to the energy of the thermal graviton and 
the black hole, if present. Using the approximate form of 2, one finds that 
if the volume, V, of the box satisfies 

2 

E 5 < s ( 8 3 5 4 . 5 ) V ,  (15.110) 

the dominant contribution to N comes from the flat-space background 
metric. Thus in this case the most probable state of the system is just 
thermal gravitons and no black hole. If V is less than the inequality 
(15.1 lo), there are two stationary-phase points for the Schwanschild 
background metric. The one with a lower value of /3 gives a contribution 
to N which is larger than that of the flat-space background metric. Thus 
the most probable state of the system is a black hole in equilibrium with 
thermal gravitons. These results confirm earlier derivations based on the 
semi-classical approximations (Hawking, 1976; Gibbons and Perry, 
1978). 

15.9 Beyond one loop 

In section 15.5 the action was expanded in a Taylor series around a 
background field which was a solution of the classical field equations. The 
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path integral over the quadratic terms was evaluated but the higher-order 
terms were neglected. In renormalizable theories such as quantum elec- 
trodynamics, Yang-Mills or Ad4 one can evaluate these higher or 
‘interaction’ terms with the help of the differential operator A appearing 
in the quadratic or ‘free’ part of the action. One can express their effect by 
Feynman diagrams with two or more closed loops, where the lines in the 
diagram represent the propagator or Green’s function A-’ and the 
vertices correspond to the interaction terms, three lines meeting at a cubic 
term and so on. In these renormalizable theories the undetermined 
quantities which arise from regularizing the higher loops turn out to be 
related to the undetermined normalization quantity, p, of the single loop. 
They can thus all be absorbed into a redefinition of the coupling constant 
and any masses which appear in the theory. 

The situation in quantum gravity is very different. The single-loop term 
about a flat or topologically trivial vacuum metric does not contain the 
normalization quantity, p. However, about a topologically non-trivial 
background one has log 2, proportional to (106/45)~ log p, where 2, is 
the one-loop term and x is the Euler number. One can express this as an 
addition to the action of an effective topological term -&(PIX,  where 
k ( p )  is a scale-dependent topological coupling constant. One cannot in 
general provide such a topological interpretation of the @-dependence of 
the one-loop term about a background metric which is a solution of the 
field equations with nonzero matter fields. However one can do it in the 
special case where the matter fields are related to the gravitational field by 
local supersymmetry or spinor-dependent gauge transformations. These 
are the various supergravity and extended supergravity theories 
(Freedman, Van Nieuwenhuizen and Ferrara, 1976; Deser and Zumino, 
1976). 
Two loops in supergravity, and maybe also in pure gravity, do not seem 

to introduce any further undetermined quantities. However it seems 
likely that, both in supergravity and in pure gravity, further undetermined 
quantities will arise at three or more loops, though the calculations 
needed to verify this are so enormous that no-one has attempted them. 
Even if by some miracle no further undetermined quantities arose from 
the regularization of the higher loop, one would still not have a good 
procedure for evaluating the path integral, because the perturbation 
expansion around a given background field has only a very limited range 
of validity in gravity, unlike the case in renormalizable theories such as 
Yang-Mills or Ad4. In the latter theory the quadratic or ‘free’ term in the 
action I (V4)* d‘x bounds the interaction term A I d4 d4x. This means 
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that one can evaluate the expectation value of the interaction term in the 
measure D[& J exp (-I @&)’ d4x) or, in other words, using Feynman 
diagrams where the lines correspond to the free propagator. Similarly in 
quantum electrodynamics or Yang-Mills theory, the interaction term is 
only cubic or quartic and is bounded by the free term. However, in the 
gravitational case the Taylor expansion about a background metric 
contains interaction terms of all orders in, and quadratic in derivatives of, 
the metric perturbations. These interaction terms are not bounded by the 
free, quadratic term so their expectation values in the measure given by 
the quadratic term are not defined. In other words, it does not make any 
sense to represent them by higher-order Feynman diagrams. This should 
come as no surprise to those who have worked in classical general 
relativity rather than in quantum field theory. We know that one cannot 
represent something like a black hole as a perturbation of flat space. 

In classical general relativity one can deal with the problem of the 
limited range of validity of perturbation theory by using matched asymp- 
totic expansions around different background metrics. It would therefore 
seem natural to try something similar in quantum gravity. In order to 
ensure gauge-invariance it would seem necessary that these background 
metrics should be solutions of the classical field equations. As far as we 
know, in a given topology and with given boundary conditions there is 
only one solution of the field equations or, at the most, a finite-dimen- 
sional family. Thus solutions of a given topology could not be dense in the 
space of metrics of that topology. However the Einstein action, unlike 
that of Yang-Mills theory, does not seem to provide any barrier to 
passing from fields of one topology to another. 

One way of seeing this is to use Regge calculus (Regge, 1961). Using 
this method, one decomposes the spacetime manifold into a simplical 
complex. Each 4-simplex is taken to be flat and to be determined by its 
edge (i.e. 1-simplex) lengths. However the angles between the faces (i.e. 
2-simplices) are in general such that the 4-simplices could not be joined 
together in flat four-dimensional space. There is thus a distortion which 
can be represented as a S-function in the curvature concentrated on the 
faces. The total action is (-1/8.rr)C Ai Si taken over all 2-simplices, 
where A, is the area of the ith 2-simplex and Si is the deficit angle at that 
2-simplex, i.e. S, equals 2 n  minus the sum of the angles between those 
3-simplices which are connected by the given 2-simplex. 

A complex in which the action is stationary under small variations of 
the edge length can be regarded as a discrete approximation to a smooth 
solution of the Einstein equations. However, one can also regard the 
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Regge calculus as defining the action of a certain class of metrics without 
any approximations. This action will remain well defined and finite even if 
the edge lengths are chosen so that some of the simplices collapse to 
simplices of lower dimension. For example if a, 6, c are the edge lengths 
of a triangle (a 2-simplex) then they must satisfy the inequalities a < b + c 
etc. If a = b + c, the 2-simplex collapses to a 1-simplex. In general, the 
simplical complex will not remain a manifold if some of the simplices 
collapse to lower dimensions. However the action will still be well 
defined. One can then blow up some of the simplices to obtain a new 
manifold with a different topology. In this way one can pass continuously 
from one metric topology to another. 

The idea is, therefore, that there can be quantum fluctuations of the 
metric not only within each topology but from one topology to another. 
This possibility was first pointed out by Wheeler (1963) who suggested 
that spacetime might have a ‘foam-like’ structure on the scale of the 
Planck length. In the next section I shall attempt to provide a mathe- 
matical framework to describe this foam-like structure, The hope is that 
by considering metrics of all possible topologies one will find that the 
classical solutions are dense in some sense in the space of all metrics. One 
muld then hope to represent the path integral as a sum of background 
and one-loop terms from these solutions. One would hope to be able to 
pick out some finite number of solutions which gave the dominant 
contributions. 

15.10 Spacetime foam 

One would like to find which topologies of stationary-phase metrics give 
the dominant contribution to the path integral. In order to do this it is 
convenient to consider the path integral over all compact metrics which 
have a given spacetime volume V. This is not to say that spacetime 
actually is compact. One is merely using a convenient normalization 
device, like periodic boundary conditions in ordinary quantum theory: 
one works with a finite volume in order to have a finite number of states 
and then considers the values of various quantities per unit volume in the 
limit that the volume is taken to infinity. 
In order to consider path integrals over metrics with a given 4-volume 

Vone introduces into the action a term A V/87r, where A is to be regarded 
as a Lagrange multiplier (the factor 1 /87r is chosen for convenience). This 
term has the same form as a cosmological term in the action but the 
motivation for it is very different as is its value: observational evidence 
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shows that any cosmological A would have to be so small as to be 
practically negligible whereas the value of the Lagrange multiplier will 
turn out to be very large, being of the order of one in Planck units. 

Let 

(1 5.1 1 1) 

where the integral is taken over all metrics on some compact manifold. 
One can interpret Z[A] as the 'partition function' for what I shall call the 
volume canonicyd ensemble, i.e. 

(15.1 12) 

where the sum is taken over all states 14") of the gravitational field. From 
Z[A] one can calculate N( V) d V, the number of the gravitational fields 
with 4-volumes between V and V f d V: 

(1 5.113) 

In (15.113), the contour of integration should be taken to the right of any 
singularities in Z[A] on the imaginary axis, 

One wants to compare the contributions to N from different topolo- 
gies. A convenient measure of the complexity of the topology is the Euler 
number x. For simply connected manifolds it seems that x and the 
signature T characterize the manifold up to homotopy and possibly up to 
homeomorphisms, though this is unproved. In the non-simply connected 
case there is no possible classification: there is no algorithm for deciding 
whether two non-simply connected 4-manifolds are homeomorphic or 
homotopic. This would seem a good reason to restrict attention to simply 
connected manifolds. Another would be that one could always unwrap a 
non-simply connected manifold. This might produce a non-compact 
manifold, but one would expect that one could then close it off at some 
large volume V with only a small change in the action per unit volume. 

By the stationary-phase approximation one would expect the 
dominant contributions to the path integral 2 to come from metrics near 
solutions of the Einstein equations with a A-term. From the scaling 
behaviour of the action it follows that for such a solution 

(15.1 14) 
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where c is a constant (either positive or negative) which depends on the 
solution and the topology, and where the action 1 now includes the 
A-term. The constant c has a lower bound of - (z)1’2 which corresponds 
to its value for S4. An upper bound can be obtained from (15.96) and 
(15.97) for x and T. For solutions of the Einstein equations with a A-term 
these take the form 

(15.115) akd+22 2 1/2 4 
3A ) (g )  d x, 

(15.1 16) 

From (15.115) one sees that there can be a solution only if x is positive. 
However this will be the case for simply connected manifolds because 
then x = 2 + B 2 ,  where B2 is the second Betti number. Combining 
(15.115) and (15.116) one obtains the inequality 

(1 5.1 17) 

From (15.1 15)one can see that, for large Euler number, at least one of 

32c 
2,y - 3171 3 3. 

the following must be true: 

(a )  c2  is large 

(6) J CabcdCakd(g)1/2 d4x is large. 

In the former case c must be positive (i.e. A must be negative) because 
there is a lower bound of - (:)lI2 on c. In the latter case the Weyl tensor 
must be large. As in ordinary general relativity, this will have a con- 
verging effect on geodesics similar to that of a positive Ricci tensor. 
However, between any two points in space there must be a geodesic of 
minimum length which does not contain conjugate points. Therefore, in 
order to prevent the Weyl curvature from converging the geodesics too 
rapidly, one has to put in a negative Ricci tensor or A-term of the order of 
-CakdCabCdL2, where L is some typical length scale which will be of the 
order of V1’4x-1/4, the length per unit of topology. One would then 
expect the two terms in (1 5.1 15) to be of comparable magnitude and c to 
be of the order of d,y’/*, where d rs 3lj2/4. 

This is borne out by a number of examples for which I am grateful to 
N. Hitchin. For products of two-dimensional manifolds of constant 
curvature one has d = a. For algebraic hypersurfaces one has 2l‘*/8. 
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Chapter 15. The path-integral approach to quantum gravity 

Hitchin has obtained a whole family of solutions lying between these 
limits. In addition, if the solution admits a Kahler structure one has the 
equality 

37 + 2x = 32c2. (1 5.118) 

One can interpret these results as saying that one has a collection of the 
order of x ‘gravitational instantons’ each of which has action of the order 
of L2, where L is the typical size and is of the order of V1/4x-1’4. One also 
has to estimate the dependence of the one-loop curve 2, on A andx. The 
dependence on A comes from the scaling behaviour and is of the form 

2, a I\-’, 
where 

One can regard y as the number of extra modes from perturbations about 
the background metric, over and above those for flat space. From 
(15.1 19) one can see that it is of the same order as x. One can therefore 
associate a certain number of extra modes with each ‘instanton’. 

From the above it seems reasonable to make the estimate 

(1 5.120) 

where b = 8wd2 and A. is related to the normalization constant p. Using 
(15.120) in (15.113), one can do the contour integral exactly and obtain 

(15.121) 

for VdO. 
However the qualitative dependence on the parameters is seen more 

clearly by evaluating (15.1 13) approximately by the stationary-phase 
method. In fact it is inappropriate to do it more precisely because Z[A)  
has been evaluated only in the stationary-phase approximation. The 
stationary-phase point occurs for 

y f ( y 2  + Vb*/27r)”* 
V A, =47r (1 5.122) 

Because the contour should pass to the right of the singularity at A = 0, 
one should take the positive sign of the square root. 
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Spacetime foam 

The stationary-phase value of A is always positive even though Z [ A ]  
was calculated using background metrics which have negative A for large 
Euler number. This means that one has to analytically continue Z from 
negative to positive A. This analytic continuation is equivalent to multi- 
plying the metric by a purely imaginary conformal factor, which was 
necessary anyway to make the path integral over conformal factors 
converge. 

From the stationary-phase approximation 0r.e has 

A -' VA 
Ao 8T N( V) = O(A,) = (>) exp ( b x A ; l + - - f ) .  (15.123) 

The dominant contribution to N( V) will come from those topologies for 
which dO/dX = 0. If one assumes y = ax, where a is constant, one finds 
that this is satisfied if 

- a log (2) + b A;' = 0. (1 5.124) 

If A o s  1, this will be satisfied by A, = Ao. If Ao< 1, As == Equation 
(15.122) then implies that x = hV, where the constant of proportionality, 
h, depends on Ito. In other words the dominant contribution to N( V) 
comes from metrics with one gravitational instanton per volume h-'. 

What observable effects this foam-like structure of spacetime would 
give rise to has yet to be determined, but it might include the gravitational 
decay of baryons or muons, caused by their falling into gravitational 
instantons or virtual black holes and coming out again as other species of 
particles. One would also expect to get non-conservation of the axial- 
vector current caused by topologies with non-vanishing signature T. 
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The quantum state of a spatially closed universe can be described by a wave function which is a 
functional on the geometries of compact three-manifolds and on the values of the matter fields on 
these manifolds. The wave function obeys the Wheeler-DeWitt second-order functional differential 
equation. We put forward a propma1 for the wave function of the "ground state" or state of 
minimum excitation: the ground-state amplitude for a three-geometry is given by a path integral 
over dl compact positive-definite four-geometries which have the three-geometry as a boundary. 
The requirement that the Hamiltonian be Hennitian then defines the boundary conditions for the 
Wheeler-DeWitt equation and the spectrum of possible excited states. To illustrate the above, we 
calculate the ground and excited states in a simple minisuperspace mcdel in which the scale factor is 
the only gravitational degree of freedom, a confonnally invariant scalar field is the only matter de- 
gree. of freedom and A > 0. The ground state corresponds to de Sitter space in the classical limit. 
There are excited states which represent universes which expand from zero volume, reach a max- 
imum size, and then recollapse but which have a finite (though very small) probability of tunneling 
through a potential barrier to a dc Sitter-type state of continual expansion. The path-integral ap- 
proach allows us to handle situations in which the topology of the three.-manifold changes. We esti- 
mate the probability that the ground state in our minisuperspace model contains more than one con- 
nected component of the spacelike surface. 

I. INTRODUCTION 

In any attempt to apply quantum mechanics to the 
Universe as a whole the spscification of the possible 
quantum-mechanical states which the Universe can occu- 
py is of central importance. This specification determines 
the possible dynamid behavior of the Universe. More- 
over, if the uniquenwa of the present Univase is to find 
any explanation in quantum gravity it can only come from 
a restriction on the p i b l e  states available. 

In quantum mechanics the state of a system is specified 
by giving its wsve function on an appropriate codigura- 
tion space. The po8sible wave functions can be construct- 
ed from the fundamental quantum-mechanical amplitude 
for a complete h i ~ t g r  of the system which may be regard- 
ed as the starting point for quantum theory.' For exam- 
ple, in the case of a single particle a history is a path xft )  
and the amplitude for a particular path is proportional to 

urp(tSS[x(t)]), (1.1) 

whae S [ x W ]  ia the classical action. From this basic am- 
plitude, the amplitude for more restricted observations can 

tude that the particle, having bear prepared in a certain 
way, is located at podtion x and nowhere @he at time t is 

be COnStnrCted by n u m t i ~ n .  In particular, the ampli- 

flx,t)=N I , ~ t ) e x p t ~ ~ [ x ( r ) ] )  . (1.2) 

Herr, N is a normalizing factor and the sum is over a class 

of paths which intersect x at time t and which are weight- 
ed in a way that reflects the preparation of the system. 
Jl(x ,t f is the wave function for the state determined by 
this preparation. As an example, if the particle were PIE- 
viously localized at x' at time t' one would sum over all 
paths which start at x' at 1' and end at x at t thereby ob- 
taining the propagator ( x , t ) x ' , t ' ) .  The oscillatory in- 
tegral in Eq. (1.2) is not well defined but can be made so 
by rotating the time to imaginary values. 

An alternative way of calculating quantum dynamics is 
to use the Schriidinger equation, 

ia$/at =H+ . (1.3) 

This follows from Q. (1.2) by varying the end conditions 
on the path integral. For a particular state specified by a 
weighting of paths C, the path integral (1.2) may bc 
looked upon as providing the boundary conditions for the 
solution of Eq. (1.3). 

mechanical theory is the ground state, or state of 
minimum excitation. This is naturally defined by the 
path integral, made ddinite by a rotation to Euclidean 
time, over the class of paths which have vanishing action 
in the far past. Thus, for the ground state at t=O one 
would write 

$&X,O)=N & X ( r k x p ( - z [ X ( T ) ] )  , (1.4) 

whae I[x(T)] is the Euclidean action obtained from S by 

01983 The Amerlan Phy&d soday 

A state Of particular interest in any quantum- 
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sending t+ -i7 and adjusting the sign so that it is posi- 
tive. 

In casea where there is a well-defined time and a corre- 
sponding timaindependent Hamiltonian, this definition of 
ground state coincides with the lowest eigenfunction of 
the Hamiltonian. To see this specialize the path-integral 
expression for the propagator (x,f I x ' , f ' )  to f = O  and 
x'=O and insert a complete set of energy eigenstates be- 
tween the initial and final state. One has 

(x.0 I OJ') = 2 +R(x)&,(0)exp(iE,t') 
R 

= J ~x( t )exp( i~[x( t ) ] )  , ( 1.5) 

where +R1x) are the time-independent energy eigenfunc- 
tions. Rotate r'+ -if ili (1.5) and take the limit as 
?(-+ - m. In the sum only the lowest eigenfunction (nor- 
malized to zero energy) survives. The path integral be- 
comes the path integral on the right of (1.4) SO that the 
equality is demonstrated. 

The case of quantum fields is a straightforward general- 
ization of quantum particle mechanics. The wave func- 
tion is a functional of the field configuration on a space- 
like surface of constant time, Y=Y[qXX),t]. The func- 
tional Y gives the amplitude that a particular field distri- 
bution #%) occurs on this spacelike surface. The rest of 
the formalism is similarly generalized. For example. for 
the ground-state wave functional one has 

(1.6) 

where the integral is over all Euclidean field configura- 
tions for T < O  which match &X) on the surface 7=0 and 
leave the action finite at Euclidean infinity. 

In the case of quantum gravity new features enter. For 
definiteness and simplicity we shall restrict our attention 
throughout this paper to spatially closed universes. For 
these there is no well-defined intrinsic measure of the lo- 
cation of a spacelike surface in the spacetime beyond that 
contained in the intrinsic or extrinsic geometry of the sur- 
face itself. One therefore labels the wave function by the 
three-metric hi, writing Y=Y[hiI ] .  Quantum dyanmics is 
supplied by the functional integral 

Y ~ [ ~ ( x ) , o I = N  f w(x)exp( -Z[~VX)I) , 

(1.7) 

SE is the classical action for gravity including a cosmolog- 
ical constant A and the functional integral is over all 
four-geometries with a spacelike boundary on which the 
induced metric is hU and which to the past of that surface 
satisfy some appropriate condition to define the state. In 
particular for the amplitude to go from a three-geometry 
h i  on an initial spacelike surface to a three-geometry h,; 
on a final spacelike surface is 

where the sum is over all four-geometries which match h;l 
on the initial surface and h,j' on the final surface. Here 
one clearly sees that one cannot specify time in these 
states. The proper time between the surfaces depends on 
the four-geometries in the sum. 

As in the mechanics of a particle the functional integral 
(1.7) implies a differential aquation on the wave function. 
This is the Wheeler-DeWitt equationz which we shall 
derive from this point of view in Sec. 11. With a simple 
choice of factor ordering it is 

Y[h,l=O 9 

(1.10) 

and 3R is the scalar curvature of the intrinsic geometry of 
the three-surface. The problem of specifying cosmological 
states is the same as specifying boundary conditions for 
the solution of the Wheeler-DeWitt quation. A natural 
first question to ask is what boundary conditions specify 
the ground state? 

In the quantum mechanics of closed universes we do 
not expect to find a notion of ground state as a state of 
lowest energy. There is no natural defhition of energy for 
a closed universe just as there is no independent standard 
of time. Indeed in a certain sense the total energy for a 
closed universe is always zero-the gravitational energy 
canceling the matter energy. It is still reasonable, howev- 
er, to expect to be able to define a state of minimum exci- 
tation corresponding to the classical notion of a geometry 
of high symmetry. This paper contains a proposal for the 
definition of such a ground-state wave function for closed 
universes. The proposal is to extend to gravity the 
Euclidean-functional-integral construction of nonrelativis- 
tic quantum mechanics and field theory [Eqs. (1.4) and 
(La)]. Thus, we write for the ground-state wave function 

(1.11) 

where I ,  is the Euclidean action for giavity including a 
cosmological constant A. The Euclidean four-geometries 
summed over must have a boundary on which the induced 
metric is hi,. The remaining specification of the class of 
geometries which are summed over determines the ground 
state. Our proposal is that the sum should be over com- 
pact geometries. This means that the Universe does not 
have any boundaries in space or time (at least in the Eu- 
clidean regime) (cf. Ref. 3). There is thus no problem of 
boundary conditions. One can interpret the functional in- 
tegral over all compact four-geometries bounded by a 
given three-geometry as giving the amplitude for that 
three-geometry to arise from a zero three-geometry, i.e., a 
single point. In other words, the ground state is the am- 
plitude for the Universe to appear from nothing! In the 
following we shall elaborate on this construction and show 
in simple models that it indeed supplies reasonable wave 
functions for a state of minimum excitation. 

The specification of the ground-state wave function is a 
constraint on the other states allowed in the theory. They 
must be such, for example, as to make the Wheeler- 
BWit t  equation Hermitian in an appropriate norm. In 
analogy with ordinary quantum mechanics one would ex- 
p s t  to be able to use these constraints to extrapolate the 
boundary conditions which determine the excited states of 
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the theory from those fixed for the ground state by Eq. 
(1.7). Thus, one can in principle determine all the allowed 
cosmological states. 

The wave functions which result from this specification 
will not vanish on the singular, zero-volume. three- 
geometries which correspond to the big-bang singularity. 
This is analogous to the behavior of the wave function of 
the electron in the hydrogen atom. In a classical treat- 
m a t ,  the situation in which the electron is at the proton 
is singular. Howova, in a quantum-mechanical treatment 
the wave function in a state of zero angular momentum is 
finite and nonzero at the proton. This docs not caw any 
problems in the case of the hydrogen atom. In the case of 
the Universe we would interpret the fact that the wave 
function can be finite and nonzero at the zero threc- 
geometry as allowing the possibility of topological fluc- 

ther in &. VIII. 
After a general discussion of this proposal for the 

ground-state wave function we shall implement it in a 
minisupempace model. The geometrical degrees of free- 
dom in the model are restricted to spatially homogeneous, 
isotropic, closed universa with S’ topology, the matter 
degrees of frecdom to a single, homogeneous, conformally 
invariant scalar field and the cosmological constant is as- 
sumed to be positive. A semiclassical evaluation of the 
functional integral for the ground-state wave function 
shows that it indad does possess characteristics appropi- 
ate to a “state of minimum excitation.” 

Extrapolating the boundary conditions which allow the 
ground state to be extracted from the Wheeler-DcWitt 
equation, we are able to go further and identify the wave 
functions in the minisuperspace models corresponding to 
excited states of the matter field. These wave functions 
display some interesting features. One has a complete 
spectrum of excited states which show that a closed 
universe similar to our own and possessed of a cosmologi- 
cal constant can eacapc the big crunch and tunnel through 
to an eternal de Sitter expansion. We are able to calculate 
the probability for this transition. 

In addition to the excited states we make a proposal for 
the amplitudes that the ground-state three-geometry con- 
sists of disconnected threcspheres thus giving a meaning 
to a gravitational state possessing different topologies. 
Our conclusion will be that the Euclidean-functional- 

integral prescription ( 1.7) does single out a reasonable can- 
didate for the ground-state wave function for cosmology 
which when coupled with the Wheeler-DeWitt equation 
yields a basis for constructing quantum cosmologies. 

tuations of the thm9gcometry. This will be discussed fur- 

11. QUANTUM GRAVITY 

In this section we shall review the basic principles and 
machinery of quantum gravity with which we shall ex- 
plore the wave functions for closed universes. For simpli- 
city we shall represent the matter degrees of freedom by a 
single scalar field 4, more realistic cases being straightfor- 
ward generalizations. We shall approach this review from 
the functional-integral point of view although we shall ar- 
rive at many canonical results.’ None of these are new 
and for different approaches to the same ends the reader is 
referred to the standard literature6 

A. Wave function8 

Our starting point is the quantum-mechanical ampli- 
tude for the occurrence of a given spacetime and a given 
field history. This is 

utp(is[g,41) (2.1) 

where S[g,#J is the total classical action for gravity cou- 
pled to a scalar field. We are envisaging here a fixed man- 
ifold although there is no real reason that amplitudes for 
different manifolds may not be considered provided a rule 
is given for their relative phases. Just as the interesting 
observations of a particle are not typically its entire histe 
ry but rather observations of position at different times, so 
also the interesting quantum-mechanical questions for 
gravity correspond to observations of spacetime and field 
on different spacelike surfaces. Following the general 
rules of quantum mechanics the amplitudes for these 
more restricted sets of observations are obtained from (2.1) 
by summing over the unobserved quantities. 

It is easy to understand what is meant by fixing the 
field on a given spacelike surface. What is meant by fix- 
ing the four-geometry is less obvious. Consider all four- 
geometries in which a given spacclike surface occurs but 
whosc form is free to vary off the surface. By an a p  
propriate choice of gauge near the surface (e.g., Gaussian 
normal coordinates) all these four-geometries can be ex- 
pressed so that the only freedom in the four-metric is the 
specification of the thremetric hi, in the surface. Speci- 
fying the three-metric is therefore what we mean by fixing 
the four-geometry on a spacelike surface. The situation is 
not unlike gauge theories. There a history is specified by 
a vector potential A , ( x )  but by an appropriate gauge 
transformation A o ( x )  can be made to vanish so that the 
field on a surface can be completely specified by the A i ( x ) .  
As an example of the quantum-mechanical superposi- 

tion principle the amplitude for the three-geometry and 
field to be fixed on two spacelike surfaces is 

(h,Y,I$’’l h&.I$’)= 6gWexp(iS[g,4]), (2.2) 

where the integral is over all four-geometries and field 
configurations which match the given values on the two 
spacelike surfaces. This is the natural analog of the prop- 
agator (x ’ ’ , f ’ I x ’ , f ’ )  in the quantum mechanics of a sin- 
gle particle. We note again that the proper time between 
the two surfaces is not specified. Rather it is summed 
over in the sense that the separation between the surfaces 
depends on the four-geometry being summed over. It is 
not that one could not ask for the amplitude to have the 
three-geometry and field fixed on two surfaces and the 
proper time between them. One could. Such an ampli- 
tude, however, would not correspond to fixing observa- 
tions on just two surfaces but rather would involve a set of 
intermediate observations to determine the time. It would 
therefore not be the natural analog of the propagator. 

Wave functions Y are defined by 

(2.3) 

The sum is over a class C of spacetimes with a compact 
boundary on which the induced metric is k,J and field 
configurations which match 4 on the boundary. The 
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remaining spacificatian of the class C is the specification 
of the state. 

If the Universe is in a quantum state specified by a 
wave function Y then that wave function describes the 
correlations betwan observables to be expected in that 
state. For example, in the semiclassical wave function 
describing a universe like our own, one would expect Y to 
be large when 4 is big and the spatial volume is small, 
large when 4 is small and the spatial volume is big, and 
small when these quantities are oppositely correlated. 
This is the only interpretative structure we shall propose 
or need. 

B. Wheeler-DeWitt quation 

A differential equation for Y can be derived by varying 
the end conditions on the path integral (2.3) which defines 
it. To carry out this derivation first recall that the gravi- 
tational action appropriate to keeping the three-geometry 
fixed on a boundary is 

1 2 S ~ = 2  ~ a M d 3 ~ h ' / 2 K +  r M d 4 ~ ( - g ) ' n ( R - 2 h ) .  

(2.4) 
The second term is integrated over spacetime and the first 
over its boundary. K is the trace of the extrinsic curvature 
Kll of the boundary three-surface. If its unit normal is n', 
Ki, = - Vin, in the usual Lorentzian convention. I is the 
Planck length ( 16rG)1n in the units with %=c = 1 we use 
throughout. Introduce coordinates so that the boundary is 
a constant t surface and write the metric in the standard 
3 + 1 decomposition: 

ds2= - (N2-NiN'Mt2+2N&b +hljdx'dx'. (2.5) 

The action (2.4) becomes 

12S~= s d * ~ h ' ~ l V [ K i , K ' ~ - K ~ + ~ R ( h ) - 2 A ]  , (2.6) 

whcrt explicitly 

(2.7) 

and a stroke and 'R denote the covariant derivative and 
scalar curvature constructed from the threemetric h,. 
The matter action S, can similarly be expressed as a 
function of N, N,, hfl, and the mat& field. 

The functional integral ddining the wave function con- 
tains an integral over N. By varying N at the surface we 
push it forward or backward in time. Since the wave 
function does not depend on time we must have 

(2.8) 

More precisely, the value of the integral (2.3) should be 
left unchanged by an infinitesimal translation of the in- 
tegration variable N .  If the masure is invariant under 
tranalation this leads to (2.8). If it is not, thm wi l l  be in 
addition a divergent contribution to the relation which 
must be suitably regulated to zero or can& divergences 
arising from the calculation of the right-hand side of (2.8). 

Classically the field equation H=.SS/SN=O is the Ham- 
iltonian constraint for general relativity. It is 

H = h ' / ' ( K 2 - K .  U K'~+'R-2A-l2T,,,)=O, (2.9) 

where T,,, is the stress-energy tensor of the matter field 
projected in the direction normal to the surface. Equation 
(2.8) shows how H =O is enforced as an operator identity 
for the wave function. More explicitly one can note that 
the Kl1 involve only first-time derivatives of the hlj and 
therefore may be completely expressed in terms of the mo- 
menta rij conjugate to the h, which follow from the La- 
grangian in (2.6): 

(2.10) 

In a similar manner the energy of the matter field can be 
expressed in terms of the momentum conjugate to the 
field r+ and the field itself. Equation (2.8) thus implies 
the operator identity H(ri,,hl,,r,,+)Y =O with the re- 
placements 

~ i j  = - h 'I2( Kij - hijK) . 

(2.11) 

These reolacements may be viewed as arising directly 
from the functional integral, e.g., from the observation 
that when the time derivatives in the exponent are written 
in differenced form 

(2.12) 

Alternatively, they arc the standard representation of the 
canonical cornmuation relations of hi] and #. 

In translating a classical equation like 6S/6N=O into 
an operator identity there is always the question of factor 
ordering. This will not be important for us so making a 
convenient choice we obtain 

xP[h~,+]=0. (2.13) 

This is the Wheeler-JhWitt equation which wave func- 
tions for closed universes must satisfy. There arc also the 
other constraints of the classical theory, but the operator 
versions of these urprau the gauge invuiance of the wave 
function rather than MY dynamical informati0n.b 

We should emphasize that the ground-state wave func- 
tion constructed by II Euclidean functiod-integrai 
prescription [(Eq. (1.11)] will satisfy the Wheeler-DeWItt 
equation in the form 12.13). Indeed, this can be demon- 
strated explicitly by repeating the step6 in the above 
d a a t r a t i o n  starting With the Euclidean functional in- 

c. Bopnd.rydti-  

The quantity GfEu can be viewed as a metric on 
supaspace-the space of dl thnagaometries (no COME- 

tion with supersymmctry). It has signature 

tesral. 
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( - , +, + , + , + , + and the Wheeler-DeWitt equation is 
therefore a “hyperbolic” equation on supuspace. It would 
be natural, therefore, to expect to impose boundary condi- 
tions on two “spacelike surface” in supuspace. A con- 
venient choice for the timelike direction is h I R  and we 
therefore expect to impose boundary conditions at the 
upper and lower limits of the range of h ‘I2. The upper 
limit is infmity. The lower limit is zero because if hi, is 
positive definite or degenerate, h I n  2 0. Positivedefinite 
metrica are everywhere spacelike surfaces; degenerate 
metrics may signal topology change. Summarizing the 
Lmaining functions of hi, by the conformal metric 
h!, = hi, / h  I n  we may write an important boundary condi- 
tion on Y as 

YY[&,,h’R,t$]=O, h ’ ” < O .  (2.14) 

Because h’” has a semidefinite range it is for many 
purposes convenient to introduce a representation in 
which h’/’ is replaced by its canonically conjugate vari- 
able -+Ki-2 which has an infinite range. The advan- 
tage of this repreamtation have been extensively dis- 
cussed? In the w e  of pure gravity since - ;Kl and 
h are conjugate, we can, write for the transformation to 
the representation where h,, and K are definite 

(2.15) 

and inversely, 

(2.16) 

In each case the functional integrals arc over the values of 
h I n  or K at each point of the spacelike hypersurface and 
we have indicated limits of integration. 

TJe condition (2.14) implies through (2.15) that 
@[ hUK J is analytic in the lower-half K plane. The con- 
tour in (2.16) can thus be distorted into the lower-half K 
plane. canversely, if we are given @[h,,,K] we can recon- 
struct the wave function Y which satisfies the boundary 
condition (2.14) by carrying out the integration in (2.16) 
OVQ, a contour which lies below any singularitis of 
@[hu,K] in K .  

remain convenient 
labels for the wave functional provided the labels for the 
matter-field amplituda 4 are chosen so that a multiple of 
K is canonically cosiugate to h’”. In cases where the 
matter-field action it@f involves the scalar curvature this 
means that the label will be the field amplitude r d e d  
by some power of k It. For example, in the case of a con- 
formally invariant scalar field the appropriate label is 
#=#I”~. With this understanding we can write for the 
functionals 

In the presence of matter K and 

and the transformation formulas (2.15) and (2.16) remain 
unchanged. 

0. Hermiticity 

The introduction of wave functions as functional in- 
tegrals [Eq. (2.3)] allows the definition of a scalar product 
with a simple geometrj~ interpretation in terms of sums 
over spacetime histories. Consider a wave function Y de- 
fined by the integral 

(2.18) 

over a class of four-gmmetrica and fields C, and a second 
wave function Y’ defined by a similar sum over a class C’. 
The scalar product 

( v , Y ) =  J ah WP’[h,,,4]Y[h,j,4] (2.19) 

has the geometric interpretation of a sum over all histories 

w~,, ,+I=N Jc sg w =P(WS,~J) , 

w,Y)=R~N J ~ g ~ e x p ( i ~ [ g , # l ) ,  (2.20) 

where the sum is over histories which lie in class C to the 
past of the surface and in the time WerSed Of Class C‘ to 
its future. 

The scalar product (2.19) is not the product that would 
be required by canonical theory to define the Hilbert space 
of physical states. That would presumably involve in- 
tegration over a hypersurface in the space of all three- 
geometries rather than over the whole space as in (2.19). 
Rather, Eq. (2.19) is a mathematical construction made 
natural by the functional-integral fornulation of quantum 
gravity. 

In gravity we expect the field equations to be satisfied 
as identities. An extension of the argument leading to Eq. 
(2.8) will give 

J ss ~ ~ ( x ) e x p ( i ~ [ g , 4 ~ ) = 0  (2.21) 

for any class of geometries summed over and for any in- 
termediate spacelike surface on which H ( x )  is evaluated. 
Equation (2.21) can be evaluated for the particular sum 
which enters Eq. (2.20). H ( x )  can be interpreted in the 
scalar product as an operator acting on either Y’ or Y. 
Thus, 

(HY’,Y )=(Y,HY )=O . (2.22) 

The Wheeler-DeWitt operator must therefore be Hami- 
tian in the scalar product (2.19). 

Since the Wheeler-DeWitt operator is a second-order 
functional-differential operator, the requirement of Her- 
miticity will essentially be a requirement that catain sur- 
fsce terms on the boundary of the space of threemetrio 
vanish and. in particular, at h IR=O and h ’”= m. As in 
ordinary quantum mcchania these conditions will prove 
useful in providing boundary conditions for the solution 
of the equation. 

111. GROUND-STATE WAVE FUNCTION 

In this section, we shall put forward in detad our pro- 
posal for the ground-state wave function for closed 
cosmologies. The wave function depends on the topology 
and the thra-metric of the spacelike surface and on the 
values of the matter field on the surface. For simplicity 
we shall begin by considering only S’ topology. Other 
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possibilities will be considered in Sec. VIII. 
As discussed in the Introduction, the ground-state wave 

function is to be constructed as a functional integral of the 
form 

Y ~ [ h , j , # l = N  J 6g6Qexp(-Z[g,Q]) , (3.1) 

where Z is the total Euclidean action and the integral is 
over an appropriate class of Euclidean four-geometries 
with compact boundary on which the induced metric is h,, 
and an appropriate class of Euclidean field configurations 
which match the value given on the boundary. To com- 
plete the definition of the ground-state wave function we 
need to give the class of geometries and fields to be 
summed over. Our proposal is that the geometries should 
be compact and that the fields shoufd be regular on these 
geometries. In the case of a positive cosmological con- 
stant A any regular Euclidean solution of the field equa- 
tions is necessarily compact.* In particular, the solution 
of greatest symmetry is the four-sphere of radius 3/A, 
whose metric we write as 

(3.2) 

where is the metric on the three-sphere. H2=02A/3 
and we have introduced the normalization factor 
d=1’/241? for later convenience. Thus, it is clear that 
compact four-geometries are the only reasonable candi- 
dates for the class to be summed over when A > 0. 

If A is zero or negative there are noncompact solutions 
of the field equations. The solutions of greatest symmetry 
are Euclidean space (A=O) with 

(3.3) 

ds 2= (o/H )’(do2 +sin% dn3?  , 

ds = u2(d 82 + 8’ dR; 

ds = (o/H)Z(dr3Z+ sinh2t3 dill2) . 
and Euclidean anti-de Sitter space ( A  <O) with 

(3.4) 

One might therefore feel that the ground state for A s 0  
should be defined by a functional integral over geometries 
which arc asymptotically Euclidean or asymptotically 
anti-de Sitter. This is indeed appropriate to defining the 
ground state for scattering problems where one is interest- 
ed in particles which propagate in from infinity and then 
out to infinity again? However, in the case of cosmology, 
one is interatcd in measuremats that are carried out in 
the interior of the spacetime, whether or not the interior 
points arc connected to some infinite regions does not 
matter. If one were to use asymptotically Euclidean or 
anti-de Sitter four-geometries in the functional integral 
that defines the ground state one could not exclude a con- 
tribution from four-geometries that consisted of two 
disconnected pieces, one of which was compact with the 
three-geometry as boundary and the other of which was 
asymptotically Euclidean or anti-de Sitter with no interi- 
or boundary. Such disconnected geometries would in fact 
give the dominant contribution to the ground-state wave 
function. Thus, one would effectively be back with the 
prescription given above. 

The ground-state wave function obtained by summing 
over compact four-geometries diverges for large three- 
geometries in the cases A s 0  and the wave function can- 
not be normalized. This is because the A in the action 
damps large four-geometries when A > 0, but it enhances 

them when A<O. W e  shsU therefore consider only the 
case A > O  in this paper and shall regard A=O as a limit- 
ing case of A > 0. 

An equivalent way of describing-tee ground state is to 
specify its wave function in the Q,hl,,K representation. 
Here too it can be constructed as a functional integral: 

@o[&,,K,$]=N J ~gMexP(--IK[g,$l) . (3.5) 

The sum is over the same class of fields and geometries as 
before except that now Q, hi,, and K are fixed on the boun- 
dary rather than Q and h,,. The action ZK iz therefore the 
Euclidean action appropriate to holding Q, hi,, and K 
fixed on a boundary. It is a sum of the appropriate pure 
gravitational action which up to an additive constant is 

~ 2 z ~ ( g ] =  -+ J aM d’x h’”K - lM d4x g’”(R -2A) 

(3.6) 

and a contribution from the matter. The latter is well il- 
lustrated by the action of a single conformally invariant 
scalar field, an example which we shall use exclusively in 
the rest of this paper. We have 

(3.7) 

These actions differ from the more familiar ones in which 
Q and hi, are fixed only in having different surface terms. 
Indeed, these surface terms are just those required to en- 
sure the equivalence of (3.1) and (3.5) as a consequence of 
the transformation fonnulas (2.15) and (2.16). In the case 
of thtmatter action of a conformally invariant scalar field 
with +,hl,,K fixed the additional surface term convenient- 
ly cancels that required in the action when Q and hi, are 
fixed. 

It is important to recognize that the functional integral 
(3.5) does not yield the wave function at the Lorentzian 
value of K but rather at a Euclidean value of K. For the 
moment denote the Lorentzian value by KL. If the hyper- 
surfaca of interest were labeled by a time coordinate I in a 
coordinate system with zero shift [N, =O in Eq. (2.511 then 
the rotation 1 4  ir and the use of the traditional conven- 
tions KL = - V * n  and K =V.n will send KL 4 -iK. In 
terms of the Euclidean K the transformation formulas 
(2.15) and (2.16) can be rewritten to read 

(3.8) 

(3.9) 

where the contour C runs from -im to + i m .  At the 
risk of some confusion we shall continue to use K in the 
remainder of this paper to denote the Euclidean K despite 
having used the same symbol in Sea. I and I1 for the 
Lorentzian quantity. 

There is one advantage to constructing the ground-state 
wave function from the functional integral .(3.5) rather 
than (3.1) and it is the following: the integral in Eq. (3.9) 
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will always 'eld a wave function Yo[h,,,#] which van- 
ishes for h '& 0 if the Fnto? C is chosen to the right of 
any singularities of 9& $ 4 1  in K provided 9 does not 
diverge too strongly in id The boundary condition (2.14) 
is thus automatically enforced. This iS a considerable ad- 
vantage when the wave function is only evaluated approxi- 
mately. 

The Euclidean gravitational action [Eq. (3.611 is not 
positive dcfinte. The functional integrals in Eqs. (3.11 
and (3.5) therefore require careful definition. One way of 
doing this is to break the integration up into an integral 
over conformal factors and over geometries in a given 
conformal equivalence class. By appropriate choice of the 
contour of integration of the conformal factor the integral 
can probably be made convergent. If this is the case a 
properly convexgent functional integral can be construct- 
ed. 

This then is our prescription for the ground state. In 
the following sections we shall derive some of its proper- 
ties and demonstrate its reasonableness in a simple minisu- 
perspace model. 

IV. SEMICLASSICAL EXPECTATIONS 

An important advantage of a functional-integral 
prescription for the ground-state wave function is that it 
yields the semiclassical approximation for that wave func- 
tion directly. In this section, we shall examine the semi- 
classical approximation to the ground-state wave function 
defined in Sec. 111. For simplicity we shall consider the 
c88t of pure gravity. The extension to incIude matter is 
straightforward. 

The semiclassical approximation is obtained by evaluat- 
ing the functional integral by the method of steepest des- 
cents. If there is only one stationary-phase point the semi- 
classical approximation is 

(4.1) 

Here, I,[ is the Euclidean gravitational action evaluated at 
the stationary-phase point, that is, at that solution g$ of 
the Euclidean field equations 

Rpv = 4 7 p v  , (4.2) 

which induces the metric hi, on the closed three-surface 
boundary and satisfies the asymptotic conditions dis- 
cussed in Sec. 111. A-'" is a combination of determinants 
of the wave operators defining the fluctuations about g$ 
including those contributed by the ghosts. We shall focus 
mainly on the exponent. For further information on A in 
the case without boundary see Ref. 10. 

If there is more than one stationary-phase point, it is 
necessary to consider the contour of integration in the 
path integal more carefully in order to decide which gives 
the dominant contribution. In general this will be the 
stationary-phase point with the lowest value of Rd al- 
though it may not be if there are two stationary-phase 
points which correspond to four-metrics that are confor- 
mal to one another. We shall see an example of this in 
Sec. VI. The ground-state wave function is real. This 
means that if the stationary-phase points have complex 
values of the action. there will be equal contributions from 

stationary-phase points with complex-conjugate values of 
the action. If there is no four-geometry which is a 
stationary-phase point, the wave function will be zero in 
the semiclassical approximation. 

The semiclassical approximation for Yo can also be ob- 
tained by first evaluating the semiclassical approximation 
to from the functional integral (3.5) and then evaluat- 
ing the transformation integral (3.9) by steepest descents. 
This will be more convenient to do when the boundary 
conditions of fixing 6, and K yield a unique dominant 
stationary-phase solution to (4.2) but fixing hi, does not. 

One can fix the normalization constant N in (4.1) by the 
requirement 

(4.3) 

As explained in Scs. XI, one can interpret (4.3) geometri- 
cally as a path integral over all four-geometries which are 
compact on both sides of the three-surface with the metric 
hi,. The semiclassical approximation to this path integral 
will thus be given by the action of the compact four- 
geometry without boundary which is the solution of the 
Einstein field equation. In the case of A > 0 the solution 
with the most negative action is the four-sphere. Thus, 

(4.4) 

The semiclassical approximation for the wave function 
gives one considerable insight into the boundary condi- 
tions for the Wheeler-DeWitt equation, which are implied 
by the functional-integral prescription for the wave func- 
tion. As discussed in Sec. 11, these ace naturally imposed 
on three-geometries of very large volumes and vanishing 
volumes. 

Consider the limit of small three-volumes first. If the 
limiting three-geometry is such that it can be embedded in 
flat space then the classical solution to (4.2) when A > 0 is 
the four-sphere and remains so as the three-geometry 
shrinks to zero. The action approaches zero. The value of 
the wave function is therefore controlled by the behavior 
of the determinants governing the fluctuations away from 
the classical solution. These fluctuations are to be com- 
puted about a vanishingly small region of a space of con- 
stant positive curvature. In this limit one can neglect the 
curvature and treat the fluctuations as about a region of 
flat space. The determinant can therefore be evaluated by 
considering its behavior under a constant conformal re- 
scaling of the four-metric and the boundary three-metric. 
The change in the determinant under a change of scale is 
given by the value of the associated 6 function at zero ar- 
gument." 

Regular four-geometries contain many hypersurfaces on 
which the three-volume vanishes. For example, consider 
the four-sphere of radius R embedded in a five- 
dimensional flat space. The three-surfaces which are the 
intersection of the four-sphere with surfaces of x s  equals 
constant have a regular three-metric for I x s  I < R. The 
volume vanishes when 1 x s  I = R  at the north and south 
poles even though these are perfectly regular points of the 
four-geometry. One therefore would no? expect the wave 
function to vanish at vanishing three-volume. Indeed, the 
three-volume will have to vanish somewhere if the topolo- 
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gy of the four-geometry is not that of a product of a 
three-surface with the real line or the circle. When the 
volume does vanish, the topology of the three-geometry 
will change. One cannot calculate the amplitude for such 
topology change from the Wheeler-DeWitt equation but 
one can do so using the Euclidean functional integral. We 
shall estimate the amplitude in some simple cases in Sec. 
VIII. 

A qualitative discussion of the expected behavior of the 
wave function at large three-volumes can be given on the 
basis of the semiclassical approximation when A > 0 as 
follows. The four-sphere has the largest volume of any 
real solution to (4.2). As the volume of the three- 
geometry becomes large one will reach three-geometries 
which no longer fit anywhere in the four-sphere. We then 
expect that the stationary-phase geometries become com- 
plex. The ground-state wave function will be a real com- 
bination of two expressions like (4.1) evaluated at the 
complex-conjugate stationary-phase four-geometries. We 
thus expect the wave function to oscillate as the volume of 
the three-geometry becomes large. If it oscillates without 
being strongly damped this corresponds to a universe 
which expands without limit. 

The above considerations are only qualitative but do 
suggest how the behavior of the ground-state wave func- 
tion determines the boundary conditions for the Wheeler- 
DeWitt equation. In the following we shall make these 
considerations concrete in a minisuperspace model. 

V. MINISUPERSPACE MODEL 

It is particularly straightforward to construct minisu- 
perspace models using the functional-integral approach to 
quantum gravity. One simply restricts the functional in- 
tegral to the restricted degrees of freedom to be quantized. 
In this and the following sections, we shall illustrate the 
general disccussion of those preceding with a particularly 
simple minisuperspace model. In it we restrict the w m o -  
logical constant to be positive and the four-geometries to 
be spatially homogeneous, isotropic, and closed so that 
they are characterized by a single scale factor. An explicit 
metric in a useful coordinate system is 

dr ’=O2[ -~~( r )dr~+a ’ ( r )dn ,2 ]  , (5.1) 

where N ( t )  is the lapse function and d=l2/24d. For 
the matter d w  of fradom, we take a single confor- 
mally invariant scalar field which, consistent with the 
geometry, is always spatially homogeneous, +=#(z). The 
wave function is then a function of only two variables: 

W*Y(U,#), cp=*(K,$) . (5.2) 

Modds of this general structure have beem considered pre- 
viously by DcWitt,lZ Isham and Nelson,” and Slyth and 

To simplify the subsequent discussion we introduce the 
LShrrm.14 

following definitions and d i n g s  of variables: 

(5.3) 

(5.4) 

The Lorentzian action keeping X and a fixed on the boun- 
daries is 

From this action the momenta n, and rx conjugate to a 
and X can be constructed in the usual way. The Hamil- 
fDnian constraint then follows by varying the action with 
respect to the lapse function and expressing the result in 
terms of a, X ,  and their conjugate momenta. One finds 

t ( - ~ * ~ - ~ ’ + i l a 4 + ~ ~ 2 + ~ 2 ) = 0  . (5.6) 

The Wheeler-DeWitt equation is the operator expres- 
sion of this classical constraint. There is the usual 
operator-ordering problem in passing from classical to 
quantum relations but its particular resolution will not be 
central to our subsequent semiclassical considerations. A 
class wide enough to remind oneself that the issue exists 
can be encompassed by writing 

(5.7) 

although this is certainly not the most general form possi- 
ble. In passing from the classical constraint to its quan- 
tum operator form there is also the possibility of a 
matter-energy renormalization. This will lead to an addi- 
tive arbitrary constant in the equation. We thus write for 
the quantum version of Eq. (5.6) 

XY(o,X)=O. (5.8) 

A useful property stemming from the conformal invari- 
ance of the scalar field is that this equation separates. If 
we assume reasonable behavior for the function \Y in the 
amplitude of the scalar field we can expand in harmonic- 
oscillator agenstates 

(5.9) 

where 

The consequent equation for the cm(a) is 

(5.1 1) 

For small u this equation has solutions of the form 

~,namstant, cmaa’-P (5.12) 

[if p is an integer them may be a lo&) factor]. For large 
a the possible behaviors are 
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c, -a  +R+ ')exp( if iRu '1 . (5.13) 

To construct the mlution of Eq. (5.11) which corm 
sponds to the ground state of the minisuperspace model 
we turn to our Euclidean functional-integral prescription. 
As applied to this minisuperspace model, the prescription 
of Sec. 111 for Yo(ao,Xo) would be to sum exp(--I[g,#I) 
over those Euclidean peometrits and field configurations 
which are represented in the minisuperspace and which 
satisfy the ground-state boundary conditions. The geome 
trical sum would be over compact geometries of the form 

dsZ=d[d?+a'(7Mn32] (5.14) 

for which a ( d  matches the prescribed value of a. on the 
hypersurface of interest. The prescription for the matter 
field would be to sum over homogeneous fields X ( d  which 
match the prescribed value Xo on the surface and which 
are regular on the compact geometry. Explicitly we could 
write 

~ o ( u o , ~ o ) =  JSO S X ~ ~ ~ ( - Z [ ~ , X I ) ,  (5.15) 

where, defining dr)==dr/u, the action is 

(5.16) 

A conformal rotation [in this case of a(v)] is necessary to 
make the functional integral in (5.15) converge.l5 

An alternative way of constructing the ground-state 
wave function for the minisuperspace model is to work in 
the K representation. Here, introducing 

k=oK/9 (5.17) 

as a simplifying measure of K, one would have 

ao(ko,Xo)= So S%exp(-Z'[a,X]) . (5.18) 

The sum is over the same class of geometries and fields as 
in (5.15) except they must now assume the given value of 
k on the bounding threesurface. That is, on the boundary 
they must satisfy 

ko=-- 1 da 
3a dr * 

(5.19) 

The action I' appropriate for holding k fixed on the boun- 
daryh  

Zk=koao3+Z (5.20) 

[cf. Eq. (3.611. Once @o(ko,Xo) has bcen computed, the 
ground-state wave function Yo(ko,Xo) may be recovered 
by carrying out the cantour integral 

where the contour runs from -i m to +i QO to the right 
of any singularitiea of@o(ko,Xo). 

From the g e n d  point of view there is no difference 
between computing Y&ao,Xo) directly from (5.15) or via 
the K reprrsentatim from (5.21). In Sec. VI we shall cal- 
culate the semiclassical approximation to Yo(ao,Xo) both 

ways with the aim of advancing arguments that the rules 
of Sec. 111 define a wave function which may reasonably 
be considered as the state of minimal excitation and of 
displaying the boundary conditions under which Eq. (5.1 1) 
is to be Sotved. 

VI. ff ROUND-STATE COSMOLooICAL 
WAVE PUNCTION 

In this section, we shall evaluate the ground-state wave 
function for our minisuperspace model and show that it 
possesses properties appropriate to a state of minimum ex- 
citation. We shall first evaluate the wave function in the 
semiclassical approximation from the steepest-descents 
approximation to the defining functional integral as 
described in Sec. IV. We shall then solve the Wheeler- 
DeWitt equation with the boundary conditions implied by 
the semiclassical approximation to obtain the precise wave 
function. 

It is the exponent of the semiclassical approximation 
which will be most importkit in its interpretation. We 
shall calculate only this exponent from the extrema of the 
action and kave the determination of the prcfactor [cf. 
Eq. (4.111 to the solution of the differential equation. 
Thus, for example, if there were a single real Euclidean 
extremum of least action we would write for the semiclas- 
sical approximation to the functional integral in Eq. (5.15) 

(6.1) 

Here, I(a0,XO) is the action (5.16) evaluated at the ex- 
tremum configurations 4 7 )  and X ( T )  which satisfy the 
ground-state boundary conditions spelled out in Sec. 111 
and which match the arguments of the wave function on a 
 fixed-^ hypersurface. 

A. The matter wave function 

A considerable simplification in evaluating the ground- 
state wave function arises from the fact that the energy- 
momentum tensor of an extranizing umfomally invari- 
ant field vanishes in the compact gmmetries summed 
over as a consequence of the ground-state boundary wndi- 
tions. One can 8a this because the compact four- 
geometries of the class we arc considering are wnformal 
to the interior of three-sphues in flat Euclidean space. A 
constant scalar field is the only solution of the umformal- 
ly invariant wave equation on flat space which is a con- 
stant on the boundary three-sphere. The en-- 
momentum tenaor of this field i s  zero. This implies that 
it is zero in any geometry of the class (5.14) because the 
energy-momentum tensor of a Oonformdy invariant field 
scales by a power of the conformal factor under a confor- 
mal transformation. 
More explicitly in the minisuperspace model we can 

show that the matter and gravitational functional integrals 
in (5.15) may be evaluated separately. The ground-state 
boundary conditions imply that geometries in the sum arc 
d o r m a l  to half of a Euclidean Einstein-static universe, 
i.e., that the range of q is ( - m,O). The boundary condi- 
tions at infinite r )  arc that X ( q )  and a ( q )  vanish. The 
boundary conditions at 7'0 are that a(0) and X(0b match 
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the arguments of the wave function uo and Xo. Thus, not 
only docs the action (5.16) separate into a sum of a gravi- 
tational part and a matter part, but the boundary condi- 
tions on the a ( q )  and X(q)  summed over do not depend 
on one another. The matter and gravitational integrals 
can thus be evaluated separately. 

Let us consider the matter integral first. In Eq. (5.16) 
the matter action is 

(6.2) 

This is the Euclidean action for the harmonic oscillator. 
Evaluation of the matter field integral in (5.15) therefore 
gives 

(6.3) 

Here, t,boO(a) is the wave function for gravity alone given by 

(6.4) 

1, being the gravitational part of (5.16). Equivalently we 
can write in the K representation 

-Xo2/2 
Yo(ao,Xo)=e t,bo(ao) . 

~lotao)= f & exp(-IEla~) , 

where 

IEk[a] is related to I ,  as in 15.20) and the sum is over U ( T )  

which satisfy (5.19) on the boundary. Equation (6.3) 
shows that as far as the matter field is concerned, 
I Y ~ U O , X ~ J  is reasonably interpreted as the ground-state 
wave function. The field oscillators are in their state of 
minimum excitation-the ground state of the harmonic 
oscillator. We now turn to a semiclassical calculation of 
the gravitational wave function +o(ao). 

B. The semiclassical ground-state 
gravitational wave function 

The integral in (6.4) is over ~ ( 7 )  which represent 
[through (5.14)] compact geometries with three-sphere 
boundaries of radius u. The integral in (6.6) is over the 
same class of geometries except that the three-sphere 
boundary must possess the given value of k. The compact 
geometry which extremizes the gravitational action in 
these case is a part of the Euclidean four-sphere of radius 
1/H with an appropriate three-sphere boundary. In the 
case where the three-sphere radius is fixed on the boun- 
dary there are two atremizing geometries. For one the 
part of the four-sphere bounded by the three-sphere is 
greater than a hemisphere and for the other it is less. A 
careful analysis must therefore be made of the functional 
integral to see which of these extrema contributes to the 
semiclassical approximation. We shall give such an 
analysis below but first we show that the correct answer is 
achieved more directly in the K representation from (6.6) 
because there is a single extremizing geometry with a 
preecribed value of k on a three-sphere boundary and thus 
no ambiguity in constructing the semiclassical approxima- 
tion to (6.6). 

For three-sphere hypersurfaces of the four-sphere with 
an outward pointing normal, k ranges from approaching 
+ w for a surface encompassing a small region about a 
pole to approaching - 00 for the whole four-sphere (see 
Fig. 1). More exactly, in the notation of Eq. (3.7) 

(6.7) 

The extremum action is constructed through (5.20) with 
the integral in (5.16) being'taken over that part of the 
four-sphere bounded by the three-sphere of given k. It is 

H 
3 

k = -cote . 

(6.8) 

where 

k = f K H .  (6.9) 

The semiclassical approximation to (6.6) is now 

do(ko)=ivexp[ -&ko)] . (6.10) 

The wave function $&ao) in the same approximation 
can be constructed by carrying out the contour integral 

N 
2ri t,b0(ao)= - - sc dk exp[ koO3 -IEk(k )] (6.1 1) 

by the method of steepest descents. The exponent in the 
integrand of Eq. (6.1 1)  is minus the Euclidean action for 
pure gravity with a kept fixed instead of k: 

Z&7)= - - k U 2 + Z ~ k ( k )  . (6.12) 

t r k  
- 2  - 1  0 I 2, 

' K  I I 

FIG. 1. The action I.' for the Euclidean four-sphere of radius 
1 /H. The Euclidean gravitational action for the part of a four- 
sphere bounded by a threesphere of definite K is plotted here as 
a function of I( (a dimensionless measure of K [Eq. (6.911). The 
action is that appropriate for holding K fined on the boundary. 
The shaded regions of the inset figures show schematically the 
part of the four-sphere which fills in the three-sphere of given K 
used in computing the action. A three-sphere of given K fits in 
a four-sphere at only one place. Three-spheres with positive K 
(diverging nonnals) bound less than a hemisphere of four-sphere 
while those with negative K (converging normals) bound more 
than a hemisphere. The action tends to its flat-space value 
(zero) as K tends to positive infinity. It tends to the Euclidean 
action for all of de Sitter space as K tends to negative infinity. 
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To evaluate (6.11) by steepeet descents we must find the 
extrcma of Eq. (6.12). There are two cases depending on 
whether Hao is greater or less than unity. 

For Ha0 < 1 the stream of I&) occur at real values of 
k which arc equal in magnitude and opposite in sign. 
They are the values of k at which a threasphere of radius 
a0 would fit into the four-sphere of radius 1/H. That is, 
they ere those values of k for which Eq. (6.7) is satisfied 
with ao2=(sinO/H)2. This is not an accident; it is a 
consequence of th6 Hamilton-Jacobi theory. The value of 
I f i  at these extrema is 

I*=-- ’ [lf(l-H2a02)3n] ) 

3H2 
(6.13) 

where the upper sign corresponds to k <O and the lower 
to k > 0, i.e., to filling in the three-sphere with greater 
than a hemisphere of the four-sphere or less than a hemi- 
sphere, respectively. 

There are complex extrema of Zfi but all have actions 
whose real part is greater than the real extrcma described 
above. The stccpeat-desccnts approximation to the in- 
tegral (6.11) is therefore obtained by distorting the contour 
into a steepet-darcarts path (or sequence of them) passing 
through one or the other of the real atrema. The two real 
extrcma and the corresponding steepest-descents direc- 
tions are shown in Fig. 2. One can distort the contour 

Rek 

C 

FIG. 2. The integration contour for constructing the semi- 
classical ground-state wave function of the minisuperspace 
model in the case A > 0, Hu0 < 1. The figure shows schematical- 
ly the original integration contour C used in Eq. (6.11) and the 
steepest-descents contour into which it can be distorted. The 
branch points of the exponent of Eq. (6.11) at ~ = f i  are located 
by crmses. There arc two extrcma of the exponent which corre- 
spond to filling in the three-sphen of given radius u with greater 
than a hemisphere of four-sphere or less than a hemisphere. For 
Ha0 < 1 they lie at the equal and opposite real values of K indi- 
cated by dots. The contour C can be distorted into a steepest- 
descents contour through the extremum with positive K as 
shown. It cannot k distorted to pass through the extremum 
with negative K in the steepest-descents direction indicated. The 
contour integral thus picks out the extremum corresponding to 
less than a hemisphere of four-sphere (cf. Fig. 1) as the leading 
term in the semiclassical approximation. 

into a steepestaesctnta path passing through only one of 
them-the one with positive k 88 shown. The functional 
integral thus singles out a unique semiclassical approxi- 
mation to $o(ao) which is 

(6.14) 

corresponding to filling in the three-sphere with less than 
a hemisphere’s worth of four-sphere. 

From Eq. (4.4) we rccover the normalization factor N. 

$o(ao)raNexp[ -I_(ao)l, Ha0 < 1 , 

N=CXP(-+H-~).  (6.1 5) 

Thus, for Hao << 1 

$0(ao)=exp(jao2-jH-’) . (6.16) 

One might have thought that the extremum I+, which 
comesponds to filling in the three-geometry with more 
than a hemisphere, would provide the dominant contribu- 
tion to the ground-state wave function as cxp(-Z+ is 
greater than exp( -1- ). However, the steepest-descents 
contour in the integral (6.7) does not pass through the ex- 
tremum coresponding to I , .  This is related to the fact 
that the contour of integration of the conformal factor has 
to be rotated in the complex plane in order to make the 
path integral converge as we shall show below. 

For Hao > 1 there are no real extrema because we can- 
not fit a threosphere of radius ao> 1/H into a four- 
sphere of radius 1 /H. There are, however, complex extre 
ma of smallest rcal action located at 

. I  . 
(6.17) 

It is possible to distort the contour in Eq. (6.11) into a 
steepest-descents contour passing through both of them as 
shown in Fig. 3. The resulting wave function has the 
form 

(H2a02- 1 )3n -TI9 Hao>1 [ 3H2 4 $&ao 1 = 2 co9 

(6.18) 
or for Hao >> 1 

(6.19) 

The semiclassical approximation to the ground-state 
gravitational wave function q0(a) contained in Eqs. (6.16) 
and (6.19) may also be obtained directly from the func- 
tional integral (6.4) without passing through the k repre- 
sentation. We shall now sketch this derivation. We must 
consider explicitly the conformal rotation which makes 
the gravitational part of the action in (5.16) positive defin- 
ite. The gravitational action is 

If one performed the functional integration 

(6.21) 
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I c  
FIG. 3. The integration contour for constructing the semi- 

classical ground-state wave function of the minisuperspace 
model in the cue A > 0, HUO > 1. The figure shows schematical- 
ly the original contour C used in Eq. (6.11) and the steepest- 
dgccnts contour into which it can be distorted. The branch 
pointa of the exponent of Eq. (6.11) at r=fi are located by 
crossca. There are two complex-conjugate extrema of the ex- 
ponent as indicated by dots and the contour C can be distorted 
to pasa through both along the stcepestdcscents directions at 45’ 
to the red oxia as shown. 

over real values of (I, one would obtain a divergent reult 
because the first term in (6.20) is negative definite. One 
could make the action infinitely negative by chming a 
rapidly varying u. The solution to this problem seems to 
be to integrate the variable u in Eq. (6.21) along a contour 
that is parallel to the imaginary axis.lS For each value of 
7,  the contour of integration of u will ccoss the real axis at 
wwe value. Suppose there is some real function Z(q1 
which maximizes the action. Then if one dis- 
torts the contout of integration of u at each value of q so 
that it C~OBEKB the real axis at if(q), the value of the action 
at the solution n(q) wil l  give the saddlepoint approxima- 
tion to the functional integral (6.21), i.e., 

+&ao)=N=p( -ZJl[aCq)], . (6.22) 

If there were another real function 67q ) which extremized 
the action but which did not give its maximum value there 
would be a nearby real function &q)+&(q) which has a 
greater action. By chooeing the contour of integration in 
(6.21) to CCWJ the real u axis at G(q)+&(q), one would 
get a smaller contribution to the ground-state wave func- 
tion. Thus, the dominant contribution comes from the 
real function 

It may be that there is no real aCq) which maximizes 
the action. In this case the dominant contribution to the 
ground-state wave function will come from complex func- 
tiom o ( q )  which extnrmze the action. These will occur 
in complcx-mnjugate pairs because the wave function is 
ral. 

with the greatest value of the action. 

In the case of Ha0 < 1, we have already seen that there 
are two real functions u ( q )  which extrcmize the action 
and which correspond to less than or more than a hemi- 
sphere of the four-sphere. Their actions are I -  and I,, 
respectively, given by (6.13). In fact, I -  is the maximum 
value of the action for real u ( q )  and therefore gives the 
dominant contribution to the ground-state wave function. 
Thus, we again recover Eqs. (6.14) and (6.16). In the case 
of Hao > 1, there is no maximum of the action for real 
49). In this case the dominant contribution to the 
ground-state wave function comes from a pair of 
complex-conjugate u ( q )  which extrcmize the action. 
Thus, we would expect an oscillatory wave function like 
that given by Eq. (6.19). 

C. Ground-state solution of the Wheeler-DeWitt equation 

The ground-state wave function must be a solution of 
the Wheeler-DeWitt equation for the minisuperspace 
model [Eqs. (5.8) or (5.ll)J. The exp(--X2/2) dependence 
of the wave function on the matter field deduced in Scc. 
VIA shows that in fact #o(u) must solve Eq. (5.11) with 
n =O. There are certainly solutions of this equation which 
have the large-u combination of urponentials required of 
the semiclassical approximation by JQ. (6.19) as a glance 
at Eq. (5.13) shows. In fact the prcfactor in these asymp- 
totic behaviors shows that the ground-state wave function 
will be normuiizuble in the norm 

(6.23) 

in which the Wheeler-DeWitt operator is Hermitian. 
The Wheeler-DeWitt equation enables us to determine 

the prcfactor in the semiclassical approximation from the 
standard WKB-approximation formulas. With p =0, for 
example, this would give when HuO > 1 

We could also solve the equation numerically. Figure 4 
give an example when p =O and 60= - t. Thw wc have 
assumed that the wave function vanishes at u=O. The 
dotted lines represent graphs of the prcfactor in Eq. (6.24) 
and show that the semiclassical approximation bacomes 
rapidly more accurate as Hu increapes beyond 1. We shall 
return to 811 interpretation of these facts below. 

D. ~ p o n d a n c c  with de Sitter 8 p . c ~  

Having obtained +o(a), we are now in a paition to as- 
8*19 its suitability as the ground-state wave function. 
Classically the vacuum geometry with the highest symma 
try, hence minimum excitation, is de Sitta spacbthe  
surface of a Lorentz hyperboloid in a five-dimmsiod 

wave function contained in Eqs. (6.16) and (6.19) arc thw 
one would expect to be semiclassically assoCiated with this 
geometry. Sliced into thnasphaes de Sitter space con- 
tains spheres only with a radius greater than 1/H. Eqrrr- 
tion (6.16) shows that the wave function is an exponential- 

Lorentz-sigllatured flat spacesime. The propaties of the 
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FIG. 4. A n u m d d  rolution of the Wheeler-DeWitt qua- 
tion for the ground-state wave function +&). A mlution of E q .  
(5.11) is shown for H = 1 in Phnck units. We have assumed for 
definiteness p=O, ep-9, end a vanishing wave function at 
the orifin. The wavo function b damped for Ziu < 1 cormpond- 
ing to the absmce of sphuer of ndii smeller than H-' in 
Lorrntzien de Sitter spur. It oacihtes for Ha > 1 d-fing 
only slowly for large a. This reflects the fact that de Sitter space 
expands without limit. In fact, the envelope repnoentcd by the 
dotted lines b the dutrlbution of thrcasphug in Lomtzian de 
sitter apace: [ ~ u ( P u * -  1 )In]-*. 

ly decreasing function with decreasing a for radii below 
that radius. Equation (6.24) shows the spheres of radius 
larger then 1 / H  are found with en amplitude which varies 
only slowly with the radius. This ia a property expected 
of de Sitter space which expands both to the past end the 
future without limit. Indeed, trncing the origin of the two 
terms in (6.19) beok to extreme with different signs of k 
one sea that one of these terms cornsponds to the con- 
tracting phase of de Sitter space. while the other corre- 
sponds to the upnnding p k  The slow variation in the 
amplitude of the ground-state wave function reflects pre- 
cisely the distribution of threasphaar in classical de 
Sitter spacc. L0rantni.n de Sitter space. is conformal to a 
finite region of the Esartein static univuse 

& z = d a 2 ( ~ ) ( - d ~ z + d f l j z )  , (6.25) 

what  a ( f ) = ( c d f I t ) / H  end dr=adq. Threespheres are 
evidartly distributed uniformly in q in the Einstein static 
univaee. The distribution of sphaes in a in Lomtzien 
de Sitter space is thdora proportional to 

[a(Hzaz-l)'n]-' . (6.26) 

This is the envelope of the probability distribution 
a' I $(a) I for spheres of radius a deduced from the semi- 
classical wave function end shown in Fig. 4. The wave 
function constructed from the Euclidean prescription of 
Sec. 111 appropriately reflects the propcrtica of the classi- 
cal vacuum solution of highest symmetry end is therefore 
reasonably called the ground-state wave function. 

VII. EXCITEDSTATES 

Our Universe dog not cornspond to the ground state 
of the simple minisupuspace model. It might be that the 

inclusion of more degrees of freedom in the model would 
produce a ground state which raremblar our Univcr~e 
more closely or it might bc that we do not live in the 
ground state but in an excited state. Such excited states 
are not to be calculated by a simple path-integral prescrip 
tion, but rather by solving the Wheeler-DeWitt equation 
with the boundary conditions that an required to main- 
tain Hemiticity of the Hamiltonien operator between these 
states end the ground state. In this Section, we shall con- 
struct the excited states for the minisupempace model dis- 
cussed in ssc. VI. 

In the minisupuspace model where the spacelilre sec- 
tions an metric thnasphaes dl excitations in the gravi- 
tational degrees of freedom have ban frozen out. We can 
study, however7 excitations in the matter degrees of free- 
dom. These are labeled by the hannonic-oscillator quan- 
tum number n as we have already seen [cf. Eq. (5.10)]. 
The issue then is what solution of Eq. (5.11) for cR(a) cor- 
responds to this excited state. The equation can be written 
in the form of a one-dimensional Schrijdinger equation 

where 

Y ( a ) = f ( a Z - h ' l  . (7.2) 

At a =O Eq. (7.1) will in g c n d  have two typa of solu- 
tions one of which is more convergent then the other [cf. 
Eq. (5.12)]. The behavior for the ground state which cor- 
responds to the functionel-integral prescliption could be 
deduced from en evaluation of the determinant in the 
semiclassical approximation as discussed in Sec. IV. 
Whatever the result of such en evalution, the solution 
must be purely of one type or the other in order to ensure 
the Hermiticity of the Hamiltonien constraint. The same 
requirement ensurw a. similar behavior for the excited- 
state solutions. In the following by "regular" solutions we 
shall mean those conforming to the boundary conditions 
arising fmm the functional-integral prescription. The ex- 
act type will be unimportant to us. 

The potential V ( a )  is a barrier of height lA4A). At 
large a, the cosmological-constant part of the potential 
dominetar and one has solutions which are hear com- 
bination~ of the oscillating functions in (5.13). As we 
have already s e m  in the d y s i s  of the ground state, the 
two possibilities correspond to a de Sitter contraction end 
a de Sitter expansion. With either of these asymptotic 
behaviors, a wave packet constructed by superimposing 
state of different n to produce a wave function with nar- 
row support about some mean value of the scalar field 
would show this mcnn value increasing as one moved 
from large to small a. 

Since each of the asymptotic behaviors in (5.13) is phys- 
ically acceptable there will be solutions of (7.1) for all n. 
If, however, A is small end n not too large, there ere some 
values of n which are more important then others. These 
are the values which make the left-hand side of (7.1) at or 
close to those values of the energy associated with the 
metastable states (resonances) of the Schriidinger Hamil- 
tonian on the right-hand side. To make this precise write 
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(7.31 

This is the zero angular momentum Schrijdinger equation 
in d = p  + 1 dimensions for single-particle motion in the 
potential Y(a). Classically, for o <  1/(4h) there are two 
classes of orbits: bound orbits with a maximum value of a 
and unbound orbits with a minimum value of a. Quan- 
tum mechanically there are no bound states. For discrete 
values of E<< 1/(4A), however, there are metastable states. 
They lie near those values of E which would be bound 
states if A-0 and the barrier had infinite height. Since 
when A = O  (7.3) is the zero angular momentum 
Schriidinger equation for a particle in a "radial" 
harmonic-oscillator potential in d =p + 1 dimensions, 
these values are 

(7.4) 

For nonzero A, if the particle has an energy near one of 
these values and much less than 1/(4h) it can execute 
many oscillations inside the well but eventually it will tun- 
nel out. 
For the cosmological problem the classical Hamiltonian 

corresponding to (7.3) describes the evolution of homo- 
geneous, isotropic, spatially closed cosmologies with radia- 
tion and a cosmological constant. The bound orbits corre- 
spond to those solutions for which the radiation density is 
sufficiently high that its attractive effect causes an ex- 
panding universe to recollapse before the repulsive effect 
of the cc#lmological constant becomes important. By con- 
trast the unbound orbits correspond to de Sitter evolutions 
in which a collapsing universe never reaches a small 
enough volume for the increasing density of radiation to 
reverse the effect of the cosmological constant. There are 
thus two possible types of classical solutions. Quantum 
mechanically the Universe can tunnel between the two. 

We can calculate the tunneling probability for small h 
by using the usual barrier-penetration formulas from ordi- 
nary quantum mechanics. Let P be the probability for 
tmcl ing  from inside the barrier to outside per transversal 
of the potential inside from minimum to maximum a. 
Then 

~N=Ur+d/2 ,  N=0,1,2,. . . . 

P = e - B ,  (7.5) 

where 

(7.6) 

and a. and a )  are the two turning points where Y(a)=r .  
In the limit of c<< 1/(4A) the barrier-penetration factor 
becomes 

2 2  BE.-=- 
3A 3ff2 

(7.7) 

In magnitude this is just the total gravitational action for 
the Euclidean four-sphere of radius 1 /H which is the ana- 
lytic continuation of de Sitter space. This is familiar from 
genetal semiclassicat resuIts.'' 

Our own Universe corresponds to a highly excited state 
of the minisuperspace model. We know that the age of 
the Universe is about loa Planck times. The maximum 

expansion, assuming a radiation dominated model, is 
therefore a t  least of order a,,2=101m. A wave packet 
describing our Universe would therefore have to be super- 
positions of states of definite n, with n at least 
~ ~ a , ~ ~ l O ' ~ ~ .  As large as this number is, the dimen- 
sionless limit on the inverse cosmological constant is even 
larger. In order to have such a lar e radiation dominated 

our Universe to tunnel quantum mechanically at the mo- 
ment of its maximum expansion to a de Sitter-type phase 
rather than recollapse is P;llexp( This is a very 
small number but of interest if only because it is nonzero. 

VIII. TOPOLOGY 

Universe A must be less than lo-' !I '. The probability for 

In the preceding sections we have considered the ampli- 
tudes for three-geometries with S3 topology to occur in 
the ground state. The functional-integral construction of 
the ground-state wave function, however, permits a natur- 
al extension to calculate the amplitudes for other topolo- 
gies. We shall illustrate this extension in this section with 
some simple examples in the semiclassical approximation. 

There is no compelling reason for restricting the topolo- 
gies of the Euclidean four-geometries which enter in the 
sum defining the ground-state wave function. Whatever 
one's view on this question, however, there must be a 
ground-state wave function for every topology of a three- 
geometry which can be embedded in a four-geometry 
which enters the sum. In the general case this will mean 
all possible three-topologies-disconnccted as well as con- 
nected, multiply connected as well as simply connected. 
The general ground-state wave function will therefore 
have N arguments representing the possibility of N co'm- 
pact disconnected three-geometries. The functional- 
integral prescription for the ground-state wave function in 
the case of pure gravity would then read 

(8.1) 

where the sum is over all compact Euclidean four- 
geometries which have N disconnected compact boun- 
daries aM(" on which the induced three-metrics are h:j". 
Since there is nothing in the sum which distinguishes one 
three-boundary from another the wave function must be 
symmetric in its arguments. 

The wave function defined by (8.1) obeys a type of 
Wheeler-DeWitt equation in each argument but this is no 
longer sufficient to determine its form-in particular the 
correlations between the threegeometries. The functional 
integral is here the primary computational tool. 

It is particularly simple to construct the semiclassical 
approximations to ground-state wave functions for those 
three-geometries with topologies which can be embedded 
in a compact Euclidean solution of the field equations. 
Consider for example the four-sphere. If the three- 
geometry has a single connected component and can be 
embedded in the four-sphere, then the extremal geometry 
at which the action is evaluated to give the semiclassical 
approximation is the smaller part of the four-sphere 
bounded by this three-geometry. The semiclassical 
ground-state wave function is 
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(8.2) 

where M is the s d a r  part of the four-sphere and K is 
the trace of the extrinsic curvature of the threasurface 
computed with outward-pointing normals. Since there is 
a large variety of tapalogiar of three-surfaces which con 
be anbedded in the four-sphere-apheres, torune, etc.,- 
we can easily compute their d a t e d  wave functions. 
Of course, these am many intereating threc-surfacea which 
cannot k 90 embedded and for which the urtremal solu- 
tion desIning the dc lass ica l  approximation is not part 
of the four-sphere. In general one would urpcct to find 
wave functions for arbitrary topologies since any three- 
geometry is cobordant to zero and therefore there is some 
compact faur-manifold which has it as its boundary. The 
problem of finding solutions of the field sq~ation~ on 
t h e  four-manifolds which match the given threa 
geometry and are compact thus becomes an intaesting 
one. 

Similarly, the semiclassical approximation for wave 
functions representing N disconnected threageometries 
are squally easily aamputed when the geometries can be 
embedded in the four-sphere. The extrunal geometry de- 
fdng  the scmiclasnical approximation is then simply the 
four-sphere with the N three-geometries cut out of it. The 
symmetries of the solution guarantee that as far as the ex- 
ponent of the semiclrstical approximation is concerned, it 
does not matter where the threc-gametries are cut out 
provided that they do not overlap. To give a specific ex- 
ample, we calculate the amplitude for two disconnected 
threespheres of rrdius 411) and “(2) assuming 
Q ~ I )  <u(2) c H - ’ .  One possible e x t d  geometry is two 
disconnected portions of a four-sphere attached to the two 
three-sphms. This gives a product wave function with no 
correlation. Another extread geometry is the smaller 

q 2 )  with the portion interior to a sphere of radius ail)  re- 
moved. This gives an additional contribution to the wave 
function which expnapes the comelation between the 
spheres. The correlated part in the seniclassical approxi- 
mation is 

half Of the fow-sphtre bounded by the s p h m  Of radius 

1 xexp 

While the exponent is simple, the calculation of the deter- 
minant is now more complicated-it does not factor. 

Equation (8.3) shows that the amplitude to have two 
correlated threespheres of radius a ( ( )  < u ( ~ J  < H - ’  is 
smaller than the amplitude to have a single theasphere of 
radius 0 ~ 2 ) .  In this CN& SUMC topological complexity is 
supprrssed. The amplitude for the Universe to bifurcate 
is of the order exp[ - 1 A 3H2 )]--a very large factor. 

IX. CONCLUSIONS 

The ground-state wave function for closed univases 
co~tructed by the Euclidean functional-integral prescrip- 
tion put forward in this papa can be said to represent a 
state of minimal excitation for these univuuca for two 
reasons. First, it is the natural generalization to gravity of 

wave function of flat-spacetime field theories. Second, 
when the p d p t i o n  is applied to simple minisuperspace 
models, it yields a semiclassical wave function which cor- 
responds to the classical solution of Einstein’s equations 
of highest spacetime symmetry and lowest matter excita- 
tion. 

The advantages of the Euclidean function-integral 
prescription arc many but perhaps three may be singled 
out. First it is a complete prescription for the wave func- 
tion. It implies not only the Wheeler-DeWitt equation but 
also the boundary conditions which determine the 
ground-state solution. The requirement of Henniticity of 
the Wheeler-DeWitt operator extends thew boundary con- 
ditions to the excited states as well. 
A second advantage of this prescription for the 

ground-state wave function is wmmon to all functional- 
integral formulations of quantum amplitudes. They per- 
mit the direct and explicit calculation of the semiclassical 
approximation. At the current stage of the development 
of quantum gravity where qualitative understanding is 
more important than precise numerical results, this is an 
important advantage. It is well illustrated by OUT minisu- 
paspace model in which we were able to calculate semi- 
classically the probability of tunneling betwan a univcree 
doomed to cud in a big crunch and an e t d  de Sitter ex- 
pmsiofm. 

A f d  advantage of the Euclidean functional-integral 
prescription for the ground-state wave function is that it 
naturally generalizes to permit the calculation of ampli- 
tudes not usually considued in the canonical theory. In 
particular, we have been able to provide a functional- 
integral prescription for amplitudes for the occurra~ce of 
threegeometries with multiply connected and disconnect- 
ed topologies in the ground state. In the semiclassical a p  
proximation we have been able to evaluate simple exam- 
ples of such amplitudes. 

The Euclidean functional-integral prescription sheds 
light on one of the fundamental problems of cosmology: 
the singularity. In the classical theory the singularity is a 
place where the field equations, and hence predictability, 
break down. The situation is improved in the quantum 
theory. An analogous improvement occurs in the problem 
of electron orbiting a proton. In the classical thuny 
there is a singularity and a breakdown of predictab~ty 
when the electron is at the same position as the proton. 
However, in the quantum theory there is no singularity or 
breakdown. In an s-wave state, the amplitude for the elec- 
tron to coincide with the proton is finite and nonzero, but 
the electron just carries on to the other side. Similarly, the 
amplitude for a zercr-volume three-sphere in our minisu- 
perspace model is finite and nonzero. One might interpret 
this as implying that the universe could continue through 
the singularity to another expansion period, although the 
classical concept of time would break down so that one 

the Euclidean functional inkgral for the ground-state 
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could not a y  that the expansion happened after the con- 
traction. 

The ground-state wave function in the simple minisu- 
perspace model that we have considered with a confonnal- 
ly invariant field does not correspond to the quantum 
state of the Universe that we live in because the matter 
wave function does not oscillate. However, it seems that 
this may be a consquence of using only zero rest mass 
fields and that the ground-state wave function for a 
universe with a massive scalar field would be much more 
complicated and might provide a model of quantum state 
of the observed Universe. If this were the case, one would 

have solved the problem of the initial boundary conditions 
of the Universe: the boundary conditions are that it has 
no b o ~ n d a r y . ~  
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Quantum cosmology 
S. W. HAWKING 

14.1 Introduction 
A few years ago I received a reprint request from an Institute of Quantum 
Oceanography somewhere in the Soviet Far East. I thought: What could be 
more ridiculous? Oceanography is a subject that is prt-eminently classical 
because it describes the behaviour of very large systems. Moreover, 
oceanography is based on the Navier-Stokes equation, which is a classical 
effective theory describing how large numbers of particles interact according 
to a more basic theory, quantum electrodynamics. Presumably, any 
quantum effects would have to be calculated in the underlying theory. 

Why is quantum cosmology any less ridiculous than quantum 
oceanography? After all, the universe is an even bigger and more classical 
system than the oceans. Further, general relativity, which we use to describe 
the universe, may be only a low energy effective theory which approximates 
some more basic theory, such as string theory. 
The answer to the first objection is that the spacetime structure of the 

universe is certainly classical today, to a very good approximation. 
However, there are problems with a large or infinite Universe, as Newton 
realised. One would expect the gravitational attraction between all the 
different bodies in the universe to cause them to accelerate towards each 
other. Newton argued that this would indced happen in a large but finite 
universe. However, he claimed that in an infinite universe the bodies would 
not all come together because there would not be a central point for them to 
fall to. This is a fallacious argument because in an infinite universe any point 
can be regarded as the centre. A correct treatment shows that an infinite 
universe can not remain in a stationary state if gravity is attractive. Yet so 
firmly held was the belief in an unchanging universe that when Einstein first 
proposed general relativity he added a cosmological constant in order to 
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obtain a static solution for the universe, thus missing a golden opportunity 
to predict that the universe should be expanding or contracting. I shall 
discuss later why i t  should be that we observe it to be expanding and not 
contracting. 

If one traces the expansion back in time, one finds that all the galaxies 
would have been on top ofeach other about 15 thousand million years ago. 
At first it was thought that there was an earlier contracting phase and that 
the particles in  the universe would come very close to each other but would 
miss each other. The universe would reach a high but finite density and 
would then re-expand (Lifshitz and Khalatnikov, 1963). However, a series of 
theorems (Hawking and Penrose, 1970; Hawking and Ellis, 1973) showed 
that if classical general relativity were correct, there would inevitably be a 
singularity at which all physical laws would break down. Thus classical 
cosmology predicts its own downfall. In  order to determine how the classical 
evolution of the universe began one has to appeal to quantum cosmology 
and study the early quantum era. 

But what about the second objection? Is general relativity the 
fundamental underlying theory of gravity or is it just a low energy 
approximation to some more basic theory? The fact that pure general 
relativity is not finite at two loops (Goroff and Sagnotti, 1985) suggests it is 
not the ultimate theory. I t  is an open question whether supergravity, the 
supersymmetric extention of general relativity, is finite at three loops and 
beyond but no-one is prepared to do the calculation. Recently, however, 
people have begun to consider seriously the possibility that general relativity 
may be just a low energy approximation to some theory such as 
superstrings, although the evidence that superstrings are finite is not, at the 
moment, any better than that for supergravity. 

Even ifgeneral relativity is only a low energy effective theory it  may yet be 
suficient to answer the key question in cosmology: Why did the classical 
evolution phase of the universe start off the way it  did? An indication that 
this is indeed the case is provided by the fact that many of the features of the 
universe that we observe can be explained by supposing that there was a 
phase of exponential ‘inflationary’ expansion in the early universe. This is 
described in more detail in the articles by Linde, and Blau and Guth 
(Chapters 13, 12. tliis volume). In order not to generate fluctuations in the 
niicrowave background bigger than the observational upper limit of 
the energy density in the inflationary era cannot have been greater than 
about 10-lo~$ (Rubakov et ol., 1982; Hawking, 1984o). This would put the 
inflationary era well inside the regime in which general relativity should be a 
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good approximation. It would also be well inside the region in which any 
possible extra dimensions were compactified. Thus it might be reasonable to 
hope that the saddle point or semi-classical approximation to the quantum 
mechanical path integral for general relativity in four dimensions would give 
a reasonable indication of how the universe began. In what follows I shall 
assume that the lowest-order term in the action for a spacetime metric is the 
Einstein one, as it must be for agreement with ordinary, low energy, 
observations. However, I shall bear in mind the possibilities of higher-order 
terms and extra dimensions. 

14.2 The quantum state of the universe 
I shall use the Euclidean path integral approach. The basic assumption of 
this is that the 'probability' in some sense of a positive definite spacetime 
metric grv and matter fields on a manifold M is proportional to exp( -0 
where is the Euclidean action. In general relativity 

where It and K are respectively the determinant of the first fundamental form 
and the trace of the second fundamental form of the boundary aM of M. In 
string theory the action lof a metric grv,  antisymmetric tensor field B,, and 
dilaton field 4 is given by the log of the path integral of the string action 
over all maps of string world sheets into the given space. For most fields the 
path integral will not be conformally invariant. This will mean that the path 
integral diverges and rwil l  be infinite. Such fields will be suppressed by an 
infinite factor. However, the path integral over maps into certain 
background fields will be conformally invariant. The action for these fields 
will be that of general relativity plus higher-order terms. 

The probability of an observable 0 having the value A can be found by 
summing the projection operator l l A  over the basic probability over all 
Euclidean metrics and fields belonging to some class C. 

where l lA=  1 if the value of 0 is A and zero otherwise. From such 
probabilities and the conditional probability, the probability of A given B ,  

where P ( A , B )  is the joint probability of A and €3, one can calculate the 
outcome of all allowable measurements. 
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The choice of the class C of metrics and fields on .which one considers the 
probability measure exp( -r) determines the quantum state of the universe. 
C is usually specified by the asymptotic behaviour of the metric and matter 
fields, just as the state of the universe in classical general relativity can be 
specified by the asymptotic behaviour of these fields. For instance, one could 
demand that C consist of all metrics that approach the metric of Euclidean 
flat space outside some compact region and all matter fields that go to zero 
at infinity. The quantum state so defined is the vacuum state used in S matrix 
calculations. In these one considers incoming and outgoing states that differ 
from Euclidean flat space and zero matter fields at infinity in certain ways. 
The path integral over all such fields gives the amplitude to go from the 
initial to the final state. 

In these S matrix calculatioiis one considers only measurements at infinity 
and does not ask qiiestiotis about what happens in the middle of the 
spacetime. However, this is not much help for cosmology: it is unlikely that 
the universe is asymptotically flat, and, even if it were, we are not really 
interested in what happens at infinity but in events in some finite region 
surrounding us. Suppose we took the class C of metrics and matter fields 
that defines the quantum state of the universe to be theclass described above 
of asymptotically Euclidean metrics and fields. Then the path integral to 
calculate the probability of a value of an observable 0 would receive 
contributions from two kinds of metrics. There would be connected 
asymptotically Euclidean metrics and there would be a disconnected metric 
which consisted of a compact component that contained the observable 0 
and a separate asymptotically Euclidean component. One can not exclude 
disconnected metrics from the class C because any disconnected metric can 
be approximated arbitrarily closely by a connected metric in which the 
diirerent components are joined by thin tubes with negligible action. It turns 
out that for observables that depend only on a compact region the dominant 
contribution to the path integral conies from the compact regions of 
disconnected metrics. Thus, as far as cosmology is concerned, the 
probabilities ofobservables would be almost the same if one took theclass C 
to consist of compact metrics and matter fields that are regular on them. 

In fact, this seems a much more natural choice for the class C that defines 
the quantum state of the universe. I t  does not refer to any unobserved 
asymptotic region and it does not involve any boundary or edge to 
spacetime at infitiity or a singularity where one would have to appeal ,to 
some outside agency to set the boundary conditions. I t  would mean that 
spacctime would he completely sclf containcd and would be determined 
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completely by the laws of physics: there would not be any points where the 
laws broke down and there would not be any edge of spacetime at which 
unpredictable influences could enter the universe. This choice of boundary 
conditions for the class C can be paraphrased as: 'The boundary condition 
of the universe is that it has no boundary' (Hawking, 1982; Hartle and 
Hawking, 1983; Hawking, 1984b). 

This choice of the quantum state of the universe is very analogous to the 
vacuum state in string theory which is defined by all maps of closed string 
world sheets without boundary into Euclidean flat space. More generally, 
one can define a 'ground' state of no string excitations about any set of 
background fields that satisfy certain conditions by all maps of closed string 
world sheets into the background. Thus one can regard the 'no boundary' 
quantum state for the universe as a 'ground' state (Hartle and Hawking, 
1983). I t  is, however, different from other ground states. In other quantum 
theories non-trivial field configurations have positive energy. They therefore 
cannot appear in the zero energy ground state except as quantum 
fluctuations. In the case of gravity it is also true that any asymptotically flat 
metric has positive energy, except flat space, which has zero energy. 
However, in a closed, non-asymptotically flat universe there is no infinity at 
which to define the energy of the field configuration. In a sense the total 
energy of a closed universe is zero: the positive energy of the matter fields 
and gravitational waves is exactly balanced by the negative potential energy 
which arises because gravity is attractive. It is this negative potential energy 
that allows non-trivial gravitational fields to appear in the 'ground' state of 
the universe. 

Unfortunately, this negative energy also causes the Euclidean action lfor 
general relativity to be unbounded below (Gibbons er al., 1978), thus 
causing exp( -n not to be a good probability measure on the space C of field 
configurations. In certain cases it may be possible to deal with this dificulty 
by rotating the contour of integration of the conformal factor in the path 
integral from real values to be parallel to the imaginary axis. However, there 
does not seem to be a general prescription that will guarantee that the path 
integral converges. This dimculty might be overcome in string theory where 
the string action is positive in Euclidean backgrounds. I t  may be, however, 
that the dificulty in making the path integral converge is fundamental to the 
fact that the 'ground' state of the universe seems to be highly non-trivial. In 
any event it would seem reasonable to expect that the main contribution to 
the path integral would come from fields that are near stationary points of 
the action r, that is, near solutions of the field equations. 
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It sliould be emphasised that the ‘no boundary’ condition on the metrics 
in tlie class C that defines the quantum state of the universe is just a 
proposal: it cannot be proved from something else. I t  is quite possible that 
the universe is in some different quantum state though it would be difficult to 
think of one that was defined in a natural manner. The ‘no boundary’ 
proposal does have the great advantage, however, that it provides a definite 
basis on which to calculate the probabilities of observable quantities and 
compare them with what we see. This basis seems to be lacking in many 
other approaches to quantum cosmology in which the assumptions on the 
quantum state of the universe are not clearly stated. For instance, Vilenkin 
(1986) defines the quantum state in a toy mitiisuperspace model by requiring 
that a certain current on minisuperspace be ingoing at one point of the 
boundary of minisuperspace (corresponding to ‘creation from nothing’) and 
outgoing elsewhere on the boundary (annihilation into nothing?). However, 
he does not seem to have a general prescription that would define the 
quantum state except in simple minisuperspace cases. Moreover, his state is 
not CPT invariant, which is a property that one might think the quantum 
state of the universe should have. Similarly, Linde (1985; Chapter 13, this 
volume) does not give a definition of the quantum state of the universe. He 
also suggests that the Wick rotation for the Euclidean action of the 
gravitational field should be in the opposite direction to that for other fields. 
This would be equivaIent to changing the sign of the gravitational constant 
and making gravity repulsive instead of attractive. 

14.3 The density matrix 

One thinks of a quantum system as being described by its state at one time. 
In the case of cosmology, ‘at one time’ can be interpreted as on a spacelike 
surface S. Otic can therefore ask for the probability that the metric and 
matter fields have given values on a d  - 1 surfaces. In  fact, i t  is meaningful to 
ask questions only about the d - 1 metric hi, induced on S by the d metric g,, 
on M because the components it‘g,, of gPv that lie out of S can be given any 
values by a diireomorphism of M that leaves S fixed. Thus the probability 
that the surface S has the induced metric and matter fields +o is 

r 

where n,,I,,.,n, is the projection operator which has value 1 if the induced 
metric and matter fields on S have the given values and is zero otherwise. 

Onecan ciit the nimifold A1 at the surf:tcc S to obtain rl new manifold fil 
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bounded by two copies Sand s) of S. One can then define p(h,,, #o; hi,, q0) to 
be the path integral over all metrics and matter fields on I@ which-agree with 
the given values k,,, 6,0 on Sand hi,, q0 on $. The quantity p can be regarded 
as a density matrix describing the quantum state of the universe as seen from 
a single spacelike surface for the following reasons: 

(i) The diagonal elements of p,  that is, when h,,=lti, and #o=&o, give the 
probability of finding a surface S with the metric h,, and matter 
fields i$o. 

(ii) If S divides M into two parts, the manifold A? will consist of two 
disconnected parts, A?, and A,.  The path integral for p will factorise: 

where the wave functions Y + and Y! - are given by the path integral 
over all metrics and matter fields on A?+ and A?- respectively which 
have thegiven values on Sand S'. If the matter fields 6, are CP invariant, 
Y + = Y - and both are real (Hawking, 1985). Y! is known as 'The Wave 
Function Of The Universe'. A density matrix which factorises can be 
interpreted as corresponding to a pure quantum state. 

(iii) If the surface S does not divide M into two parts, the manifold a will be 
connected. In this case the path integral for p will not factorise into the 
product of two wave functions. This means that p will correspond to the 
density matrix of a mixed quantum state, rather than a pure state for 
which the density matrix would factor-se (Page, 1986; Hawking, 1987). 

One can think of the density matrices which do not factorise in the 
following way: Imagine a set of surfaces 'I; which, together with S, divide the 
spacetime manifold M into two parts. One can take the disjoint union of the 

and S as the surface which is used to define p (there is no reason why this 
surface has to be connected). In this case the manifold A? will be 
disconnected and the path integral for p will factorise into the product of two 
wave functions which will depend on the metrics and matter fields on two 
sets of surfaces, S, 'I; and S', Ti. The quantity p will therefore be the density 
matrix for a pure quantum state. However, an observer will be able to 
measure the metric and matter fields only on one connected component of 
the surface (say, S)  and will not know anything about their values on the 
othercomponents, 8,orcven ifany othercomponentsare required todivide 
the spacetime manifold into two parts. The observer will therefore have to 
sum over all possible metrics and matter fields on the surfaces x.  This 
summation or trace over the fields on the %will reduce p to a density matrix 
corresponding to a mixed state in the fields on the remaining surfaces Sand 
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3'. I t  is like whea you have a system consisting of two parts A and B. 
Suppose the system is in a pure quantum state but that you can observe only 
part A. Then, as you have no knowledge about B, you have to sum over all 
possibilities for D ,  with equal weight. This reduces the density matrix for the 
system from a pure state to a mixed state. 

is equivalent to joining 
the surfaces to and doing the path integral over all metrics and matter 
fields on a manifold d whose only boundaries are the surfaces 3 and 3'. 
There is an overcounting because, as well as summing over all metrics and 
matter fields, one is summing over all positions of the surfaces T, in a. 
However, the path integral over these extra degrees of freedom can be 
factored out by introducing ghosts. The reduced path integral is then the 
same as that for the density matrix p for a single pair of surfaces 3 and 3'. 
Thus onecan see that the reason that the density matrix for Scorresponds to 
a mixed state is that one is observing the state of the universe on a single 
spacelike surface and ignoring the possibility that spacetime may be not 
simply connected and so require other surfaces T, as well as S to divide M 
into two parts. 

The summation over all fields on the surfaces 

14.4 The Wheeler-DeWitt equation 
In a neighbourhood of the boundary surface s of the manifold d, one can 
write the metric grv in the ( d -  1)+ 1 form: 

ds2 = ( N 2  + N'N,) dt2 + 2N, dx' dr + h, dx' dxl, 
where $is the surface t = O .  The Euclidean action can then be written in the 
Hamiltonian form: 

where nil= - (/1''~/161c)(K'~-A'jK) is the Euclidean momentum conjugate 
to / I , ~ , K ~ ~  is the second fundamental form of 3, 

Hi= -2d1, j+ To' 
G i j k l  = ~ / 1 - " 2 ( / l i k h ~ ~  + h , l k j k  -h&), 

As was stated above, the components ofg,, that lie out of the surface Scan 
be given any values by a diffeomorphism of d that leaves 3 fixed. This 
means that thc variational derivative of the path integral for p with respect 

230 



to N and N, on $must be zero: 

where the operators R and I?, are obtained from the corresponding classical 
expressions by replacing the Euclidean momentum lrlJ by - 3/Slz,j and z+ by 
- 6/64. 

The first equation is called the momentum constraint. It is a first-order 
equation for p on superspace, the space W of all metrics h,, and matter fields 
4 on a surface S. It implies that p is the same for metrics and matter fields 
which can be obtained from each other by coordinate transformations in S. 
The second equation is called the Wheeler-DeWitt equation. It holds at 
each point of superspace, except where h,=h;,  and +o=q5b. When this is 
true, the separation between s and 3' in the metric g,, on the manifold d 
may be zero. In this case, it is no longer true that the variation of p with 
respect to N is zero. There is an infinite dimensional delta function on the 
right-hand side of the Wheeler-DeWitt equation. Thus, the Wheeler- 
DeWitt equation is like the equation for the propagator, G(x,x ' )= 

( - 0 + m2)G(x, x ' )  = 6(x, x'). 
As the point x tends towards x', the propagator diverges like r2-d ,  where r 

is the distance between x and x'. Thus G ( x , x ' )  will be infinite. Similarly, 
p(h,,, 4.; I t , ,  4.), the diagonal elements of the density matrix, will beinfinite. 
This infinity arises from Euclidean geometries of the form S x S', where the 
S1 is of very short radius. However, we are interested really only in the 
probabilities for Lorentzian geometries, because we live in a Lorentzian 
universe, not a Euclidean one. One can recognise the part of the density 
matrix p that corresponds to Lorentzian geometries by the fact that it will 
oscillate rapidly as a function of the scale factor of the metrics h ,  and hi, 
(Hawking, 19846). One therefore wants to subtract out the infinite, 
Euclidean, component and leave a finite, Lorentzian, component. One way 
of doing this is to consider only spacetime manifolds M which the surface S 
divides into two parts. The density matrix from such geometries will be of 
the factorised form: 

( 9 ( x M ( x ' ) >  : 

P(h,,  40; Kj, 4b) = Wz,,, 4 0 ) V K , ,  4bh 
where the wave function 'Y obeys the Wheeler-DeWitt equation with no 
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delta function on the right-hand side. This part of the density matrix will 
therefore remain finite when It,,=li;1 and ~$,=(6& In a supersymmetric 
theory, such as supergravity or superstrings, the infinity at the diagonal in 
the density matrix would probably be cancelled by the fermions. 

14.5 Minisuperspace 
The Wheeler-DeWitt equation can be regarded as a second-order 
differential equation for p or Y on superspace, the infinite-dimensional 
space of all tnetrics and matter fields on S. It is hard to solve such an 
equation. Instead, progress has been made by using finite dimensional 
a pp rox i ma t i o ii s to sii pe rspace , called mi 11 i sti pe rspaces, first introduced by 
Mistier (1970). I n  other words, one reduces the infinite number of degrees of 
freedom of the gravitational and matter fields and of the gauge to a finite 
number and solves the Wheeler-DeWitt equation on a finite-dimensional 
space. 

14.5.1 de Sitter. riiodel 
The simplest example is a homogeneous isotropic four-dimensional universe 
with a cosmological constant and metric 

The action is 
ds2= d [ N 2  dt2+n2 dn:]. 

where u2=3mp2,a is the radius of the 3-sphere space-like surfaces and 
1 = ~ u 2 A .  One can choose N =a. The first two terms in the Euclidean action 
are negative definite. This means that the path integral over a does not 
converge. However, one can make the path integral converge by taking a to 
be imaginary. This corresponds to integrating the conformal factor over a 
contour parallel to the imaginary axis (Gibbons et a/., 1978). 

With a imaginary, the action is the same as that of the anharmonic 
oscillator. The density matrix &,a’) is given by a path integral over all 
values of n on a manifold n3’ bounded by surfaces with radii a and a‘. There 
are two kinds of such manifold: ones that have two disconnected 
components, which correspond to spacetimes that are divided in two by S, 
and connected ones, which correspond to non-simply connected spacetimes 
that S does not divide. 

Consider first the casc in which S divides A4 in two. The density matrix 
from these geometries that S divides into two is the product of wave 
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functions: 
p(a, a')= 'y(a)'y(a'), 

where the wave function Y is given by a path integral over compact 4- 
geometries bounded by a 3-sphere of radius a or a'. One would expect this 
path integral to be approximately A exp( -I?), where B is the action of a 
solution of the classical Euclidean field equations with the given boundary 
conditions and the prefactor A is given by a path integral over small 
fluctuations about the solution of the classical field equations. The compact 
homogeneous isotropic solution of the Euclidean field equations is a 4- 
sphere of radius A 3-sphere of radius a<A"/' can fit into such a 4- 
sphere in two positions: it can bound more or less than half the 4-sphere. 
The action B of both these solutions of the classical equations is negative, 
with the action of more than half the Csphere being the more negative, One 
might therefore expect that this solution would provide the dominant 
contribution to the path integral. However, if one takes the scale factor a to 
be imaginary, in order to make the path integral converge, and then 
analytically continues back to real a, one finds that the dominant 
contribution comes from the solution that corresponds to less than half the 
4-sphere, rather than the other solution which corresponds to more than 
half the Csphere, as one might have expected. This conclusion also follows 
from an analysis of the path integral in the K representation (Hartle and 
Hawking, 1983). 

In terms of the gauge choice N =a, used above, the path integral is over a 
with a thegiven value at t-0 and a=O at t== foc.  This path integral is the 
same as that for the propagator for the anharmonic oscillator from ia at t-0 
to 0 at t - z .  But this gives the ground state wave function. Thus 

where A&) is the ground state wave function of the anharmonic oscillator. 
For small x ,  A&) behaves like exp(-fx'). Thus "(a) behaves 

exponentially like exp(+x'). This agrees with the estimates from the action of 
less than half the 4-sphere, as above. However, for u > A - ~ / ~ ,  there is no 
Euclidean solution of the classical field equations for a compact 
homogeneous isotropic 4-space bounded by a 3-sphere of radius a. Instead 
there are complex metrics which are solutions of the field equations with the 
required properties. Near the 3-sphere of radius a, one can take a section 
through thecomplexified spacetime manifold on which the metric is real and 
Lorentzian. Thisis reflected in the fact that A,(ia) will oscillatefora>1'*'': 
exponential wave functions correspond to Euclidean 4-geometries and 

w4 = Re(A,(i 4, 
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oscillating wave functions correspond to Lorentzian 4-geometries 
(Hawking, 19846). 

For large a, "(a) behaves like u-' ~os (A ' /~a~) .  One can interpret this by 
writing the wave function in the WKB form: C(exp(i S) + exp( - i S)), where 
S is a rapidly varying phase factor and C is a slowly varying amplitude. The 
wave function will satisfy the Wheeler-DeWitt equation to leading order if 
the phase factor S obeys the classical Hamilton-Jacobi equation, Thus, an 
oscillating wave function will correspond in the classicaf Iimit to an (11 - 1)- 
dimensional family of soh  tions of the classical Lorentzian field equations, 
where It is the dimension of the minisuperspace. 

In the example above, n =  1. The oscillating part of the wave function 
corresponds to the classical de Sitter solution which collapses from infinite 
radius to a minimuin radius a = A-"* and then expands again exponentially 
to infinite radius. The classical Loreiitzian solution does not go below a 
radius of A - ' / 2 ,  so one can interpret the exponentially damped wave 
function below that radius as corresponding to a Euclidean geometry in the 
classically forbidden region. Note that, for this explanation to make sense, 
the wave function has to decrease with decreasing a,  and not increase as 
authors such as Linde and Vilenkin have argued on the analogy of 
tunnelling 'from nothing'. Anyway, if one believes that the quantum state of 
the universe is determined by a path integral over compact geometries, one 
has no freedom ofchoice of the solution of the Wheeler-DeWitt equation: it  
has to be the one that increases exponentially with increasing a. 

Another feature of the wave function that is worth remarking on is that it 
is real. This means that, in the oscillating region, the WKB ansatz is 
C(exp(i S) + exp( -i  S)). One can regard the Iirst term as representing an 
expanding universe and the second a contracting universe. More generally, 
if the wave function represents some history of the universe, it also 
represents the CPT image of that history (Hawking, 1985). This should be 
contrasted with the approach of Vilenkin and others, who try to choose a 
solution of the Wheeler-DeWitt equation which corresponds only to 
expanding universes. The fallacy of this attempt is that the direction of the 
time coordinate has no intrinsic meaning: it can be changed by a coordinate 
transformation. The physically meaningful question is: how does the 
entropy or degree of disorder behave during the histories of the universe that 
are described by the wave function? The minisuperspace models considered 
here are too simple to answer this but it  will be discussed for models with the 
full number of degrees of freedom in Section 14.7. 

The contribution to the density matrix from geometries that S does not 
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divide into two parts is given by a path integral with a fixed at the given 
values at t = 0 and t t ,  for some Euclidean time interval t ,  , But this is equal 
to the real part of the propagator K(ia,O; ia’,t,) for the anharmonic 
oscillator from i a  at t -0  to ia’ at t - t , .  

K(i a, 0; i a’, t , )  = C A,,(i a)An(i a‘) exp( - E J , ) ,  
n 

where A,(x) are the wave functions of the excited states of the anharmonic 
oscillator and E,, are the energy levels. To obtain the density matrix one has 
to integrate over all values oft, because the two surfaces can have any time 
separation : 

An(i a)An(i a’) 
p(a, a‘)= Re J: K(i a, 0; i a‘, tI) dt, = Re 

n En 
One can interpret this as saying that the universe is in the state specified by 

the wave function Re(A,(ia)) with the relative probability (En)- ’ .  Note that 
the universe need not be ‘on shell’ in the sense that the Wheeler-DeWitt 
operator acting on A,, is not 0, but En. This term in the Wheeler-DeWitt 
equation acts as if the universe contained a certain amount of negative 
energy radiation. It will cause the classical solution corresponding to A, by 
the WKB approximation to bounce at a larger radius than Thus, the 
effect of the universe being in a mixed quantum state might be observable. 
However, at large values of a, the effect of the negative energy radiation 
would be very small and the universe would expand exponentially, like the 
de Sitter solution. 

14.5.2 The massive scalar field model 
The deSitter model was interesting because it showed that the ‘no 
boundary’ proposal for the quantum state of the universe leads to inflation if 
there is some process which gives rise to an effective cosmological constant 
in the early universe. However, the universe is not expanding exponentially 
at the present time, so there has to be some way in which the cosmological 
‘constant’can reduce to zero at  late times. One mechanism, and possibly the 
only one, for generating such a decaying eflective cosmological constant is a 
scalar field with a potential which has a minimum at zero and which is 
exponentially bounded. I shall consider the simplest example, a massive 
scalar field. 

The action of a homogeneotis isotropic universe of mdiusa with a massive 

235 



scalar ficld 4 that is constant on the surfaces of homogeneity is 

Unfortunately, in this case, there does not seem to be any simple 
prescription for making the Euclidean action positive definite. Taking a 
imaginary leaves the kinetic term for d, ncgative, while taking d, imaginary 
would cure this problem but would make the mass term negative. One 
could, however, make the action positive in this manner if the potential was 
pure 44. On physical grounds, one would not expect that there would be a 
qualitative difference between the behaviour ofa universe in which thescalar 
potential was (b2 and one in which it was 44. 

I n  the case that the surface S divides the spacetime into two parts, the 
wave function will obey the Wheeler-DeWitt equation 

where p reflects some of the uncertainty in the factor ordering of the 
operators in the Wheeler-DeWitt equation. I t  is thought that the value of p 
does not have much eTTect, so it is usual to take p = 1, because this simplifies 
the equation. One can introduce new coordinates: 

x=as inh4 ,  y=acoshd.  
In these coordinates, the Wheeler-DeWitt equation becomes 

where V =  ( y 2  - x2)[ - 1 + ( y 2  -x2)rri2(arctanh x / J J ) ~ ] .  

For small values ofa, one can expect that Y is approximately A exp( -B), 
where B is the action of a solution of the Euclidean field equations. If 4 % 1 
and a< l / r i i q 5 ,  tlie value of q5 will not vary much over the solution and the 
r r r 2 C b 2  term in the action will act as an effective cosmoIogicaI constant. One 
would therefore expect B to be the action of the smaller part ofa 4-sphere of 
radius l / i i t r / ~ ,  bounded by a 3-sphere of radius a. From the de Sitter model, 
one would expcct tlie wave function to oscillate for a > l/rtid, and the phase 
factor S to be ;rri&?, the analytic continuation of B. Such a wave function is 
a solution to the Wheeler-DeWitt equation to leading order. 

One can interpret the oscillating part of the wave function as 
corresponding to a complex compact metric which is a solution of the field 
eqiiations and wliicli is bounded by the surface S. In a neighbourhood ofS 
one can take a scction through the complcxificct spacetime manifold on 
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which the metric is nearly real and Lorentzian. This solution will have a 
minimum radius of order l/nr+ and will expand exponentially with 4 slowly 
decreasing. It will be a quantum realisation of the ‘chaotic inflation’ model 
proposed by Linde (1983). 

After an exponential expansion of the universe by a factor of order 
exp(+q3’), the scalar field will start to oscillate with frequency nr. The energy 
momentum tensor of the scalar field will change from that of an effective 
cosmological constant to that of pressure-free matter. The universe will 
change from an exponential expansion to a matter-dominated one. In a 
model with other matter fields, one would expect the energy in the massive 
scalar field oscillations to be converted into zero rest mass particles. The 
universe would then expand as a radiation-dominated model. 

The universe would expand to a maximum radius and then recollapse. 
One would expect that if such complex, almost Lorentzian, geometries 
contributed to the wave function in their expanding phase, they would also 
contribute in their contracting phase. However, although a few solutions 
will bounce at small radius and expand again (Hawking, 1984b; Page, 
1985u,b), most solutions will collapse to a singularity. They will give an 
oscillating contribution to the wave function, even in the region u < l/mq3 of 
superspace where the dominant contribution is exponential. It will also 
mean that the boundary condition for the Wheeler-DeWitt equation on the 
light cone x = f y is not exactly Y = 1, as was assumed in some earlier papers 
(Hawking and Wu, 1985; Moss and Wright, 1983). 

The density matrix from geometries that S dots not divide into two parts 
has not been calculated yet. By analogy with the de Sitter model, one might 
expect that the part which corresponds to Lorentzian geometries would 
behave like solutions with a massive scalar field and negative energy 
radiation. One would not expect the negative energy to prevent collapse to a 
singularity. 

To summarise, in this model, the universe begins its expansion from a 
non-singular state. It expands in an inflationary manner, goes over to a 
matter or radiation-dominated expansion, reaches a maximiim radius and 
recollapses to a singularity. This will be discussed further in Sections 14.7 
and 14.8. 

14.6 Beyond minisuperspace 
The minisuperspace models were useful because they showed that the ‘no 
boundary’ proposal for the quantum state of the universe can lead to a 
universe like the one that we observe, at least in its large scale features. 
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However, ultiniatcly one would like to know the density matrix or wave 
function on the whole of superspace, not just a finite-dimensional subspace. 
This is a bit of a tall order but one can use a ‘midisuperspace’ approxiination 
in which one takcs the action to all ordcrs in a finite number of degrees of 
freedom and to second order in  the remaining degrees of freedom. 

A treatment of the massive scalar field model on these lines has been given 
by Halliwell and Hawking (1985). The two degrees of freedom of the model 
described above are treated exactly, and the rest as perturbations on the 
background determined by the two-dimensional minisuperspace model. As 
in the model above, the oscillating part of the background wave function 
corresponds by the WKB approximation to a universe which starts at a 
minimum radius, expands in an inflationary and then a matter-dominated 
manner, reachcs a niaximum radius and recollapses to a singularity. 

Fro111 the ‘no boiiiidary’ condition the behaviour of the perturbations is 
determined by a path integral of the perturbation modes over the compact 
geometries represented by the background wave function. In the case of 
Euclidean geometries that are part of a 4-sphere or of complex geometries 
that are near such a Euclidean geometry, one can use an adiabatic 
approximation to show that the perturbation modes are in their ground 
state, with the minimum excitation compatible =with the uncertainty 
principle. This means that the Lorentzian geometries that correspond to the 
oscillating part of the wave function start omat the minimum radius with all 
the perturbation modes in the ground state. As the universe inflates, the 
adiabatic approximation remains good and the perturbation inodes remain 
in their ground states until their wavelength becomes longer than the 
horizon size or, in other words, their frequency is red shifted to less than the 
expansion time scale. After this, the wave functions of the perturbation 
modes freeze and do not relax adiabatically to remain in the ground state as 
the frequency of the modes changes. 

The perturbation niodes remain frozen until the wavelength of the modes 
becomes less than the horizon size again during the matter- or radiation- 
dominated expansion. Because they have not been able to relax 
adiabatically, they will then be in a highly excited state. After this, they will 
evolve like classical perturbations of a Friedmann universe. They will have a 
‘scale free’ spectrum, that is, their rms amplitude at the time the wavelength 
equals the horizon size will be independent of the wavelength. The 
amplitude will be roughly lO(ui/n+,), wherc ni is the mass of the scalar field. 
Thus they would have the right amplitude of about to account for 
galaxy formation if iii is about lot4 GeV. 
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In order to generate suficient inflation, the initial value of the scalar field 
4 has to be greater than about 8. However, with ni= 10-Sinp, the energy 
density of the scalar field will still be a lot less than the Planck density. Thus 
it may be reasonable in quantum cosmology to ignore higher-order terms 
and extra dimensions. 

In the recollapse phase the perturbations will continue to grow classically. 
They will not return to their ground state when the universe becomes small 
again, as I suggested (Hawking, 1985). The reason is that when they start 
expanding, the background compact geometry bounded by the surface S is 
near to the Euclidean geometry of half a 4-sphere. On such a background the 
adiabatic approximation will hold for the perturbation modes, so they will 
be in their ground state. However, when the universe recollapses, the 
background geometry will be near a Lorentzian solution which expands and 
recontracts. The adiabatic approximation will not hold on such a 
background. Thus the perturbation modes will not be in their ground state 
when the universe recollapses, but will be highly excited. 

14.7 The direction of time 
The quantum state defined by the ‘no boundary’ proposal is CPT invariant 
(Hawking, 1985), though this is not true of other quantum states, such as 
that proposed by Vilenkin (1986). Yet the observed universe shows a 
pronounced asymmetry between the future and the past. We remember 
events in the past but we have to predict events in the future. Imagine a tall 
building which is destroyed by an explosion and collapses to a pile of rubble 
and dust. If one took a film of this and ran it backwards, one would see the 
nibble and dust gather themselves together and jump back into their places 
in the building. One would easily recognise that the film was being shown 
backwards because this kind of behaviour is never observed: we do not see 
tower blocks jumping up. Yet it is not forbidden by the laws of physics. 
These are CPT invariant. In fact, the laws that are important for the 
structure of buildings are invariant under C and P separately. Thus, they 
must be invariant under T alone. In other words, if a building can collapse, it 
can also resurrect itself. 

The explanation that is usually given as to why we do not see buildings 
jumping up is that the second law of thermodynamics says that entropy or 
disorder must always increase with time, and that an erect building is in a 
much more ordered state than a pile of rubble and dust. However, this law 
has a rather different status from other laws, such as Newton’s law of 
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gravity. First, it is not an absolute law that is always obeyed: rather it is a 
statistical law that says what will probably happen. Second, it is not a local 
law like other laws of physics: it  is a statement about boundary conditions. 
I t  says that ifa system starts onin a state of high order, i t  is likely to be found 
in a disordered statc at a later time, simply because there are many more 
disordered states than ordered ones. 

The reason that entropy and disorder increase with time and buildings fall 
down rather than jump up is that the universe seems to have started out in a 
state of high order in the past. On the other hand, if, for some reason, the 
uiiiverse obeyed the boundary condition that it was in a state of high order 
at late times, then at catlier times it would be likely to be in a disordered state 
and disorder would decrease with time. However, human beings are 
governed by tlic sccond law and the boundary conditions, just like 
everything else in thc universe. Our subjective sense of the direction of time 
is determined by the direction in which disorder increases because to record 
information in our memories requires the expenditure of free energy and 
increases the entropy and disorder of the universe. Thus, if disorder 
decreased with time, ou r  subjective sense of time would also be reversed and 
we would still say that entropy and disorder increased with time. Thesecond 
law is almost a tautology: entropy and disorder increase with time because 
we measure time i t1  the direction in which disorder increases. 

However, there remains the question of why should the universe have 
been in a state of high order at one end of time? Why was it not in a state of 
complete disorder or thermal equilibrium at all times? After all, that might 
seem more probable as there are many more disorder states than order ones. 
And why does the direction of time in which disorder increases coincide with 
that in which the universe expands? Put it another way: why do we say that 
the universe is expanding, and not contracting? 

These qucstions can be answered only by some assumption on the 
boundary conditions of the universe or, equivalently, on the class of 
spacetime geometries in the path integral, As we have seen, the ‘no 
boundary’ condition implies that the universe would have started off in a 
smooth and ordered state with all the inhomogeneous perturbations in their 
ground state of minimum excitation. As the universe expanded, the 
perturbations would have grown and the universe would have become more 
inhomogeneous and disordered. This would answer the questions above. 

But what woiild happen if the universe, or some region of it, stopped 
expanding and began to collapse? At first I thought (Hawking, 1985) that 
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entropy and disorder would have to decrease in the contracting phase so 
that the universe would get back to a smooth state when it was small again. 
This was because I thought that at small values of the radius Q, the wave 
function would be given just by a path integral over small Euclidean 
geometries. This would imply Y = 1 on the light cone x -  f y m the model 
described above and that the adiabatic approximation would hold for the 
perturbation modes, which would therefore be in their ground state. 
However, Page (1985b) pointed out that there would also be a contribution to 
the wave function from compact, complex, almost Lorentzian geometries 
that represented universes that started at a minimum radius, expanded to a 
maximum and recollapsed, as described above. This was supported by work 
by Laflamme (1987), who investigated a minisuperspace model in which the 
surfaces S had topology S1 x S2. He also found almost Lorentzian solutions 
which started in a non-singular manner but recollapsed to a singularity. The 
adiabatic approximation for the perturbation modes would not hold in the 
recollapse. Thus they would not return to their ground states, but would get 
even more excited as the collapse continued. The universe would get more 
and more inhomogeneous and disorder would continue to increase wifh 
time. 

There remains the question of why we observe that the direction of time in 
which disorder increases is also the direction in which the universe is 
expanding. Because the 'no boundary' quantum state is CPT'invaiant, 
there will also be histories of the universe that are the CPT revems of that 
described above, However, intelligent beings in these histories would have 
the opposite subjective sense of time. They would therefore describe the 
universe in the same way as above: it would start in a smooth state, expand 
and collapse to a very inhomogeneous state. The question therefore 
becomes: why do we live in the expanding phase? If we lived in the 
contracting phase, we would observe entropy to increase in the opposite 
direction of time to that in which the universe was expanding. To answer 
this, I think one has to appeal to the weak anthropic principle. The 
probabfity is that the universe will not recollapse for a very long time 
(Hawking and Page, 1986). By that time, the stars would all have burnt out 
and the baryons would have decayed. The conditions would therefore not be 
suitable for the existence of beings like us. It is only in the expanding phase 
that intelligent beings can exist to ask the question: why is entropy 
increasing in the same direction of time as that in which the universe is 
expanding? 
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14.8 The origin and fate of the universe 
Docs the universe have a beginning and/or end? 

If tlie ‘no boundary’ proposal for the quantum state is correct, spacetime is 
compact. On a compact space, any time coordinate will have a minimum 
and a maximum. T ~ L I S ,  in this sense, tlie universe will have a beginning and 
an end. 

Will the beginning and end be singularities? 
Here one must distinguish between two different questions: whether there 

are singularities in the geometries over which the path integral is taken, and 
wlictlier there are singularities in the Lorentzian geometries that correspond 
to !he density matrix by the WKB approximation. A singularity cannot 
really be regarded as belonging to spacetime because the laws of physics 
would not hold thcrc. Thus, the requircnicnt of the ‘no boundary’ proposal 
that the path integral isover compact geometries only rules out theexistence 
of any singularities in this sense. Of course, one will have to allow compact 
metrics that are not smooth in the path integral, just as in the integral over 
particle histories one has to allow particle paths that are not smooth but 
satisfy a Holder continuity condition. However, one can approximate such 
paths by smooth paths. Similarly, in the path integral for the universe, it 
must be possible to approximate the non-smooth metrics in a suitable 
topology by sequences of smooth metrics because otherwise one could not 
define the action of such metrics. Thus, in this sense, the geometries in the 
path integral are non-singular. 

On the other hand, the Lorentzian geometries that correspond to the 
density matrix by the WKB approximation can and do have singularities. In 
the minisuperspace model described above, the Lorentzian geometries 
began at a non-singular minimum radius or ‘bounce’ and evolve to a 
singularity in general, in the direction of time defined by entropy increase. I 
would conjecture that this is a general feature: oscillating wave functions 
and Lorentzian geometries arise only when one has a massive scalar field 
which gives rise to an effective cosmological constant and Euclidean 
solutions which are like the 4-sphere. The Lorentzian solutions will be the 
analytic coiitinuation of the Euclidean solutions. They will start in a smooth 
non-singular state at a minimum radius equal to the radius of the 4-sphere 
and will expand and become more irregular. When and if they collapse, it 
will be to a singularity. 

One could say that the universe was ‘created from nothing’ at the 
minimum radius (Vilenkin, 1982). However, the use of thc word ‘create’ 
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would seem to imply that there was some concept of time in which the 
universe did not exist before a certain instant and then came into being, But 
time is defined only within the universe, and does not exist outside it, as was 
pointed out by Saint Augustine (400): 'What did God do before He made 
Heaven and Earth? I do not answer as one did merrily: He was preparing 
Hell for those that ask such questions. For at no time had God not made 
anything because time itself was made by God.' 

The modern view is very similar. In general relativity, time is just a 
coordinate that labels events in the universe. It does not have any meaning 
outside the spacetime manifold. To ask what happened before the universe 
began is like asking for a point on the Earth at 91" north latitude; it just is 
not defined. Instead of talking about the universe being created, and maybe 
coming to an end, one should just say: The universe is. 
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It is assumed that the Universe is in the quantum state detined,by a path integral over compact 
four-metrics. This can be regarded as a boundary condition for the wave function of the Universe 
on supenpace, the space of all three-metrics and matter field configurations on a three-surface. We 
extend previous work on finite-dimensional approximations to supenpace to the full infinite- 
dimensional space. We treat the two homogeneous and isotropic degrees of freedom exactly and the 
others to second order. We justify this approximation by showing that the inhomogeneous or aniso- 
tropic modes start off in their ground state. We derive time-dependent Schrijdinger equations for 
each mode. The modes remain in their ground state until their wavelength excaeds the horizon size 
in the period of exponential expansion. The ground-state fluctuations are then amplified by the sub- 
sequent expansion and the modes reenter the horizon in the matter- or radiation-dominated era in a 
highly excited state. We obtain a scale-free spectrum of density perturbations which could account 
for the origin of galaxies and all other structure in the Universe. The fluctuations would be compa- 
tible with observations of the microwave background if the mass of the scalar field that drives the 
inflation is LO" GeV or less. 

I. INTRODUCTION 

Observations of the microwave background indicate 
that the Universe is very close to homogeneity and isotro- 
py on a large scale. Yet we know that the early Universe 
m o t  have bem completely homogeneous and isotropic 
because in that case galaxies and stars would not have 
formed. In the standard hot big-bang model the density 
perturbations required to produce these structures have to 
k assumed as initial conditions. However, in the infla- 
tionary model of the Universe'-' it was possible to show 
that the ground-state fluctuations of the scalar field that 
causes the exponential expansion would lead to a spec- 
trum of density perturbations that was almost scale 
free?-' In the simplest grand-unified-theory (GUT) in- 
tlationary model the amplitude of the density perturba- 
tions was too large but an amplitude that was consistent 
with observation could be obtained in other models with a 
different potential for the scalar field.' Similarly, 
ground-state fluctuations of the gravitational-wave modes 
would lead to a spectrum of long-wavelength gravitational 
waves that would be consistent with observation provided 
that the Hubble constant H in the inflationary period was 
not more than about lo-' of the Planck mass? 

One cannot regard these results as a completely satis- 
factory explanation of the origin of structure in the 
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Universe because the inflationary model does not make 
any assumption about the initial or boundary conditions 
of the Universe. In particular, it does not guarantee that 
there should be a period of exponential expansion in 
which the scalar field and the gravitational-wave modes 
would be in the ground state. In the absence of some as- 
sumption about the boundary conditions of the Universe, 
any present state would be possible: one could pick an ar- 
bitrary state for the Universe at the present time and 
evolve it backward in time to see what initial conditions it 
arose from. It has recently been prop~sed '~- '~  that the 
boundary conditions of the Universe arc that it has no 
boundary. In other words, the quantum state of the 
Universe is defined by a path integral over compact four- 
metrics without boundary. The quantum state can be 
described by a wave f nction V which is a function on the 
infinite-dimensional !pace W called superspace which 
consists of all three-metrics hi, and matter field configu- 
rations U+-, on a three-surface S. Because the wave func- 
tion does not depend on time explicitly, it obeys a system 
of zero-energy Schriidinger equations, one for each choice 
of the shift N, and the lapse N on S. The Schrdinger 
equations can be decomposed into the momentum con- 
straints, which imply that the wave function is the same 
at all points of W that are related by coordinate transfor- 
mations, and the Wheeler-DeWitt equations, which can k 
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regarded as a system of second-order differential equa- 
tions for ‘Y on W. The requirement that the wave func- 
tion be given by a path integral over compact four-metrics 
then becomes a set of boundary conditions for the 
Wheeler-DeWitt equations which determines a unique 
solution for ‘Y. 

It is difficult to solve differential equations on an 
infinite-dimensional manifold. Attention has therefore 
bcen concentrated on finitc-dimensional approximations 
to W, called “minisuperspace.” In other words, one re- 
stricts the number of gravitational and matter degrees of 
freedom to a finite number and then solves the Wheeler- 
LkWitt equations on a finite-dimensional manifold with 
boundary conditions that reflect the fact that the wave 
function is given by a 8th integral over compact four- 
mctrics. In ~ a r t i c u l a r , ’ ~ ”  it has becn shown that in the 
case of a homogeneous isotropic closed universe of radius 
u with a massive rcrlar field 4 the wave function corre- 
sponds in the classical limit to a family of classical solu- 
tions which have a long period of exponential or ‘Tnfla- 
tionuy” expansion and then go over to a matter- 
dominated expansion, reach a maximum radius, and then 
collapse in a time-symmetric manner. This model would 
be in agreement with observation but, because it is so re- 
stricted, the only prediction it can make is that the ob- 
saved value of the dasity parameter n should be exactly 
one.” The aim of tblr papa is to extend this minisuper- 
space model to the full number of degrees of freedom of 
the gravitational and rcrlar fields. We treat the 2 degrees 
of freedom of the minisupaspace model exactly and we 
expand the other inhomogeneous and anisotropic degrees 
of freedom to seoomd order in the Huniltonian. In the re- 
gion of W in which Y oscillates rapidly, one can use the 
WKB approximation to relate the wave function to a fam- 
ily of classid nolutions and so introduce a concept of 
time. As in the minisuperspace casc, the family includes 
solutions with a long period of exponential expansion. We 
show that the gravitational-wave and density-perturbation 
modes obey decoupled timc-dependent Schriidinger equa- 
tions with respect to the time parameter of the classical 
solution. The boundary conditions imply that t h e  
modes start off in the ground state. While they remain 
within the horizon of the exponentially expanding phase, 
they can relax adiabatically and so they remain in the 
ground state. However, when they expand outside the 
horizon of the inflationary period, they become “frozen” 
until they reenter the horizon in the matter-dominated 
era. They then give rise to gravitational waves and a 
scale-free spectrum of density perturbations. These would 
be consistent with the observations of the microwave 
background and could be large enough to explain the on- 
gins of galaxies if the mass of the scalar field were about 

of the Planck mass. Thus the proposal that the 
quantum state of the Universe is defined by a path in- 
tegral over compact four-metrics seems to k able to ac- 
count for the origin of structure in the Universe: it arises. 
not from arbitrary initial conditions, but from the 
ground-state fluctuations that have to be present by the 
Heisenberg uncertainty principle. 

In Sec. 11 we review the Hamiltonian formalism of clas- 
sical general relativity, and in Sec. I11 we show how this 

leads to the canonical treatment of the quantum theory. 
In SCC. IV we summarize earlier workt3 on a homogene- 
ous isotropic minisupuspace model with a massive sular 
field. We extend this to all the matter and gravitational 
degrees of freedom in SS. V, treating the inhomogeneous 
modes to sccond order in the Hamiltonian. In Set. VI we 
decompose the wave function into a background tam 
which obeys an equation similar to that of the unper- 
turbed minisuperspace model, and paturbation terms 
which obey time-dependent Schriidinger equations. We 
use the path-integral expression for the wave function in 
k. VII to show that the paturbation wave functions 
start out in their ground states. Their subsequent evolu- 
tion is described in SCC. VIII. In Sec. IX we calculate the 
anisotropy that these puturbations would produce in the 
microwave background and compare with observation. In 
Sec. X we summarize the paper and conclude that the 
ptoposed quantum state could account not only for the 
large-scale homogeneity and isotropy-but also for the 
structure on smaller scales. 

11. CANONICAL FORMULATION 
OF GENERAL RELATIVITY 

We consider a compact threcsurface S which divides 
the four-manifold M into two parts. In a neighborhood 
of S one can introduce a Coordi~te r such that S is the 
surface t=O and CooTdiMteS XI (i=1,2,3). The metric 
takes the form 

&’= -(N2-NiN’kit’+2N,dX’dt +h,jdX’dXJ. (2.1) 

N is called the lapse function. It measure the proper-time 
separation of surfaces of constant 1. N, is called the shift 
vector. It measures the deviation of the lines of constant 
XI from the normal to the surface S.‘ The action is 

I = I (4 + L ,  ) d f  dt , 
where 

is the sacond fundamental form of S, and 

G = f h In( h IkhjJ + h IJh j k  - 2h fjh u)  . 
In the case of a massive scalar field UJ 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
In the Hamiltonian trcatment of general relativity one 

regards the components hij of the three-metric and the 
field UJ as the canonical coordinates. The canonically 
conjugate momenta are 
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(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

The quantities N and Ni .are regarded as Lagrange mul- 
tipliers. Thus the solution obeys the momentum mn- 
straint 

H'=O (2.13) 

and the HamiltoNan constraint 

H050. (2.14) 

For given fields N and N' on S the equations of motion 
are 

(2.15) 

III. QUANTIZATION 

The quantum state of the Universe can be described by 
a wave function Y which is a function on the infinite- 
dimarsional manifold W of aU three-metrics hll and 
matter fields 9 on S. A tangent vector to W is a pair of 
fields ( y  ,p) on S when yfl  can be warded as a small 
change of the metric h and p can be regarded as a small 
change of 9. For cad choice of N > 0 on S there is a 
natural metric r ( N )  on W:" 

The wave function P does not depend explicitly on the 
time t because r is just a coordinate which can be given 
arbitrary values by different choice of the undetermined 
multipliers Nand N l .  This means that Y obeys the zero- 
energy SchrZidinger equation: 

H P  =O . (3.2) 

The Hamiltonian operator H is the classical Hamiltonian 
with the usual substitutions: 

Because N and Ni are regarded as independent Lagrange 
multipliers, the Schrijdinger quation can be decomposed 
into two parts. There is the momentum constraint 

H-Pr s NlH'd3x P 

=O . (3.4) 

This implies that P is the same on three-metrics and 
matter field configurations that ars related by coordinate 
transformations in S. The otkr part of the Schriidinger 
equation, corrcrponding to H I  Y=O, where 
H I  = 1 NHOd3x is called the Wheeler-DeWitt equation. 
There is one Wheeler-DeWitt equation for each choice of 
N on S. One can regard than as a system of second-order 
partial differential equations for P on W. There is some 
ambiguity in the choice of operator ordering in these 
equations but this will not affect the results of this paper. 
We shall assume that HI has the form" 

(3.5) 

when V2 is the Lapladan in the metric f ' (N) .  R is the 
curvature scalar of this metric and the potential Vis 

( -  fV2+{R + y)Y PO, 

w h m  (I = p-  fue'. The constant E M be q d e d  l l ~  
a renormalization of the cosmological constant A. We 
shall assume that the rcnonnalized A ir zero. We shall 
also assume that the d i c i e n r g  of the scalar curvature 
R of Wiszao. 

Any wave function UI which satisfies the momentum 
constraint and the Wheeler-DcWitt equation for each 
choice of N and Nf on S describes a possible quantum 

ticular solution which -resents the quantum state de- 
fined by a path integral over compact four-metrics 
without boundary. In this ~113el'-~' 

state of the univase. we shrll be c < n c a n e d  with the par- 

w h m  7 is the Euclidean action obtained by setting N neg- 
ative imaginary and the path integral is taken over all 
compact four-metrics g,,. and matter fidds CD which arc 
bounded by S on which the thrre-metric is hu and the 
matter field is CD. One can regard (3.7) as a boundary con- 
dition on the Wheeler-DeWitt equations. It implies that 
P tends to a constant. which can be normalized to one, as 
h ,  goes to zero. 
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IV. UNPERTURBED FRIEDMANN MODEL 

Reference 12-14 Considered the minisuppace model 
which consisted of a Friedmann model with metric 

drz=d( -N2dt2+a2dfl t )  , (4.1) 

where d f l t  is the metric of the unit threc-sphere. The 
nonnalhtion factor d=2/3ump2 bas bsa included for 
convenience. The model contains a scalar field 
(2I”ru)-’9 with mur a”m which is constant on sur- 
faces of constant t. One can easily generalize this to the 
case of a scalar fidd with a potential V ( # ) .  Such general- 
izations include models with higher-derivative quantum 
 correction^.^^  he action is 

2 
I = - +  J d t N a 3 [ &  121 -- 1 

as 

- * +rn2#2 . (4.2) N 2  I ) ’  dt 1 
The classical Hamiltonian is 

H = = ~ N ( - a ” ~ ~ ’ + a ’ ~ f f ~ - o  +a’n1’4~), (4.3) 

where 

a da & re=-- 
N d t ’  =*= Ndt ’ 

(4.4) 

The classical H.miltoni~ constraint is H=O. The classi- 
cal field equations arc 

+N’m’d=O. (4.5) 

The Wheeler-DeWitt equation is 

where 

V =  f (e“m’#-eb)  (4‘8) 

and a = h .  One can w a r d  Eq. (4.7) as a hyperbolic 
equation for Y in the flat space with Coordi~tar (a,$) 
with a. as the time coordinate. The boundary condition 
that giver the quantum state defined by a path integral 
over compact four-mdrics is Y-, 1 as a+ - O .  1l one 
intcgrater Q. (4.7) with this boundary condition, one 
finds that the wave function starts d l l a t i n g  in the r e  
gion V> 0. 14 I > 1 (this has been confirmed numerical- 
ly“). One can interpret the oscillatory component of the 
wave function by the WKB approximation: 

Y=Re4Ces), (4.9) 

where C is a slow1y varying amplitude and S is a rapidly 
varying phase. One chooses S to satisfy the classical 
Hamilton-Jacobi equation: 

H(*, , .~~.a,4)=0.  (4.10) 

where 

One can write (4.10) in the form 

31 - 

(4.11) 

(4.12) 

where f oc is the inverse to the metric r( 1): 

foc=e-bdiag(-l,l). (4.13) 

The wave function (4.9) will then satisfy the Wheeler- 
DcWitt equation if 

v2c +2if * - acaS +iCVZS=O, 
4’4* 

(444) 

where V’ is the Laplacian in the metric fd. One can ig- 
nore the first tam in Eq. (4.14) and can integrate the 
equation along the trqjectories of the vector field 
Xe=dqe/dt = f *aS/aqb and so debrmine the amplitude 
C. These trajectories correspond to cllssical solutions of 

nate time r of the classical solutions. 
The solutions that correspond to the d l l a t i n ~  part of 

the wave function of the minisupaspace model start out 
at V=O, 14 I > 1 with d d d t  =dd /d t  =O. They expand 
exponentially with 

the field  equation^. They wc p~amariztd by the coo~di- 

S= - +e”m I 4 I ( 1 --m -% -&d-’) 

(4.16) 

After a time of order 3m-’( Id1 I -11, where#, is the in- 
itial value of #, the field # starts to ogdllate with f q u e n -  
cy m. The solution then kcomes mattes dominated and 
expands with e’ proportional to t2*. If there were other 
fields present, the massive sclllar particle would d a y  
into light particles and then the solution would expand 
with ea proportional to t tn.  Eventually the solution 
would reach a maximum radius of order exp(9$1’/2) or 
e ~ p ( 9 $ ~ ~ )  depending on whether it is radiation or matter 
dominated for most of the expansion. The solution would 
then recollapse in a similar manner. 

V. THE PERTURBED FRIEDMANN MODEL 

We mume that the metric is of the form (2.1) except 
the right hand side has been multiplied by a normalization 
factor d. The three-metric hU has the form 

(5.1) 

where a,, is the metric on the unit threc-sphere and €0 is 
a puturbation on this metric and may be expanded in har- 
monics: 

hi/ =a ’(flu +el/ , 
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The coefficients a,,,,,, , bd,,, ,c:(,,, ,&, , d k  ,d.& are func- 
tions of the time coordinate r but not the three spatial 
coordinates XI. 

The Q(x') are the standard scalar harmonics on the 
three-sphere. The P,,(x') are given by (suppressing all but 
the iJ indice) 

(5.3) 

They are traceless, P,'=O. The S, are defined by 

s, =si I j +sj I I ? (5.4) 

where S, are the transverse vector harmonics, S,l'=O. 
The G,, are the transverse traceless tensor harmonics 
G,'=Glj1f=0. Further details about the harmonics and 
their normalization can be found in Appendix A. 

The l ap ,  shift, and the scalar field W x ' , t )  can be ex- 
panded in t a m s  of harmonics: 

N = N o  1+6- IR I: BnlmQL * (5.5) I n J m  I 
N,=ea 2 [6-Ink,,,,,,(Pi)& +2'njh(S1)$] , (5.6) 

lsLm 

(5.7) 

w h m  P~=[l/(n2-I)]Qlr. Hereafter, the labels n, I ,  m, 
0, and e will be denoted simply by n. One can then ex- 
pand the action to all orders in terms of the "background" 
quantities a,#,No but only to second order in the ''pertur- 
bations" an ~ b n & ~  ,dIf n tgn &n dn : 

(5.8) 

w h m  I0 is the action of the unperturbed model (4.2) and 
I,  is quadratic in the perturbations and is given in Appen- 
dix B. 

I 

One can define conjugate momenta in the usual 
manner. They are 

ra= -No-'eka+quadratic terms , (5.9) 

r+=No-'ek(+quadratic terms , (5.10) 

The quadratic terms in Eqs. (5.9) and (5.10) are given in 
Appendix B. The Hamiltoni- can' then be expressed in 
terns of t h e  momenta nnd the other quantities: 

The subscripts OJ.2 on the H I  and H ,  denote the orders 
of the quantities in the perturbations and S and V denote 
the scalar and vector parts of the shift part of the Hamil- 
tonian. H 1 is the Hamiltonian of the unperturbed model 
with N=l: 

H l o = f e - k ( - ~ ~ + ~ ~ + e Q m 2 ~ z - e b )  . (5.17) 

The second-order Hamiltonian is given by 

HI1= Z H T z =  X: ( sH;2+vHY2+rH~2) .  
I I 

where 
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The shift parts of the Hamiltonian (VC 

(5.22) 

“H! I P c -“[re, +4(n - 4 k. r,, J . (5.23) 

The classical field equations are giva  in Appcndk B. 
Bscause the Lagrange multipliers No,g,,k,,j, we independent, the zero energy Schriidinger equation 
HY =o (5.24) 

can be decomposed M before into momentum constraints and Wheeler-DeWitt equations. As the momentum constraints 
are linear in the momenta, there is no ambiguity in the operator orduing. One therefore has 

(5.25) 

The first-order Huniltonians Hi I give a series of finite dimensional scmnd-orda differential equations, one for each 
n. In the order of approximation that we arc using, the ambiguity in the operator ordering will Consist of the possible 
addition of tams linear in a h .  The effect of such tams can be compcnsatcd for by multiplying the wave fuction by 
powers of e“. Thia will not affect the relative probabilities of different observations at a given value of a. We shall 
therefore ignore such ambiguities and terms: 

(5.27) 

F d l y ,  one has an infinite-dimensional sccondada  differential equation 

H l o +  ~ P I Y ~ ~ + “ H ~ z + ~ H ’ / ~ )  I 
where H I is the opentor in the Wheeler-DeWitt equation of the unperturbed fried ma^ minisupcrspw model: 

(5.28) 

(5.29) 

and 
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We shall call Eq. (5.28) the master equation. It is not 
hyperbolic because, as well as the positive second deriva- 
tives a2/aa2 in H l o ,  there are the positive second deriva- 
tives a2/&tn2 in each However, one can use the 
momentum constraint (5.25) to substitute for the partial 
derivatives with respect to a,, and then solve the resultant 
differential equation on a,, =O. Similarly, one can use the 
momentum constraint (5.26) to substitute for the partial 
derivatives with respect to c,, and then solve on c,,=O. 
One thus obtains a modified equation which is hyperbolic 
for small f,,. If one knows the wave function on 
u,, =O=c,,. one can use the momentum constraints to cal- 
culate the wave function at other values of u, and c,,. 

VI. THE WAVE FUNCTION 

Because the perturbation modes are not coupled to each 
other, the wave function can be expressed as a sum of 
terms of the form 

(6.1) 

I "==Re Yo(a,4) n uI(")(a,Q),an,bn,C,,d,,,fn) I n  
=Re(Ce"), 

where S is a rapidly varying function of a and 4 and C is 
a slowly varying function of all the variables. If one sub- 
stitutes (6.1) into the master equation and divides by Y, 
one obtains 

where V2' is the Laplacian in the minisuperspace metric 
fd =ehdi@ - 1.1) and the dot product is with respect to 
this metric. 

An individual perturbation mode does not contribute a 
sigdhmt fraction of the sums in the third and fourth 
tams in Eq. (6.2). Thus these tvms can be replaced by 

In order that the ansatz (6.1) be valid, the terms in (6.2) 
that depend on u,,,b,,,cn,dn,f,, have to cancel out. This 
implies 

where 

In regions in which the phase S is a rapidly varying 
function of a and 4, one can neglect the second term in 
(6.4) in comparison with the first tam. One can also re- 
place the re and r+ which appear in H I 2  by aS/aa and 
asla#, respectively. The vector xa=/.Jas/aqb obtained 
by raising the covcctor V g  by the inverse minisupenpace 
metric f * can be regarded as a/& where I is the time pa- 
rameter of the classical Friedmann metric that corn- 
sponds to Y by the WKB approximation. One then ob- 
tains a time dependent Schrijdinger equation for each 
mode along a trajectory of the vector field X': 

(6.6) 

Equation (6.5) can be interpreted as the Wheeler- 
DcWitt equation for a two-dimensional minisuperspace 
model with an extra term fJ-J arising from the put&- 
tions. In order to make J finite, one will have to make 
subtractions. Subtracting out the ground-state energies of 
the HI2 corresponds to a renormalization of the m m o -  
logical constant A. There is a sccond subtraction which 
corresponds to a renodiza t ion  of the P h c k  mass mp 
and a third one which corresponds to a curvature-squared 
counterterm. The effect of such higher-dcrivative terms 
in the action has been considered elsewhere.'6 

One can write uI(n) as 

Y(")=suI(n)(a,4,u,,,6Jn )"uI(")(a,~,c,, )TuI(n'(a,4,d,, 1 , 
(6.7) 

where sY(n), "Y(") , and '@") obey independent 
Schrijdinger equations with sH12, "Hi2, and TH12, 
respectively. 

VII. THE BOUNDARY CONDITIONS 

We want to find the solution of the master equation 
that corresponds to 

(7.1) 

where the integral is taken over all compact four-metrics 
and matter fields which are bounded by the thrre-surfacc 
S. If one takes the scale parameter a to be very negative 
Ft kecps the other parameters fixed, the Euclidean action 
I tends to wo like eh. Thus one would expect Y to tend 
to one as a tends to minus infinity. 

One can estimate the form of the scalar, vector. and 
tensor parts s@"), "uI("), '\ycr) of the perturbation 
from the path integral (7.1) One takes the four-metric g,,. 
and the scalar field Q, to be of the background form 

(7.2) 

and OW, respectively, plus a small perturbation described 
by the variables (u,,,6,,,fn), c,,, and d. as functions of 1. 
In order for the background four-metric to be compact, it 
has to be Euclidean when a = - 00, i.e., N has to be pure- 
ly negative imaginary at a= - m , which we shall take to 
be t=O. In regions in which the metric is Lorentzian, N 

ds =a2( - N2dt2+e Mt'd 
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will be real and pdtive. In order to allow a smooth tran- 
sition from Euclidan to Lomrtti~,  we shrll take N to be 

four-metric and the scalar field be regular at 
t =O,~,,b, .~, ,d, ,  f, hrve to vanish thm 

The tensor perturbations d,, have the Euclidean action 

of the form - i d @  wbaep==O at r=O. In order that the q,,=f sdtd, 'W,+bo-  term, (7.3) 

where 

The last tam in (7.4) vanishes if the background metric 
satisfies the background field equations. The action is ex- 
trcmizcd when d,, ~ d s f i e ~  the equation 

'&in - 0 .  (7.5) 

For a da that satisfica (7.51, the action is just the boundary 
term 

(7.6) 

The path integral over d, will be 

One now has to integrate (7.7) o v a  dif€aent background 
metria to obtain the wave function 'W! one expects 
the dominant ca~tributim to come from background 
metria that arc acsr 8 solution of the classical back- 
ground field equations, For such metrics one can employ 
the adiabatic approximation in which one regards a to be 
a slowly varying f d o n  of 1. Then the soluti~ll of (7.5) 
which obeys the bwndary condition d,, =O at t=O is 

d,  = A  (e"-e-T , (7.8) 

where v=e-Yn'-II'" and r= I IN&. This appmxi- 
mation will be valid for hclrground fields which .re near 
a solution of the background field equations and for 
which 

(7.9) 

For a regular Euclidcla metric, I U/No I ==e-a near r=O. 
If the metric is a Euclidean solution of the background 
field equations, then I U/No I <e-'. Thus the adiabatic 
approximation should hold for large values of n into the 
region in which the solution of the background field equa- 
tions becomes Lora~tzisn and the WKB approximation 
CM be used. The wave function 'VI'"' will then be 

'@"'==Bexp [ - [ f n  ehcoth(vr)+&eh dn2 . 
iNo 1 1  

(7.10) 

In the Euclidean region, 7 will be reel and positive. For 
large values of n, coth(vr)~l.  In the Lorortzian region 
where the WKB approximation applies, T will be complex 
but it will still have a positive rerd part and coth(w) will 
still be approximately 1 for large n. Thus 

The normalization constant B can be chosen to be 1. 
Thus, aport f m  a phase factor, the gravitational-wave 
modes enter the WKB region in their ground state 

We now consider the vector part "@' of the wave 
function. Thii is pure gauge as the quantities c, can be 
given any vdue by gauge transfornations parametrized by 
the j.. The freedom to make gauge transformations is re 
flected quantum mechanically in the constraint 

Y=O. (7.12) 

One can integrate (7.12) to give 

(7.13) 

where the dependence on the other variables has been 
suppresscd. ~ n e  c ~ n  .ISO -lace 
One UUI then solve for W": 

by i c a s / a a w .  

(7.14) 

The scalar perturbation modes a,,, b,, and fm involve a 
combination of the behavior of the tensor and vector per- 
turbations. The scalar part of the action is given in Ap- 
pendix B. The action is atremized by solutions of the 
classical equations 
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No- e'a- +3e3=du,, + N o 2 [ m 2 e 3 a + ( ~ 2 - 1 ) e a l f , = e ~ ( - Z N o 2 m 2 ~ g , + ~ g n - e ~ a ~ & , ~ .  :[ i o I  

178s 

(7.16) 

(7.17) 

There is a three-parameter family of solutions to (7.15)-(7.17) which obey the boundary condition an=bn=fn  =O at 
t=O. There are however, two constraint equations: 

(7.18) 

30,( -a ' +d '1 + 2(dfn -a a,, 1 +No2m '( 2 f,d + 3 0 ~ 4 ~ )  - f N o 2 e  -k[ ( n  - 4)b, + ( n  ' + )a, ] 

= +cie-ak,  +2g,( -6 '+d '1 . (7.19) 

These correspond to the two gauge degrees of freedom parametrized by k, and g , ,  respectively. The Euclidean action 
for a solution to Eqs. (7.1947.19) is 

(7.20) 

where the background field equations have been used. 
In many ways the simplest gauge to work in is that with g,, =k, =O. However, this gauge docs not allow one to find a 

compact four-metric which is bounded by a threcsurface with arbitrary values of a,, b,, and f, and which is a solution 
of the Eqs. (7.15147.17) and the constraint equations. Instead, we shall use the gauge a, =b, =O and shall solve the 
constraint Eqs. (7.18) and (7.19) to find g ,  and k,: 

(7.2 1) 

(7.22) 

(7.23) 

For large n we can again use the adiabatic approxima- 

f, =Asinh(w) , (724) 

tion to estimate the solution of (7.23) when 14 I > I:  

whereS=e-k(n2-l). Thus for these mod- 

(7.25) 

T h i s  is of the ground-state form apart from a small phase 
factor. The value of SUl(r )  at nonzero values of u, and b, 
can be found by integrating the constraint equations (5.25) 
and (5.27). 

The tensor and scalar moda start off in their ground 

7 
states, apart possibly from the modes at low n. The vec- 
tor mods arc pure gauge and can be neglected. Thus the 
total energy 

of the perturbations will be small when the ground-state 
energies are subtracted. But E=i(V,S) .J  where 
J =  2, V2Y(m)/Y'(n! Thus J is small. This means that 
the wave function Yo will obey the Wheeler-DeWitt equa- 
tion of the unperturbed minisuperspace model and the 
phase factor S will be approximately -ilnYo. However 
the homogeneous scalar field mode 4 will not start out in 
its ground state. Then are two reasons fbr this: first, 
regularity at 1-0 requires a, =b,  =c, =d, =f, =O. but 
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does not require 4-0. Second, the classical field equation 
for 4 is of the form of a damped harmonic oscillator with 
a umstant frequency m rather than a decrensing frcqua- 
cy e-’n. This m c M  that the adiabatic approximation is 
not valid at small t and that the solution of the classical 
field equation is 4 approximately ctmstant, The action of 
such solutions b small, so large valua, of 14 I are not 
dampal as they arc for the other vuiables. Thus the 
WKB trsjectoria which S M  out from large values of 
14 I have high probability. They will correapond to clas- 

sical solutions which have a long inflationary period and 
then go over to a mattcr-dominated expansion. In a real- 
istic model which included other fields of low rart mass, 
the matter energy in the d a t i O n S  of the massive scalar 
field would decay into light particles with a thermal spec- 
trum. The model would then expand as a radiation- 
dominated universe, 

VIII. GROWTH OF PERTURBATIONS 

The tensor mod- will obey the Schriidinger equation 

18.1) 

The WKB approximation to the backmund 

(8.3) 

rYtn). 
0 

(8.4) 

wheeler- 
DeWitt equation has been used in daiGng (8.4). Then 
(8.4) has the form of the Schriidinger equation for an os- 
cillator with a timcdepcndent fr uency v = ( n 2  
-1)IRe-’. Initially the wave function%$’ will be in 
the ground state (apart from a normalization factor) and 
the frequency Y will be large compared to a. In this case 
one can use the adiabatic approximation to show that 
‘Y$’ remains in the ground state 

TY~’aexp(-+nrhd,2). (8.5) 

The adiabatic approximation will break down when 
vssa, i.e., the wave length of the gravitational mode be- 
00ms equal to the horizon scale in the inflationary 
&ad. The wave function ‘Y?’ will then freeze 

(8.6) 

where 4 is the value of a at which the mode goes outside 
the horizon. The wave function ‘Yt’ will remain of the 
form (8.6) until the mode rentera the horimn in the 
matter- or radiation-dominated era at the much greeter 
value a, of a. One can then apply the adiabatic approxi- 
mation again to (8.4) but ‘Yt’ will no longer be in the 
ground state; it will be a superposition of a number of 
highly excited states. This is the phenomenon of the am- 
plification of the ground-state fluctuations in the 
gravitational-wave modes that was discussed in Refs. 9, 
17, and 18. 

The behavior of the scalar mode is rather similar but 
their description is more complicated because of the gauge 
degrees of freedom. In the previous section we evaluated 
the wave function ’rycn’ on on ‘6 ,  =O by the path-integral 
prescription. The ground-state form (in f n  1 that we found 
will be valid until the adiabatic approximation breaks 
down, i.e., until the wavelength of the mode cxcssds the 
horizon distance during the inflationary period. In order 
to discuss the subsequent behavior of the wave function. 
It is convenient to use the firstorder Hamiltoninn con- 
stmint (5.27) to evaluate s@“‘ on on#O,bn-f, =O. One 
finds that 

The normalization and phase factors B and C depend on 
a and 4 but not a,: 

At the time the wavelength of the mode equals the hor- 
izon distance during the inflationary period, the wave 
function “Y?’ has the form 

(8.9) 

whmy. is the value of y =ras/aa)[as/a)]-l when the 
mode leaves the horizon, y. = 34.. More generally, in the 
case of a scalar field with a potential V(#), 
y - 6 v ( a ~ / a 4 ) - ~ .  

One can obtain a Schrijdinger equation for ’Yt’ by put- 
ting 6, = f ,  =O in the scalar Hamiltoninn ‘Hi2 and sub- 
stituting for 3/36,, and Waf, from the momentum con- 
straint (5.25) and the first-order Hamiltoninn constraint 
(5.271, respectively. This give 

(8.10) 

where terms of order l/n have bem neglected. The term 
e’’[as/aal-2 will be s m d  compared to I/$ except 
near the time of maximum radius of the background solu- 
tion.  he Schrijdinger equation for ” Y ~ ’ ( o ,  1 is very simi- 
lar to the equation for ‘yrbr’fd, 1, C8.4), except that the ki- 
netic term is multiplied by a factor y 2  and the potential 
term is divided by a factor y’. One would thucfon ex- 
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pect that for wavelengths within the horizon. “Y;’ would 
have the ground-state form exp( - +ny-’e%,,’) and this 
is borne out by (8.9). On the other hand. when the wave 
length bcwmes larger than the horizon, the Schriidinger 
equation (8.10) indicates that ’@:’ will freeze in the form 
(8.9) until the mode reenters the horizon in the matter- 
dominated era. Even if the equation of state of the 
Universe changes to radiation dominated during the 
period that the wavelength of the mode is greater than the 
horizon size, it will still be true that ’Yt’ is frozen in the 
form (8.9). The ground-state fluctuations in the scalar 
modes will therefore be amplified in a similar manner to 
the tensor modes. At the time of reentry of the horizon 
the rms fluctuation in the scalar modes, in the gauge in 
which b,,=f,,=O. will be greater by the factor y .  than 
the rms fluctuation in the.tensor modes of the same wave- 
length. 

IX. COMPARISON WITH OBSERVATION 

From a knowledge of ‘YF’ and ’Yt’ one can d c d a t e  
the relative probabilities of observing different v a l w  of 
d,, and a,, at a given point on a trajectory of the vector 
field X‘, i.c, at a given value of a and # in a background 
metric which is a solution of the classical field equations. 
In fact, the dependence on # will be unimportant and we 
shall neglect it. One can then calculate the probabilities 
of observing different amounts of anisotropy in the mi- 
crowave background and can compare these predictions 
with the upper limits set by observation. 

The tensor and scalar perturbation modes will be in 
highly excited states at large values of a. This means that 
we can treat their development as an ensemble evolving 
according to the classical equations of motion with initial 
distributions in d.  and om proportional to I ‘@:I 1.’ and 
!‘@,“)! 2, respectively. The initial distributions in dn and 
(I, WIU be proportioaal to 1 ‘‘P$’W~~‘Y~)~ and 
I s @ ) ~ * a s Y ~ ’  I , respectively. In fact, at the time that the 
modes reenter the horizon, the distributions will be con- 

The surfac*r with b,, = fa -0 will be surfaces of con- 
stant energy density in the classical solution during the in- 
flationary period. By local conservation of energy, they 
will remain surfaces of constant energy density in the era 
after the inflationary period when the energy is dominated 
by the coherent oscillations of the homogeneous back- 
ground scalar field #. If the scalar particles decay into 
light particles and heat up the Universe, the surfaces with 
6, = f,, =O will be surfaces of constant temperature. The 
surface of last scattering of the microwave brralfground 
will be such a surface with temperature T,. The mi- 
crowave radiation can be considered to have propagated 
freely to us from this surface. Thus the observed tem- 
perature will be 

ccnvated at d,, -a,, =o. 

TI 
l + z  ’ To= - (9.1) 

where z is the red-shift of the surface of last scattering. 
Variations in the observed temperature will arise from 
variations in z in different directions of observation. 

These are given by 

1 +z = Pn,, (9.2) 

evaluated at the surface of last scattering where n,, is the 
unit normal to the surfaces of constant t in the gauge 
g.=k,=j..=O and b,,=f.=O on the surface of -last 
scattering and lr is the parallel propagated tangent vector 
to the null geodesic from the observer normalized by 
h,, = 1 at the present time. One can calculate the evolu- 
tion of Pn,, down the past light cone of the observer: 

d - [ l~n, , ]=np;J* Iv ,  
d l  (9.3) 

w h m  A is the affine parameter on the null geodesic. The 
only nonzero components of nPiv are 

+ ~ ( 6 , , + a b , , ) P f , +  ~ki,,+cid,,)G,, . 
I m 

(9.4) 

In the gauge that we arc using, the dominant anisotro- 
pic terms in (9.4) on the scale of the horizon, will be thosc 
involving riun and ad.. These will give tempuature an- 
isotropies of the form 

I 

(9.5) 

The number of modes that contribute to anisotropies on 
the scale of the horizon is of the order of n3. From the 
results of the last section 

(9.6) 

(9.7) 

The dominant contribution comes from the scalar modes 
which give 

( ( ~ ~ / ~ ~ ) = : y , 2 n * e - *  . (9.8) 

But n e-%&., the value of thi  Hubble constant at the 
time that the present horizon size left the horizon during 
the inflationary period. The observational upper limit of 
about lo-* on ( (AT/TI2) restricts this Hubble constant 
to be lcss than about 5 x 10-’mp (Ref. 8) which in turn 
restricts the mass of the scalar field to be less than lo1‘ 
GeV. 

X. CONCLUSION AND SUMMARY 

We started from the proposal that the quantum state of 
the Universe is defined by a path integral over compact 
four-metrics. This can be regarded as a boundary condi- 
tion for the Wheeler-DeWitt equation for the wave func- 
tion of the Universe on the infinite-dimensionnl manifold, 
superspace, the space of all three-metrics and matter field 
configurations on a threesurface S. Previous papen had 
considered finitedimensional approximations to super- 
space and had shown that the boundary condition led to a 
wave function which could be interpreted as corrcspond- 
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ing to a family of classical solutions which wue homo- 
geneous and isotropic and which had a paid of exponen- 
tial or inflationnry expansion. In the present paper we ex-' 
tended this work to the full supaspace without rwtric- 
tions. We treated the two basic homogeneous and isotro- 
pic degree of f d o m  exactly and the &ha degrsa of 
freedom to SaCDnd order. We justifkd this approximation 
by showing that the inhomogeneous or anisotropic mods  
started out in their ground states. 

We derived tixnukpauht schrijdinger equations for 
ach mode. We showed that they remained in the Wund 

ing the inflationary period. In the subssqucnt expansion 
the ground-state fluctuations got frozm until the wave- 
1-h reentad  the horizon during the radiation- or 
matterdominated a This part of the calculation is 
similar to earlier work on the develo m a t  of gravitation- 
al wave9 and dmi ty  perturbationsf6 in the inflationary 
Univase but it hu the advantage that the assumptions of 
a paid of expomtial expansion and of an initial ground 
state for the paturbrtions an justified. The perturbations 
would be compBdble with the upper limits set by abaava- 
tiaur of the microwave background if the scalar fidd that 
drives the inflation has a mass of 10'' OeV or less. 

in Sec. VIII we dculated the scalar puturbations in a 
gauge in which the surfaces of constant time are surfaces 
of constant density. There are thus no density fluctua- 
tions in this gauge. However, one can make a transforma- 
tion to a 8auge in which a, = b,, =O. In this gauge the 
deasity fluctuation at the time that the wavelength comes 
within the horizon is 

atate until thdr Welength ~ c e c d e d  the horizon Sin dw- 

(10.1) 

Because y and d, depend only l o g a d h m i d y  on the 
wavelength of the perturbations, this gives M almost 
sale-free spectrum of density fluctuations. These fluc- 
tuations can evolve according to the classical field equa- 
tions to give rise to the formation of galuiar and all the 
other structure that we obsave in the Univusc Thus all 
the compluritics of the present state of the Universe have 
their origin in the ground-state fluctuations in the inho- 
mogeneous modes and so arise from the Hamberg un- 
certainty principle 

APPENDIX A: HARMONICS ON THE THREE-SPHERE 

In this appendix we describe the propertics of the sca- 
lar, vector, and tensor harmonics on the threesphere S3. 
The metric on S' is a,, and so the line element is 

d12= R,,&'dxJ 

=dX2+ sin2X(d@ + sin% d# 1 . (All 

A vertical bar will denote covariant differentiation with 
respect to the metric Q,. Indices i j , k  are raised and 
lowered using 0,. 

Sulu harmonics 

The scalar spherical harmonics QL(X.O.4) are scalar 
eigarfunctions of the Laplacian operator on S'. Thus. 

they satisfy the agenvalue equation 

Q("Ilk - (n* -  1)Q'"'. n = 1,2,3,. . . . (A21 

The most general solution to (Az), for given n, is a sum of 
solutions 

. - I  I 

1-0 m -4 
Q'"'(X,B,4)= 2: 2 AkQ&(X,B,t),  (A31 

where A& arc a set of arbitmy constants. The Q& arc 
given explicitly by 

Q&cx,e,4) = n;cxw,ce,4) . (A41 

whue Y (6.4) arc the usual harmonics on the two- 
sphere, S! and ll ; ( X I  M the Fock hamoni~r.'~~'O The 
spherical harmonics QI;. constitute a complete orthogonal 
set for the expansion of any scalar field on S'. 

Vector hanuonicl 

The transvase vector harmonics CS,&CX,B,$) are vec- 
tor eigeafuctions of the Laplacian operator on S' which 
are transverse That is, they satisfy the agenvalue equa- 
tion 

and the transverse condition 

S;"'I'=o. (A61 

The most general solution to (AS) and (A61 is a sum of 
solutions 

where E L  are a set of arbitrary constants. Explicit ex- 
pressions for the (Sl& arc given in Ref. 20 whae it is 
also explained how they M classified as odd (01 or even 
(el using a parity transformation. We thus have two 
linearly independent transvvse vccto~harinonics S; and 
$ (n,l,m suppressed). 

Using the scalar harmonics QL we may COIL9tNct a 
third vector harmonics (P,)k. defned by (n,l,m 
supprersed) 

Q l i ,  n =2,3,4,. . . . 1 Pi=- 
(nz-I )  

(AS) 

It may be shown to satisfy 

pi I k "= -fa '-31Pi and Pi I i =  -Q . (A91 

The three vector harmonics Sp, S;, and P, constitute a 
complete orthogonal set for the expansion of any vector 
field on S'. 

Tensor harmonics 

The transverse traceless tensor harmonics 
(G,,)&,CX,O,g) are tensor eigenfunctions of the Laplacian 
operator on S' which are transverse and traceless. That 
is, they satisfy the eigenvalue equation 

(A 10) G g ' , k  ik=-(n'-31G$', n ~ 3 . 4 ~ 5 . .  . . 
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and the transverse and traceless conditions 

G;;'1'=0, Gj""=O. (A l l )  

The most general solution to (Al l )  and (A121 is a sum of 
solutions 

a-I  I 

1-2 m - - I  
Gk'(X,0.#1= CkCGij);,(X,e,+), (A12) 

where Ck are a set of arbitrary constants. As in the vec- 
tor case they may be classified as odd or even. Explicit 
expressions for ( GG );, and ( G; )ym are given in Ref. 20. 

Using the transverse vector harmonics (S,")rm and 
(Sf);, we may construct traceless tensor harmonics 
(S;); and ( S t ) $  defined, both for odd and even, by 
(n,l,rn suppressed) 

Sij =S1 I j +Sj I 1 (A131 

and thus Si'=O since Si is transverse. In addition, the Si, 
may be shown to satisfy 

S , ~ ~ J = - ( ~ ~ - ~ L S ~  , (A14) 

S, 'ij=o , (A 15) 

S , J I & I ~ = - ( ~ ~ ~ - - ~ ) S ~ /  . (A 16) 

Using the scalar harmonics Q&, we may construct two 

Qij=fn,JQ, n =1,2,3 (A171 

tensors ( Qij 12, and (Pi, $,, defined by ( n,f.m suppressed) 

and 

The P,j afe traceless, Pil=O, and in addition, may be 
shown to satisfy 

(A19) PI} I}= - +n - 4 ) ~ ~  , 

The six tensor harmonics Qij, P~J. SG, S;, G$, and G; 
constitute a complete orthogonal set for the expansion of 
any symmetric second-rank tensor field on S? 

orthogonaiity and normalization 

The normalization of the scalar, vector, and tensor har- 
monics is fixed by the orthogonality relations. We denote, 

the integration measure on S' by dp. Thus 

dp = d jx ( detnlj ) I n  = sin2X sin0 dX d0 d4 . 
The Q L  are normalized so that 

$ dpQ&Q& =S''Si&,,,* . 
This implies 

f dp(Pl)L(P')&,*= ~ 6 " n ' 6 & , , m ~  1 
( n  - 1 )  

and 
s 2(tt2-4) J dp(P,j 1; (P1j)F,,,* = -6""'61~6,,,,* . 

3 ( n 2 - 1 )  

The (S, )h, both odd and even, are normalized so that 

J d/.t(Si )~,(S')1.m~=SM'61,,6mm~ . (A261 

This implies 

dp(S,j);(S1J);m.=2(n+-4)SM'~~,6-. . (A271 

Finally, the ( Gl1 I;, both odd and even, are normdized so 
that 

(A28) 

The information given in this appendix about the spher- 
ical harmonics is all that is n d e d  to perfom the deriva- 
tions presented in the main text. Further details may be 
found in Refs. 19 and 20. 

$ dp( G,j $,, ( GiJ)&,- = 6"'6&,,,. . 

APPENDIX B: ACXION AND FJIELD EQUATIONS 

The action (5.8) is 

Z=Zo(a,9,No)+ 21, , 
n 

where I .  is the action of the unperturbed model (4.2): 

(B2) 
I ,  is quadratic in the perturbations and may be written 

J ~ I ( L ; + L : )  s (B3) 

where 
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f n d  a 4’ e-” 
No No’ ] No * I  2 m 2 f , , # + 3 m 2 a , # 2 + 2 ~ + 3 ~  - 2 7 k , f , #  . 

The full expressions for T,, and r6 are 

+ ~[4g , , ’ -gn( f , ,+3an8) -e - ’~ , / ,~  . (B7) 

The classical fidd equations may be obtained from the action (BI) by vnzying with respect to each of the fields in turn. 
Variation with mpect to a and 4 g iva  two fidd equntions, similar to those obtained in Sec. IV, but modified by terms 
quadratic in the perturbations: 

I I 
Le da *+No2m2#=quadrntic terms, Nox [NO dt ]+3x dt 

+3( ’- No2e-”- +( -a ’+d ’- No’e -”+ No’m 2#2)=qundratic terms . 
Variation with respect to the perturbations u, , b, , c.. d, , and f,, leads to five field equations: 

(B9) I 1  No 

+ f ( n  2-4)No2ea(an + b, 1 + 3 e ”(4 f, - No2m ’4 f,, 1 = No2[ 3 e hm 2#2 - f ( n  ’ + 2)ealg, 
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No- :I eh- k ]  +(n2-1)No2ead,=0.  (B13) 

In obtaining (BIO)-(B14), the field equations (B8) and (B9) have bccn used and terms cubic in the perturbations have 
been dropped. 

Variation with respect to the Lagrange multipliers k,,, j,, g,,, and No leads to a set of constraints. Variation with 
respect to k, andj,, leads to the momentum constraints: 

Cm =e  -"jR . (B16) 

Variation with respect to g,, gives the linear Hamiltonian constraint: 

30, ( -a ' + 4 + 2(4f,, -a a,, 1 + No2m 2(2 f , d  + 3a,d2) - No2e -2"[ ( n  - 416, + ( n  + )a, 1 
-- - : a e - a k , + - . , C r 6 2 + ~ 2 ) .  (B17) 

Finally, variation with respect to NO yields the Hamiltonian constraint, which we write as 
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Arrow of time in cosmology 
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The wual p m f  of Lhe CPT theurem does not apply to thanes which include the gravitational 
field. Ncvcrthdcas. it is shown tbat CPT invariance still holds in these c88es provided that, as has 
recently been pmposed, the quantum state of the Universe is defined by a path integral over mecrics 
that M canpact Without bwnduy. The observed asymmetq or arrow of time defined by the dm- 
tion of time in which cntmpy inmases ia shown to be dated to the cosmological arrow of time da  
fined by the direction of time in which the Universe is expanding. It arises because in the proposed 
quantum shte  the Univcrac would have been smooth and homogeneous when it was small but irrcg- 
ulu and inhomogeneous when it was large. The thermodynamic arrow would merse during a con- 
tracting phase of the Universe or inside black holes. Possible observational tests of this prediction 
.ndiscussal. 

I. INTRODUCTION 

Physics is time symmetric. More accurately, it can be 
shown' that any quantum field theory that has W Lorcntz 
invariance, 0 positive energy, and (c) local causality, i.e., 
#(XI end t#@) commute (or anticommute) if x and y ere 
spacelike sepantcd, is invariant under CPT where C 
means interchrnge particlea with p tip article^, P means 
replrsce left hand by right hand, and T mrans t e y ~ ~ t  the 
direction of motion of all particles. In most situations, 
the effect of any C or P noninvariance can be neglected, 
so that the interactions ought to be invariant under T 
alone. 
In fact, if one taka the gravitational field into acwunt, 

the Universe that we live in doee not  tis sty any of the 
thne conditions lirtsd above. The Universe is not brentz 
invariant because @me is not flat, or even aaymptoti- 
d y  flat. The ana-gy density is not positive definite be- 
cause gnvitetiod potential energy is ncgativc In a er- 
t8in seose the total enasy ofthe univasc is ZQO kc;rusc 
the positive a r g y  of the matter is exactly compensated 
by the negative gr8vitetioMl potential energy. Finally, 
the CQIloCpt of local causality caues to be well defied if 
the spacedme mstric itself Q quentizcd bscrw one can- 
not tell if x a d  p am sprcctike separated. Nevuthelcss, I 
dull ahow in ssc m ofthis papertbat the univase is in- 
variant uuda CPT if, an been recently it 
is in the quantum atate ddiacd by a path intcgraI over 
compact four-meria without boundary. This is a non- 
trivial msdt kcrrrcle an atbitnry quantum state for the 
Univase is not, in geoeral, invariant under CJT. 
Thc Univar# that we live in catainly does not appear 

time 8ymmctric, an anyone who ha watched a movie be 
ing shown backward can taw. one see8 events that are 
never witnesssd in ordinaty life, like pieces of a cup pth- 
afne thanselvcs toguther off the floor and jumping back 
onto a Wlc One a n  distingui& a number of diffaent 
"arrows of time" that expm the time asymmetry of the 
Universe. (1) The thermodynamic rurow: the direction of 

time in which entropy increases. (2) The electrodynamic 
arrow: the fact that one u8*1 retarded solutions of the 
field equations rather than advanced ones. (3) The 
psychological arrow: the fact that we remember events in 
the past but not in the future. (4) The cosmolOgid ar- 
row: the direction in time in which the universe is ex- 
panding. 

I shall take the point of view that the first arrow im- 
plies the second and third. In the case of the psychologi- 
cal arrow this follows because human beings (or comput- 
ers, which are easier to talk about) arc governed by the 
thermodynamic arrow, like everything elsc in the 
Univase. In the case of elcctmdynamics, one can express 
the vector potential AJx)  as a sum of a contribution 
from sourcca in the past of x plus a surface i n t q d  at 
past infiity. One can also express A&) as a sum of a 
contribution from sourcca in the future of x plus a surface 
integral at future infiity. The boundary conditions that 
give rise to the thermodyaamic arrow imply that there is 
no incoming radiation in tho pait. Thus the surface in- 
tegral in the past is zero and the electromagnetic fidd can 
be expressed as an integral over sourcca in the past. On 
the other hand, the boundary conditions that give rise to 
the thermodynamic arrow do not prevent the possibility 
of outgoing radiation in the future l%is means that the 
surface integral in the futurr: is strongly comlated with 
the contribution from soume in the future. It t h d o r e  
cannot be neglected. 

The accepted explanation for the thermodynamic arrow 
of time is that for some reason the Univasc started out in 
a state of high order or low entropy. Such states occupy 
only a very small fraction of the volume of phase space 
acoesSible to the Univenre. As the Universe evolves in 
time it will tmd to move around phase space ergodically. 
At a later time therefore there is a high probability that 
the Universe will be found in a state of disorder or hi&- 
entropy because such states occupy most of phase apace. 
consider, for example, a systrm oonsistin$ of a n u m k  N 
of gas molecules in a rectanguhr box which is divided 
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into two by a partition with a small hole in it. Suppose 
that at some initial time, say 10 o’clock, all the molecules 
arc in the left-hand side of the box. Such configurations 
occupy only one part in ZN of the available 6N- 
dimensional phase space. As time goes on, the system 
will move around phase space on a constant-energy sur- 
face. At a later time there will be a high probability of 
finding the system in a more disordered state with mole- 
cules in both halves of the box. Thus entropy will in- 
crease with time. Of course, if one waits long enough, one 
will eventually see all the molecules returning to one half 
of the box. However, for macroscopic values of N, the 
time taken is likely to be much longer than the age of the 
Universe. 

Suppose, on the other hand, that the Universe satisfied 
afinal condition that was in a state of high order. In that 
case it would be likely to be in a more disordered state at 
earlier times and entropy would decrease with time. How- 
ever, as remarked above, the psychological arrow is deter- 
mined by the thermodynamic arrow. Thus, if the thermo- 
dynamic arrow were reversed, the psychological arrow 
would be reversed as well: we would define time to run in 
the other direction and we would still say that entropy in- 
creased with time. However, the cosmological arrow pro- 
vides an independent definition of the direction of time 
with which we can compare the thermodynamic, psycho- 
logical, and electrodynamic arrows. In the early 1960s 
Hogarth’ and Hoyle and Narlikar6 tried to connect the 
electrodynamic and cosmological arrows using the 
Wheeler-Feynman’ direct-particle-interaction formulation 
of electrodynamics. At a summer school held’ at Cornell 
in 1963 their work was criticized by a Mr. X (generally 
assumed to be Richard Feynman) on the grounds that 
they had implicitly assumed the thermodynamic arrow. 
They also got the “wrong” answer in that they predicted 
retarded potentials in a steady-state universe but advanced 
ones in an evolutionary universe without continual 
creation of matter. It is now generally accepted that we 
live in an evolutionary universe. 

Another proposal to explain the thermodynamic arrow 
of time has been put forward by Penrose? It is based on 
the prediction of classical general relativity” that there 
will be spacetime singularities both in the past, at the big 
bang, and in the future at the big crunch, if the whole 
universe mlhpses, or in black holes if only local regions 
collapse. Penrose’s proposal is that the Weyl tensor 
should be zero at singularities in the past. This would 
mean that the Universe would have to start off in a 
smooth and uniform state of high order. However, the 
Weyl tensor would not, in general, be zero at singularities 
in the future which could be irregular and disordered. 
There are several objections which can be raised to 

Penrose’s proposal. First, it is rather ad hoc. Why 
should the Weyl tensor be zero on past singularities but 
not on future one? In effect, one is putting in the ther- 
modynamic m w  by hand. !%wnd, it is bascd on the 
prediction of singularities in classical general relativity. 
However, it is generally believed that the gravitational 
field has to be quantized in order to be consistent with 
other field theories which are quantized. It is not clear 
whether singularities occur in quantum gravity or how to 

impose Penrose’s boundary condition at them, if they do. 
Finally, Penrose’s proposal does not explain why the 
cosmological and thermodynamic arrows should agree. 
With Penrose’s boundary condition the thermodynamic 
arrow would agree with the cosmological arrow during 
the expanding phase of the Universe but it would disagree 
if the Universe were to start recollapsing. 

The CPT invariance of the quantum state of the 
Universe defined by a path integral over compact metrics 
implies that if there is a certain probability of the 
Universe expanding, there must be an equal probability of 
it contracting. In order for the thermodynamic and 
cosmological arrows to agree in both the expanding and 
contracting phases, one requires boundary conditions 
which imply that the Universe is in a smooth state of high 
order when it is small but that it may be in an inhomo- 
geneous disordered state when it is large. In Sec. IV it 
will be shown that the results of Ref. I 1  imply that this is 
indeed the case for the quantum state defined by a path 
integral over compact metrics. This means that during 
the expansion phase the Universe starts out in a smooth 
state of high order but that, as it expands, it becomes 
more inhomogeneous and disordered. Thus the thermo- 
dynamic and cosmological arrows agree. However, when 
the Universe starts to recollapse, it has to get back to a 
smooth state when it is small. This means that disorder 
will decrease with time during the contracting phase and 
the thermodynamic arrow will be reversed. It will thus 
still agree with the cosmological arrow. 

It should be emphasized that this reversal of the ther- 
modynamic m o w  of time is not caused by the gravita- 
tional fields or quantum effects at the point of maximum 
expansion of the Universe. Rather it is a result of the 
boundary condition that the Universe should be in a state 
of high order when it is small and it would occur in any 
theory which had this boundary condition as has been 
pointed out by a number of  author^.^^*^^ The only way 
that quantum gravity comes into the question of the ar- 
row of time is that it provides a natural justification for 
the boundary condition. 

One might ask what would happen to an observer (or 
computer) who survived from the expanding phase to the 
contracting one. One might think that one was free to en- 
close the observer or computer in a container that was so 
well insulated that he would be unaffected by the reversal 
of the thermodynamic arrow outside. If he were then to 
open a little window in his spaceship, he would see time 
going backward outside. The answer to this apparent 
paradox is that the observer’s thermodynamic arrow, and 
hence his psychological arrow, would reverse at around 
the time of maximum expansion of the Universe, not be- 
cause of effects that propagated into the spacecraft 
through the walls, but because of the boundary condition 
that the spacecraft be in a state of low entropy at late 
time when the Universe is small again. The contents of 
the memory of the observer or computer would increase 
during the expansion phase as the observer rbcorded ob 
mations but it would decrease during the contracting 
phase baguse the psychological arrow would be reveIsed 
and the observer would remember events in his future 
rather than his past. 
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The prediction that the thermodynamic arrow would 
reverse if the Universe started to recontract may not have 
much practical importance because the Univcr~e is not go- 
ing to recollapse for a long time, if it ever does. However, 
we are fairly wdidcnt that Iocalized regions of the 
Universe will collapse to form black holes. If one was in 
such a region, it would sewn just like the whole Universe 
was collapsing around one. One might therefore expcct 
that the region would become smooth and ordasd, just 
like the whole Univqae would if it ramllapsed. Thus one 
would predict that the thermodynamic arrow of time 
should be reversed inside black holes. One would expect 
this reversal to occur only after one has fallen through the 
event horizon, so one would not be able to tell anyone out- 
side about it. This and other consequences of the point of 
view adopted in this paper will be considered further in 
Sec. V. Scztion I1 will be a brief review of the canonical 
formulation of quantum gravity. In Sec. 111 it will be 
shown that the quantum state of the Univene defined by 
a path integral over ampact  metrics is invariant under 
CPT. Despite this invariance it will be shown in Sec. IV 
that the raults of Ref. 1 1  imply that there is a thermo- 
dynamic arrow because the inhomogeneities in the 
Univase are small when the Univcrse is small but that 
they grow as the Universe expands. 

11. CANONICAL QUANTUM GRAVITY 

In the canonical approach the quantum state of the 
Universe is represented by a wave function Y(hv,&) 
which is a function of the threarnetric hf, and the matter 
field configuration #o on a threesurface S. The interpre 
tation of the wave function is that I Y(hl~,&) I is the 
(unnormalizui) probability of finding a thrrasurfaoe S 
with threemetric hU and matter field configuretion 4,,. 
The wave function is not an explicit function of time be- 
cause there is no invariant definition of time in a curved 
space which is not asymptotically flat. In fact. the posi- 
tion in time of the surface S is determined implicitly by 
the three-metric h,,. This means that Y(h,,#oo) obcys the 
zero-cnergy Schtiidinger equation: 

HY(h,,,40)=0. (2.1) 

This equation can be decomposed into two parts: the 
momentum constraint and the Wheeler-DeWitt equation. 
The momentum constraint is 

(2.2) 

It implica that the wave function is the same on t b  
metdcs hf, and matta  field codigurations 40 that arc rc- 
lated by a wordinate transformation. The Whder- 
DeWitt equation is 

where 

Gf,~=+h-’ /2(helr / l+h, ,~,~-hf ,hu)  . 
It can be regarded as a saxnd-order wave equation for Y 
on the infinitodimensiond space 4 l d  superspace which 
is the space of all three-metria h,, and matter field con- 
figurations #,,. 

Any solution of Eqs. (2.2) and (2.3) represents a possible 
quantum state of the Universe. However, it seems reason- 
able to suppose that the Universe is not just in some arbi- 
trary state but that its state is picked out or preferred in 
some way. As explained in Ref. 4, the m a t  natural 
choice of quantum state i s  that for which the wave func- 
tion is given by a path integral over compact metrics: 

YY(h&o)= Jc4g,,Jd[91exp( -?[s,,,,4~1) , (2.4) 

where is the Euclidean action and the path integral is 
taken over four-metncs g,,” and matter field configura- 
tions 4 on compact four-manifolds which am botinded by 
the three-surface S with the induced thrae-metric h ,  and 
matter field configuration 4e The contour of integration 
in the space of all four-metrics has to be deformed from 
Euclidean Le., positive definite) metrics to com l a  
metrics in order to make the path integral converge!4v15 
The proposal that the quantum state is givcn by (2.4) 
seems to ‘ve predictions that are in agreement with OW- 
vation. 4, IT16 

III. THE CPTTHEOREM 

The precise statement of CpT invariance in flat spaco 
time is that the vacuum expectation v d u a  of bLIs0nic 
quantum field operators #(XI satisfy 

=[ (4 t ( -~ lMt ( -x2 ) * - *  dt(-x.))]’ . (3.1) 

In the case of famion fields there is a factor of ( - 1 IF+’ 
w h m  I: is the fermion number and J is the number of un- 
dotted spinor indices. In the case of asymptotically flat 
spacetime one can formulate and prove CPT invariance 
in a similar way in terms of the vacuum expectation 
values of field operators at infinity.” However, although 
asymptotic flatness may be a rc&poRBble approximation 
for local systems, one does not expect it to apply to the 
whole Univusc. One therefore does not have any flat or 
asymptotically flat region in which one can define the TP 
operation x+-x. All that one has is a wave function 
Y(hd,,#o) which is not an explicit function of time. How- 
ever, one can introduce a concapt of time by replacing the 
dependence of Y on h I R ,  the square root of the deter- 
minant of the threemetric hf,, by its conjugate momen- 
tum, the trace of the second fundamental f m  of S. One 
defies the Laplace transform 

(3.2) 
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where Kill is the threemetric defined up to a conformal 
factor and KE is the trace of the Euclidean second funda- 
mental form. The Laplace transform CD is holomorphic 
for RdKx 1 > 0. This means that one can analytically con- 
tinue @ in KE to Lorentzian values KL =iKE-of the trace 
of the sccond fundamental form. Then 1 CD(hfj,KL,40) I * 
is proportional to the probability of finding a three 
surface S with the conformal threemetric hf j ,  the rate of 
expansion KL and the matter field configuration tPm 

Consider first the case in which one has only fields like 
the gravitational field and real scalar fields which are in- 
variant under C and P. The Euclidean action Z is real for 
Euclidean (i.e., positive definite) four-metrics g,,. and real 
scalar fields 4. The contour of integration in the path in- 
tegral (2.4) has to be deformed from Euclidean to complex 
mctrics in order to make the integral converge. However, 
there will be an_equal contribution from metrics with a 
complex action-1 and from metrics With the complex con- 
jugate action ( I ) * .  Thus the wave function Y(hfj,4d will 
be real. This implies that 

C D ( K ~ , K ~ , ~ ~ ) = C D * ( ~ ~ , K ~ , ~ ~ )  (3.3) 

for complex KE. In particular, this implies 

for nal KL. Equation (3.4) is the statanent of T invari- 
ance for the quantum state of the Universe. It implies 
that the probability of finding a contracting threesurface 
is the same as that of finding an expanding one, i.e., if the 
wave function represents an expanding phase of the 
Univast, then it will also represent a contracting one. 

Consider now a situation in which one has charged 
fields, for example, a complex d a r  field 4. The wave 
function Y will now be a functional of the threemetric 
hfj and the complex field configuration $0 on S. In the 
Euclidean path integral (2.4) for Y one has20 integrate 
over independent field configurations 4 and & on the Eu- 
clidean background gw where-4=q50 and 4=& on S. 
The Euclidean action 1fg,,.,4,4] is no longer necessarily 
real but 

This implies 

Equation (3.6) is a statanent of the invariance of the 
quantum state of the universe under CT. 

F i y  one can consider fields, such as c h i d  fermions, 
which arc not invariant under P. To deal with fermions 
one should introduce a triad of covectors e; on S and 
should regard the wave function Y as a functional of the 
e; and the fermion field t,bo on S. The path integral repre- 
seatation of the wave function is then 

where on S, $=& and $=& The oriented triad e; on S 
defines a directed unit normal eo to S. The path integral 
(3.7) is taken over all compact &ur-geometries which are 
bounded by S and for which e: points inward. 

The Euclidean action will obey 

Tte;,t,b,$~=F*[ -e;.+c.$c~ , (3.8) 

where $'=C+* is the charge conjugate field and C is the 
charge conjugation matrix. This implies 

One can regard (3.9) as the expression of the CPT invari- 
ance of the quantum state of the Univuse because chang- 
ing the sign of the triad e: not only reverses the spatial 
directions, and so carries out the o p t i o n  P, but it also 
reverses the direction of the orientated normal to S, e i .  
Alternatively, one can consider the Laplace transform CD 

CD(F~,K~,+)=CD*( -Z~,-KL,+') , (3.10) 

where if; is the triad in S defined up to a positive multi- 
plicative factor. 

It is clear that this proof of the CPT invariance of the 
quantum state defined by a path integral over compact 
metrics would apply equally well if there were higher 
derivative terms in the gravitational action. In the case of 
an action containing quadratic terms in the curvature, the 
wave function Y could be taken to be a function of the 
threemetric k f j .  the second fundamental form K", and 
the matter field co&iguration 40. For fields that are in- 
variant under C and P. the wave function Y(h,,,K.&$oo) 
would be real for real Euclidean values of the second fun- 
damental form K$. This implies that 

One can regard (3.1 1) as an expression of the T invariance 
of the quantum state. The extension to fields that are not 
invariant under C and P is straightforward. One can also 
apply similar arguments to the cormponding quantum 
state in Kaluza-Klein theories. 

IV. THE INCREASE OF DISORDER 

In Ref. 11 it was argued that the wave function 
\u(hip$O) can be approximated by a sum of terms of the 
form 

(4.1 ) 

The wave function Yo describes a homogeneous isotropic 
closed Universe of radius ea containing a homogeneous 
massive scalar field 4. The quantitics u,,,b,,, . . . , fn  are 
the coefficients of harmonics of order n which describe 
perturbations from homogeneity and isotropy. 

One can substitute (4.1) into the Wheeler-DcWitt equa- 
tion and keep terms to all orders in the "background" 
quantities a and 4 but only to second order in the "pertur- 
bations" a,,b,, . . . , f.. One obtains a second-order wave 
equation for Yo on the two-dimensional "minisupuspace" 
parametrized by the coordinates a and 4. The path in- 
tegral (2.4) for the wave function implies that YO-1 as 
a+- m. One can integrate the wave equation with this 
boundary condition.'* ~ n e  finds that \u0 starts to oscillate 
rapidly. This allows one to apply the WKB approxima- 
tion 
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Yo=RdCes) .  (4.2) 

The trajectories of VS in the (a,dl plane compond to 
solutions of the classical field equations for a homogene- 
ous isotropic Univuse with a homogeneous massive scalar 
field. The trajectoriea componding to Yo start out at 
large values of 14 I. They have a period of exponential 
expansion in which 1 # I decmascs followed by a period of 
matter dominated expansion in which # OsciIlates amund 
wo with decreasing amplitude. They reach a point of 
maximum expansion and then recontract in a time sym- 
metric manner. 

The perturbation wave functions Y,, can be further 
decomposed as follows: 

Y, =SY,,(a,#,a,,,b,,,f,,) vYn(a,&,) 'Y,(a,+,d,,). 

(4.3) 

The wave function 'Y,, describes gravitational wave per- 
turbations parametrized by the coefficients d.  of the 
transverse traceless harmonics on the thrae-sphue. The 
wave function 'W, describes the effcct of gauge transfor- 
mations which comapond to cootdinate transformations 
on the threosphuc puametrized by the coefficients c of 
the vector harmonics. The wave function 'Y,, 
parametrized by the ooefficients a,,, 6. , and f,, of the sc8- 
lar harmonics describe two gauge degrees of freedom and 
one physical degree of freedom of density perturbations. 
In situations in which the WKB appmximation can be ap 
plied to the background wave function Y,,, the p e r t u h -  
tion wave functions obey decouplad schr(idinger equations 
of the form 

(4.4) 

where f is the time parameter of the solution of the classi- 
cal field equations that corresponds to Yo via the WKB 
approximation. 

One can evaluate the perturbation wave functions 
directly from the path integral expnssion (2.4) for the 
wave function. consider, for example, the gravitational 
wave perturbations. One can regard than as quantum 
fields parametrized by d; propagating on a homogeneous 
isotropic background metric of the form 

ds2 = - N ( f )2df'+e w"'d , (4.51 

where d n :  is the metric on the unit thmsphere, if the 
lapse function N is real everywhere, the metric (4.5) has a 
Lormtzian signature and cannot bc compact and non- 
singular. However. I shall consider complex background 
fields W ( ~ ) ~ ~ ( I ) , ~ ( I ~ ~  such that at some value I = I ~ ,  N 
is negative imaginary. The metric then has a Euclidean 
signature at t = t g  and will bc regular and compact if 
a'= - a, da'/dt -iN e-d, and d; =O. The argument of 
N will vary continuously with t. When N becomes real, 
the metric will become Lorentzian. One can express the 
perturbation wave functions as path inrepds on thew 
backgrounds, rg., 

where the path integral is taken over all gravitational 

wave paturbations d; on all regular compact background 
fields described by a'( t 1 and #( f 1. 

The path iategral.over d; in a given background field is 
Gaussian and therefore can be evaluated as 

(dd)- '%p( -T"[dn] 1 s (4.7) 

where A is a diffcratial operator and 

da' dt * I  & k,,-d;d:+*-d; . d  (4.8) 

is the action of a solution of the classical field equations 
for a perturbation d; on the given background with 
d;=O at t = f o  and d;=d,, at the location f = f l  of the 
thrcc-surfacc s. 

One expects the dominant contribution to the path in- 
tegral (4.6) to come from backgrounds which arc close to 
solutions of the classical background equations. Thew 
solutions will be Euclidean (N imaginary) at f =to and 
they will become Lorcntzian in those regions of the (a,#) 
plane in which Yo oscillates and the WKB approximation 
can bt applied. In such a background the elassid field 
equation for d; is 

I-; [s;]+iNea'(a2-l)  I d;=O. (4.9) 

In the region of the (a',#') plane in which the WKB ap- 
proximation can be appfiad and N is d, one can reg.rd 
Eq. (4.9) as a hannonic oscillatot equation for the variable 
x=~~p(3/2a'M; with the timedcpcndat f ~ u c n ~  
v=wp( -a')(n2- 1 ) In,  If a' were independent of t, the 
solution of (4.9) that obeys the above boundary conditions 
is 

(4.101 

when T= I,,N dt. 
Of course a' will vary with t but (4.10) will still be a 

good appmximation provided that the adiabatic approxi- 
mation holds, i.a, I a '/N I , the rate of change of a', is 
small comparrd to the frqueacy v. in the Euclideaa rp 
gion near )=to, this will be true baause I a'/N I <e-a'. 
In the hmtzian region it will be true for perturbation 
modes whose wavelength v-' is small compared to the 
horizon distance N / a ' .  For such modes 

(4.1 1) 

For tl in the region in which the WKB approximation 
can be applied and for n >> 1, the imaginary part of wl, 
which arises from the Euclidean region near t =to, will be 
less than - i .  This means that the real part of the Eu- 
clidean action (4.8) will be +vehdn2=+vx2. The imagi- 
nary part of the Euclidean action be sm&. It will 
give rise to a phase factor in 'Yn which can be removed 
by a canonical transformation of variables. Thus the per- 
turbation wave function will have the ground-state form 
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The vector perturbation wave function “Y,(c,) describes 
a gauge degree of freedom and does not have any physical 
significance. The scalar perturbation, which is a function 
’qR (a, ,b, J, j describes two gauge degrees of freedom 
and one physical degree of freedom. A similar analysis 
and use of the adiabatic approximation shows that this 
physical degree of freedom is in its ground state when the 
wavelength of the perturbation is less than the horizon 
size during the period of exponential expansion. Thus at 
early times in the exponential expansion, i.e., when the 
Universe is small, the physical perturbation modes of the 
Universe have their minimum excitation. The Universe is 
in a state that is as ordered and homogeneous as it can be 
consistent with the uncertainty principle. This ordered 
state is not only an initial state for the expansion phase of 
the Universe but it is also a final state for the contracting 
phase because the WKB trajectories for Po return to the 
same region of the (a,#) plane and the perturbation wave 
functions depend only on the position in this plane. 

On the other hand, the perturbation modes are not in 
their ground state when the Universe is large bacause in 
this case the adiabatic approximation breaks down when 
the wavelength of the perturbation becomes greater than 
the horizon size during the period of exponential expan- 
sion. Detailed calculations’ show that when the scalar 
perturbation modes renter the horizon during the 
matter-dominated era, they are in a highly excited state 
and give rise to a scalefree spectrum of density fluctua- 
tions Sp/p. These density inhomogeneities provide the 
initial conditions ncceSSafy for the formation of galaxies 
and other structures in the Universe. The perturbation 
wave functions are still in a very special state because 
thur phase factors have to be such that when they are 
evolved according to the Schriidinger equation, they will 
return to their ground-state form when the Universe 
recontracts. However, this special nature of the perturba- 
tion wave functions would not be noticed by an observer 
who makes the usual coarse-grained measurements. All 
he would notice was that during the expansion the 
Univvee had evolved from a homogeneous, ordered state 
to an inhomogeneous, disordered state. Thus he would 
say that the thermodynamic arrow pointed in the direc- 
tion of time in which the Universe was expanding. On 
the other hand, an observer in the contracting phasc 
would feel that the Universe was evolving from a state of 
disorder to one of order. He would therefore ascribe the 
opposite direction to the thermodynamic arrow and would 
also find that it a g r d  with the cosmological arrow. 

The connection between the thermodynamic and 
cosmological arrows should hold in models that are more 
general than the one considered in Ref. 11 because it de- 
pends only on the fact that the adiabatic approximation 
should hold for small perturbations on “small” three- 
geometries but not for perturbations on “large” t b  
geometries. Thus one might expect that it would also 
hold in models that allowed for the formation of black 
holes as a result of the gravitational collapse of density 

fluctuations produced during the expansion. This would 
mean that the thermodynamic arrow would reverse inside 
a black hole. This is currently under investigation. 

V. CONSEQUENCES 

Are there any observable consequences of the prediction 
that the thermodynamic arrow should reverse in a recon- 
tracting phase of the Universe or inside a black hole? Of 
course, one could wait until the Universe recollapsed or 
one could jump into a black hole. However, the probabili- 
ty distribution of the density parameter n=p/pchc seems 
to be concentrated at n=l (Ref. 16). Thus one would 
have to wait a very long time for the collapse of the 
Universe. On the other hand, if one jumped into a black 
hole, one would not be able to tell anyone outside. Fur- 
thermore, if the thermodynamic arrow did reverse, one 
would not remember it because it would now be in one’s 
future rather than in the past. 

In principle it is possible to determine from the present 
positions and velocities of clusters of galaxies that they 
developed from an initial configuration with very low 
peculiar velocities. In a similar way it should therefore be 
possible to calculate whether they will evolve to a state 
with low peculiar velocities at some time in the future. 
The difficulty is that on the basis of the inflationary 
model, one would expect the value of f l  for the presently 
observed Universe to be equal to one to one part in 10‘. 
Thus one would expect the Universe to expand by a fur- 
ther factor of at least lo‘ beforc it began to recontract. In 
this extra expansion other clusters of galaxies which we 
have not yet observed would appear over the horizon and 
thar  gravitational fields could have a significant effect on 
the behavior of clustus near us. Thus it would seem very 
difficult to make an experimental test of the prediction 
that the themodynamic arrow would reverse if the 
Universe began to reoontract. 

A better bet would sccm to be to study the i d o w  of 
matter into a black hole. At least in principle this is a sit- 
uation that we ought to be able to observe with some ac- 
curacy. However, on the basis of classical g e n d  relativi- 
ty, one might expect the boundary of the region of high 
spacetime curvature not to be spacelike, as it is in the 
Schwanschild solution, but to be null, like the Cauchy 
horizon in the Reissner-Nordstr6sn or Kern solutions. If 
this were the case, the behavior of the matter and metric 
on the brink of the quantum era would depend on the en- 
tire future history of infa into the black hole. Merely to 
observe the infall for a limited period of time would be in- 
sufficient to determine whether or not the thermodynamic 
arrow of time reversed near the region of high curvature. 
Clearly more work has to be done on the classical and 
quantum aspects of gravitational collapse. 

One might think that the CPT theoran implied that all 
the baryons in the Universe would have to decay into lep 
tons before the Universe began to reoollapse and that the 
leptons would be reassembled into antibaqons in the col- 
lapsing phase. If this were the case, one could disprove 
the proposed “no boundary“ condition for the Universe if 
one could show that the observed value of fl was such 
that the Universe should begin to recollapse before all the 
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baryons had decayed. However, what the CPT theorem 
implies is just that the probability of finding an expanding 
threesurface with a matter canfiguration of baryons is 
the same as that of finding a contracting threesurface 
with a matter configuration of antibaryons. This require- 
ment is no restriction at all because the two threesurfaces 
can merely be the same thrce-surface viewed with dif- 
ferent orientation of time: reversing the orientation of 
time and space interchanges the labels, baryons, and anti- 
baryons. Thus the CPT invariance of the quantum state 
of the Universe does not imply any limit on the lifetime of 
the proton. In any case, we certainly do not observe 
baryons changing into antibaryons as they fall into a 
black hole. 
To sum up, the proposal that spacetime is compact 

without boundary implies that the quantum state of the 
Universe is invariant under CPT. Despite this, one would 
observe an increase in (coarse-grained) entropy during an 
expansion phase of the Universe. However, it seems diffi- 
cult to test the prediction that entropy should decrease 
during a contracting phase of the Universe or inside a 
black hole. 

Note added in proof: Since this paper was submitted for 
publication a paper by Don Page has appeared [following 
paper, Phys. Rev. D 32, 2496 (1985)]. In it he questions 
my conclusion that the thermodynamic MOW of time 
would reverse in a contracting phase of the universe or in 
a black hole. My concluion waa bascd on the fact that 
the wave function I went exactly into 1 as ane gocs to 
a= - m on a null geodesic in the a,# plane. This would 
imply that Y was not oscillating at large negative a and 
therefore that ail the claesical Lorentzian contracting 
solutions would have to bounce at a small radius. At the 

bounce one could apply an analysis similar to that in Ref. 
11 to show that all the inhomogeneous modes were in 
their ground state. This would mean that the inhomo- 
gcnuty would decrease in the collapsing phase and there- 
fore that the thermodynamic arrow of time would be re- 
versed. 

Page has pointed out however that even at large nega- 
tive a, there might be a small oscillating component in the 
wave function. This would arise from complex stationary 
points in the path integral over compact metrics that were 
near to the Lorentzian metric which started with an infla- 
tionary expansion, reached a maximum radius and then 
recollapsed to zero radius without boundary. Although 
the amplitude of this oscillating component would be 
small, its frequency would be very high. It would there- 
fore correspond to an appreciable probabilit flux of clas- 
sical solutions in the WKB approximation." One would 
not expect the inhomogeneous perturbations about such 
solutions to be in their ground state when the solution 
recollapsed because the adiabatic approximation used in 
Ref. 11 would break down. There is thus no reason for 
the thermodynamic arrow of time to reverse in these solu- 
tions. Similarly one would not expect it to reverse inside 
black holes. 

I thiqk that Page may well be right in his suggestion. 
In that case the two main results of this paper that are 
correct a r ~  first, that the wave function is invariant under 
CPT, though this does not imply that the individual clas- 
sical solutions that correspond to the wave €unction via 
the WKB approximation are invariant under CPT, 
second, that the classical solutions, which start out with 
an inflationary period, will have a well-defined thenno- 
dynamic arrow of time. 
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THE NO-BOUNDARY PROPOSAL A N D  THE ARROW OF TIME 

S .  W. HAWKING 
Department of Applied Mathematics and Theoretical Physics 

University of Cambridge, U. K. 

When I began research nearly 30 years ago, my supervisor, Dennis Sciama, set me 
to work on the arrow of time in cosmology. I remember going to the university 
library in Cambridge to look for a book called The Direction of Time by the 
German philosopher, Reichenbach [Reichenbach, 19561. However, I found the book 
had been taken out  by the author, J. B. Priestly, who was writing a play about 
time, called Time a d  the Conways. Thinking tha t  this book would answer all 
my questions, I filled in a form to force Priestly to return the book to the library, 
so I could consult it. However, when I eventually got hold of the book I was very 
disappointed. It was rather obscure, and the logic seemed to  be circular. It laid 
great stress on causation, in distinguishing the forward direction of time from the 
backward direction. But in physics, we believe there are laws that  determine the 
evolution of the universe uniquely. Suppose state A evolved into state B. Then 
one could say that  A caused B. But one could equally well look at it in the other 
direction of time, and say that B caused A. So causality does not define a direction 
of time. 

My supervisor suggested I look at a paper by a Canadian, called Hogarth 
[Hogarth, 19621. This applied to cosmology, a direct action formulation of electro- 
dynamics. It claimed t o  derive a connection between the  expansion of the universe 
and the electromagnetic arrow of time. That  is, whether one got retarded or ad- 
vanced solutions of Maxwell’s equations. The paper said that  one would obtain 
retarded solutions in a steady state universe, but advanced solutions in a big bang 
universe. This was seized on by Hoyle and Narlikar [Hoyle and Narlikar, 19641 
as further evidence, if any were needed, that  the steady state theory was correct. 
However, now that  no one except Hoyle believes that the universe is in a steady 
state, one must conclude that the basic premise of the paper was incorrect. 

Shortly after this, there was a meeting on the direction of time at Cornell 
in 1964 [Gold, 19671. Among the participants there was a Mr. X, who felt the 
proceedings were so worthless that  he didn’t want his name associated with them. 
It was an  open secret that Mr. X was Feynman. 

Mr. X said that the electromagnetic arrow of time didn’t come from an  action at 
a distance formulation of electrodynamics, but from ordinary statistical mechanics. 
Guided by his comments, I came to the following understanding of the arrow of 
time. The  important point is that  the trajectories of a system should have the 
boundary condition that they are in a small region of phase space at a certain 
time. In general, the evolution equations of physics will then imply that at other 
times the trajectories will be spread out over a much larger region of phase space. 
Suppose the boundary condition of being in a small region is an  initial condition 
(see Figure 1). Then this will mean that the system will begin in an ordered state, 
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Fig. 1. Evolution of a system with an initial boundary condition. 
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Fig. 2. Evolution of a system with a final boundary condition. 

and will evolve to a more disordered state. Entropy will increase with time and 
the second law of thermodynamics will be satisfied. 

On the other hand, suppose the boundary condition of being in a small region 
of phase space was a final condition instead of an initial condition (see Figure 2). 
Then at early times the trajectories would be spread out over a large region, and 
they would narrow down to a small region ae time increaeed. Thus disorder and 
entropy would decrease with time rather than increase. However, any intelligent 
beings who observed this behavior would also be living in a universe in which 
entropy decreased with time. We don’t know exactly how the human brain works 
in detail but we can describe the operation of a computer. One can consider 
all possible trajectories of a computer interacting with its surroundings. If one 
imposes a final boundary condition on these trajectories, one can show that the 
correlation between the computer memory and the surroundings is greater at early 
times than at late times. In other words, the computer remembers the future but 
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not the past. Another way of seeing this is to note that  when a computer records 
something in memory, the total entropy increase. Thus computers remember things 
in the  direction of time in which entropy increases. In a universe in which entropy 
is decreasing in time, computer memories will work backward. They will remember 
the future and forget the past. 

Although we don’t really understand the workings of the brain, it seems reason- 
able to assume that  we remember in the same direction of time that  computers do. 
If it were the opposite direction, one could make a fortune with a computer that  
remembered who won tomorrow’s horse races. This means that the psychological 
arrow of time, our subjective sense of time, is the same as the thermodynamic 
arrow of time, the direction in which entropy increases. Thus, in a universe in 
which entropy was decreasing with time, any intelligent beings would also have a 
subjective sense of time that  was backward. So the second law of thermodynamics 
is really a tautology. Entropy increases with time because we define the direction 
of time to be tha t  in which entropy increases. 

There are, however, two non-trivial questions one can ask about the arrow of 
time. The  first is, why should there be a boundary condition at  one end of time but 
not the other? It might seem more natural t o  have a boundary condition at both 
ends of time, or at neither. As I will discuss, the former possibility would mean 
that  the arrow of time would reverse, while in the latter case there would be no 
well defined arrow of time. The second question is, given that there is a boundary 
condition at one end of time, and hence a well defined arrow of time, why should 
this arrow point in the direction of time in which the universe is expanding? Is 
there a deep connection or is it just an accident? 

I realized that  the problem of the arrow of time should be formulated in the 
manner I have described. But at that time in 1964, I could think of no good 
reason why there should be a boundary condition at one end of time. I also needed 
something more definite and less airy-fairy than the arrow of time for my PhD. I 
therefore switched to singularities and black holes. They were a lot easier. But I 
retained an  interest in the problem of the direction of time. This surfaced again in 
1983, when Jim Hartle and I formulated the no-boundary proposal for the universe 
[Hartle and Hawking, 19831. This was the suggestion that the quantum state of the 
universe was determined by a path integral over positive definite metrics on closed 
spacetime manifolds. In other words, the boundary condition of the universe was 
that it had no boundary. 

The  no-boundary condition determined the quantum state of the universe, and 
thus what happened in it. It should therefore determine whether there was an 
arrow of time, and which way it pointed. In the paper that  Hartle and I wrote, 
we applied the no-boundary condition to models with a cosmological constant 
and a conformally invariant scalar field. Neither of these gave a universe like we 
live in. However, a minisuperspace model with a minimally coupled scalar field 
gave an inflationary period that could be arbitrarily long [Hawking, 1984). This 
would be followed by radiation and matter dominated phases, like in the chaotic 
inflationary model. Thus it seemed tha t  the no-boundary condition would account 
for the observed expansion of the universe. But would it explain the observed 
arrow‘of time? In other words, would departures from a homogeneous and isotropic 
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expansion be small when the universe is small, and grow larger aa the universe got 
bigger? Or would the no-boundary condition predict the opposite behavior? Would 
the departures be small when the universe was large and large when the universe 
was small? In this latter case, disorder would decrease aa the universe expanded. 
This would mean that the thermodynamic arrow pointed in the opposite way to 
the cosmological arrow. In other words, people living in such a universe would say 
that the universe waa contracting, rather than expanding. 

To answer the question, of what the no-boundary proposal predicted for the 
arrow of time, one needed to understand how perturbations of a Friedmann model 
would behave. Jonathan Halliwell and I studied this problem. We expanded 
perturbations of a minisuperspace model in spherical harmonics, and expanded 
the Hamiltonian to second order [Halliwell and Hawking, 19841. This gave us a 
W heeler-Dewitt equation, 

for the wave function of the universe. We solved this as a background minisu- 
perspace wave function times wave functions for the perturbation modes. These 
perturbation mode wave functions obeyed Schroedinger equations, which we could 
solve approximately. To obtain the boundary conditions for these Schroedinger 
equations, we used a semiclassical approximation to the no-boundary condition. 

Fig. 3. The n+boundary condition. 

Consider a three geometry and scalar fieId that are a small perturbation of a 
three sphere and a constant field (see Figure 3). The wave function a t  this point 
in superspace will be given by a path integral over all Euclidean four geometries 
and scalar fields that have only that boundary. One would expect the dominant 
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contribution to this path integral to come from a saddle point. That  is, a com- 
plex solution of the field equations which has the given geometry and field on one 
boundary, and which has no other boundary. The wave function for the perturba- 
tion mode will then be 

In this way, Halliwell and I calculated the spectrum of perturbations predicted by 
the no-boundary condition. The exact shape of this spectrum doesn’t matter for 
the arrow of time. What is important is that, when the radius of the universe 
is small and the saddle point is a complex solution that expands monotonically, 
the amplitudes of the perturbations are small. This means that the trajectories 
corresponding to different probable histories of the universe, are in a small region of 
phase space when the  universe is small. As the universe gets larger, the amplitudes 
of some of these perturbations will go up. Because the evolution of the universe is 
governed by a Hamiltonian, the volume of phase space remains unchanged. Thus 
while the perturbations are linear, the region of phase space that  the trajectories 
are in will change shape only by some matrix of determinant one. In other words, 
an initially spherical region will evolve to an ellipsoidal region of the same volume. 
Eventually however, some of the perturbations can grow so large that they become 
nonlinear. The volume of phase space is still left unchanged by the evolution, but 
in general the initially spherical region will be deformed into long thin filaments. 
These can spread out and occupy a large region of phase space. Thus one gets an 
arrow of time. The  universe is nearly homogeneous and isotropic when i t  is small. 
But it is more irregular when it  is large. In other words, disorder increases as the 
universe expands. So the thermodynamic and cosmological arrows of time agree, 
and people living in the universe will say it is expanding rather than contracting. 

In 1985 I wrote a paper in which I pointed out that  these results about per- 
turbations would explain both why there was a thermodynamic arrow, and why 
it  should agree with the cosmological arrow [Hawking, 19851. But I made what I 
now realize was a great mistake. I thought that  the no-boundary condition would 
imply that the perturbations would be small whenever the radius of the universe 
was small. That  is, the perturbations would be small not only in the early stages of 
the expansion, but also in the late stages of a universe that  collapsed again. This 
would mean that the trajectories of the system would be that subset that  lies in a 
small region of phase space, at both the beginning and the end of time. But they 
would spread out over a much larger region a t  times in between. This would mean 
that disorder would increase during the expansion, but decrease again during the 
contraction (see Figure 4). So the thermodynamic arrow would point forward in 
the expansion phase, and backward in the contracting phase. In other words, the 
thermodynamic and cosmological arrows would agree in both expanding and con- 
tracting phases. Near the time of maximum expansion, the entropy of the universe 
would be a maximum. This would mean that an intelligent being who continued 
from the expanding to the contracting phase would not observe the arrow of time 
pointing backward. Instead, his subjective sense of time would be in the opposite 
direction in the contracting phase. So he would not remember that he had come 
from the expanding phase because that would be in his subjective future. 
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Fig. 4. Evolution of a system with initial and final boundary conditions. 

If the thermodynamic arrow of time were to reverse in a contracting phase of 
the universe, one might also expect it to reverse in gravitational collapse to  form 
a black hole. This would raise the possibility of an experimental test of the no- 
boundary condition. If the reversal took place only inside the horizon it would not 
be much use because someone that observed it could not tell the rest of us. But 
one might hope that there would be slight effects that could be detected outside 
the horizon. 

The idea that the arrow of time would reverse in the contracting phase had a 
satisfying ring to it. But shortly after having my papers accepted by the Physical 
Review, discussions with Raymond Laflamme and Don Page convinced me that the 
prediction of reversal was wrong. I added a note to  the proofs saying that entropy 
would continue to increase during the contraction, but I fell ill with pneumonia be- 
fore I could write a paper to  explain it properly. So I want to take this opportunity 
to show how I went wrong, and what the correct result is. 

One reason 1 made my mistake was that I was misled by computer solutions of 
the Wheeler-Dewitt equation for a minisuperspace model of the universe [Hawking 
and Wu, 19851. In these solutions, the wave function didn't oscillate in a so-called 
"forbidden region" at  very small radius. I now realize that these computer solutions 
had the wrong boundary conditions (see Figure 5) .  But at  the time, I interpreted 
them as indicating that the Lorentzian four geometries that corresponded to the 
WKB approximation didn't collapse to zero radius. Instead, I thought they would 
bounce and expand again (see Figure 6). My feelings were strengthened when I 
found that there was a class of classical solutions that oscillated. The computer 
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Fig. 5. The wave function for a homogeneous, isotropic universe with a scalar field. The 
wave function does not oscillate near the lines y = 1 ~ 1 .  

I 
Tim 

Fig. 6. A quasi-periodic solution for a hiedmann universe filled with a massive scalar 
field. 

calculations of the wave function seemed to correspond to  a superposition of these 
solutions. The oscillating solutions were quasi-periodic. So it seemed natural to 
suppose that the boundary conditions on the perturbations should be that they 
were small whenever the radius was small. This would have led to  an arrow of time 
that pointed forward in the expanding phase, and backward in the contracting 
phase, as I have explained. 
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I set my research student, Raymond Laflamme, to  work on the arrow of time in 
more general situations than a homogeneous and isotropic Friedmann background. 
He soon found a major objection to my ideas. Only a few solutions, like the spheri- 
cally symmetric F'riedmann models, can bounce when they collapse. Thus the wave 
function for something like a black hole could not be concentrated on nonsingular 
solutions. This made me realize that there could be a difference between the start 
of the expansion, and the end of the contraction. The dominant contributions to 
the wave functions for either, would come from saddle points that corresponded 
to complex solutions of the field equations. These solutions have been studied in 
detail by my student, Glenn Lyons [Lyons, 19921. When the radius of the uni- 
verse is small, there are two kinds of solutions (see Figure 7). One would be an 
almost Euclidean complex solution that started like the north pole of a sphere 
and expanded monotonically up to the given radius. This would correspond to 
the start of the expansion. But the end of the contraction would correspond to  
a solution that started in a similar way, but then had a long, almost Lorentzian 
period of expansion followed by contraction to the given radius. The wave function 
for perturbations about the first kind of solution would be heavily damped, unless 
the perturbations were small and in the linear regime. But the wave function for 
perturbations about the solution that expanded and contracted could be large for 
large perturbation amplitudes. This would mean that the perturbations would be 
small at  one end of time, but could be large and nonlinear at the other end. So 
disorder and irregularity would increase during the expansion, and would continue 
to increase during the contraction. There would be no reversal of the arrow of time 
a t  the point of maximum expansion. - Almost Euclidean 

solution 

Almost &dm solution 
that expands to large radius 

and conmcts again 

Fig. 7. Two possible saddle points in the path integral for the wave function of a given 
radius. 

Glenn Lyons, Raymond Laflamme and I have studied how the arrow of time 
manifests itself in the various perturbation modes. I t  makes sense to talk about the 
arrow of time only for modes that are shorter than the horizon scale at the time 
concerned. Modes that are longer than the horizon just appear as a homogeneous 
background. There are two kinds of behavior for perturbation modes within the 
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horizon. They can oscillate or they can have power law growth or decay. Modes 
that oscillate are the tensor modes that correspond to gravitational waves, and 
scalar modes that correspond to  density perturbations of wavelength less than the 
Jeans length. On the other hand, density perturbations longer than the Jeans 
length have power law growth and decay. 

Perturbation modes that oscillate will have an amplitude that varies adiabati- 
cally as an inverse power of the radius of the universe: 

AaP = constant, 

where A is the amplitude of the oscillating perturbation, a is the radius of the 
universe and p is some positive number. This means they will be essentially time 
symmetric about the time of maximum expansion. In other words, the amplitude 
of the perturbation will be the same at  a given radius during the expansion, as at  
the same radius during the contracting phase. So if they are small when they come 
within the horizon during expansion, which is what the no-boundary condition 
predicts, they will remain small at  all times. They will not become nonlinear, and 
they will not show an arrow of time. By contrast, density perturbations on scales 
longer than the Jeans length will grow in amplitude in general 

A = BaP + Ca-Q , 
where p and q are positive. They will be small when they come within the horizon 
during the expansion. But they will grow during the expansion, and continue to 
grow during the contraction. Eventually, they will become nonlinear. At this stage, 
the trajectories will spread out over a large region of phase space. 

So the no-boundary condition predicts that the universe is in a smooth and 
ordered state at  one end of time. But irregularities increase while the universe 
expands and contracts again. These irregularities lead to the formation of stars 
and galaxies, and hence to the development of intelligent life. This life will have 
a subjective sense of time, or psychological arrow, that points in the direction of 
increasing disorder. 

The one remaining question is why this psychological arrow should agree with 
the cosmological arrow. In other words, why do we say the universe is expanding 
rather than contracting? The answer to this comes from inflation, combined with 
the weak anthropic principle. If the universe had started to contract a few billion 
years ago, we would indeed observe it to be contracting. But inflation implies that 
the universe should be so near the critical density that it will not stop expanding for 
much longer than the present age. By that time, all the stars will have burnt out. 
The universe will be a cold dark place, and any life will have died out long before. 
Thus the fact that we are around to observe the universe, means that we must be 
in the expanding, rather than the contracting phase. This is the explanation why 
the psychological arrow agrees with the cosmological arrow. 

So far I have been talking about the arrow of time on a macroscopic, fluid 
dynamical scale. But the inflationary model depends on the existence of an ar- 
row of time on a much smaller, microscopic scale. During the inflationary phase, 
practically the entire energy content of the universe is in the single homogeneous 
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mode of a scalar field. The amplitude of this mode, changes only slowly with time, 
and its energy-momentum tensor causes the universe to expand in an accelerating, 
exponential way. At the end of the inflationary period, the amplitude of the ho- 
mogeneous mode begins to oscillate. The idea is that these coherent homogeneous 
oscillations of the scalar field cause the creation of short wavelength particles of 
other fields, with a roughly thermal spectrum. The universe expands thereafter, 
like the hot big bang model. 

This inflationary scenario implicitly assumes the existence of a thermodynamic 
arrow of time that points in the direction of the expansion. It wouldn’t work if 
the arrow of time had been in the opposite direction. Normally, people brush the 
assumption of an arrow of time under the carpet. But in this case, one can show 
that this microscopic arrow also seems to follow from the no-boundary condition. 
One can introduce extra matter fields, coupled to the scalar field. If one expands 
them in spherical harmonics, one obtains a set of Schroedinger equations with 
oscillating coefficients. The no-boundary condition tells you that the matter fields 
start in their ground state. One then finds that the matter fields become excited 
when the scalar field begins to oscillate. Presumably, the back reaction will damp 
the oscillations of the scalar field, and the universe will go over to a radiation 
dominated phase. Thus, the no-boundary proposal seems to explain the arrow of 
time on microscopic as well as on macroscopic scales. 

I have told you how I came to the wrong conclusion, and what I now think is 
the correct result about what the no-boundary condition predicts for the arrow of 
time. This was my greatest mistake, or at  least my greatest mistake in science. I 
once thought there ought to be a journal of recantations, in which scientists could 
admit their mistakes. But it might not have many contributors. 
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It is suggested that the apparent cosmological constant is not necessarily zero but that zero is by far the most probable 
value. One requires sonie mechanism like a three-index antisymmetric tensor field or topological fluctuations of the metric 
which can give rise to an effective cosmological constant of arbitrary magnitude. The action of solutions of the euclidean 
field equations is most negative, and the probability is therefore highest, when this effective cosmological constant is very 
small. 

The cosmological constant is probably the quantity 
in physics that is most accurately measured to  be zero: 
observations of departures from the Hubble Law for 
distant galaxies place an upper limit of the order of 

where mp is the Planck mass. On the other hand, one 
might expect that the zero point energies of quantum 
fluctuations would produce an effective or induced 
Amp2 of order one if the quantum fluctuations were 
cut off at the Planck mass. Even if this were renorma- 
lized exactly to  zero, one would still get a change in 
the effective A of order p4mp whenever a symmetry 
in the theory was spontaneously broken, where p is 
the energy at  which the symmetry was broken. There 
are a large number of symmetries which seem to be 
broken in the present epoch of the universe, including 
chiral symmetry, electroweak symmetry and possibly, 
supersymmetry. Each of these would give a contribu- 
tion to A that would exceed the upper limit (1) by 
at least forty orders of magnitude. 

A is fine tuned so that after all the symmetry breaking, 
the effective A satisfies the inequality (1). What one 
would like to find is some mechanism by which the 
effective value of A could relax to  zero. Although 
there have been a number of attempts to findsucha 

It is very difficult t o  believe that the bare value of 

mechanism (see e.g. refs. [ 1,2]), I think i t  is fair to 
say that no satisfactory scheme has been suggested. 
In this paper, I want to  propose instead a very simple 
idea: the cosmological constant can have any value 
but it is much more probable for it to  have a value 
very near zero. A preliminary version of this argument 
was given in ref. [3]. 
My proposal requires that a variable effective cos- 

mological constant be generated in some manner and 
that the path integral includes all, or some range, of 
values of this effective cosmological constant. One 
possibility would be to include the value of the cos- 
mological constant in the variables that are integrated 
over in the path integral. A more attractive way would 
be to  introduce a three-index antisymmetric tensor 
field APvp. This would have gauge transformations 
of the form 

A P V P  + * # U P  + VIPCVPI ’ 

FPVPO - V [ # A ” P O ]  . 

(2) 
The action of the field is F2  where F i s  the field 
strength formed from A : 

(3) - 
Such a field has no dynamics: the field equations 
imply that F is a constant multiple of the four-index 
antisymmetric tensor E ~ ~ ~ ~ .  However, the F 2  term 
in the action behaves like an effective cosmological 
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constant [4]. Its value is not determined by field equa- 
tions. Three-index antisymmetric tensor fields arise 
naturally in the dimensional reduction o f N =  1 super- 
gravity in eleven dimensions to N = 8 supergravity in 
four dimensions. Other mechanisms that would give 
an effective cosmological constant of arbitrary mag 
nitude include topological fluctuations of the metric 
[S] and a scalar field 4 with a potential term V(@) but 
no kinetic term. In this last case, the gravitational field 
equations could be satisfied only if 4 was constant. 
The potential V(4) then acts as an effective cosmolog- 
ical constant. 

In the path integral forniulation of quantum theory, 
the amplitude to go from a field configuration $, (x) 
on the surface t = t l  to  a configuration @2(x) on t = t 2  
is 

(4) 

where d [I$] is a measure on the space of all field config 
urations 4(x, t), I [ # ]  is the action of the field configu- 
ration and the integral is over all field configurations 
which agree with $1 and 42 at  t = t l  and t = t 2  respec- 
tively. The integral (4) oscillates and does not converge. 
One can improve the situation by making a rotation 
to euclidean space by defining a new coordinate T = it. 
The transition amplitude then becomes 

where r" * -if is the euclidean action which is bounded 
below for well behayd field theories in flat space. One 
can interpret exp(-f (41) as being proportional t o  the 
probability o f  the euclidean field configuration $(x, 
7). One calculates amplitudes like ( 5 )  in euclidean 
space and then analytically continues them in r2 - T~ 

back to real time separations. 
One can adopt a similar euclidean approach in the 

case of gravity (6.71. There is a difficulty because the 
euclidean gravitational action is not bounded below. 
This can be overcome by dividing the space of all posi- 
tive definite metrics up into equivalence classes under 
conformal transformations. In each equivalence class 
one integrates over the conformal factor on a contour 
which is parallel to  the imaginary axis [8,3]. The 
dominant contribution to the path integral comes from 
metrics which are near to solutions of the field equa- 
tions. Of particular interest are solutions in which the 
dynamical matter fields, i.e. the matter fields apart 

404 

from APvp or 4 are near their ground state values over 
a large region. This would be a reasonable approxima- 
tion to the universe a t  the present time. The ground 
state of the matter fields plus the contribution of the 
APvp or 4 fields will generate an effective cosmological 
constant A,. If the effective value A, is positive, the 
solutions are necessarily compact and their four-vol- 
ume is bounded by that of the solution of reatest 
symmetry, the four-sphere of radius ( 3 A i  ) l / * .  The 
euclidean action r' will be negative and will be bound- 
ed below by 

P 

If Ae is negative, the solutions can be either compact 
o,r non-compact [S) . If they are compact. the action 
I, will be finite and positive. If they are non-compact, 
I will be infinite and positive. 

The probability of a given field configuration will 
be proportional to 

(7) 
I f  Ae is negative, f will be positive and h e  probability 
will be exponentially small. If Ae is positive, the prob- 
ability will be of the order of 

Clearly, the most probable configurations will be those 
with very small values of A,. This docs not imply that 
the effective cosmological constant will be small every- 
where in these configurations. In regions in which the 
dynamical fields differ from the ground state values 
there can be an apparent cosmological constant as in 
the inflationary model of the universe. 
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Any reasonable theory of quantum gravity will allow closed universes to branch off from our 
nearly flat region of.spacetime. I describe the possible quantum states of these closed universes. 
They correspond to wormholes which connect two asymptotically Euclidean regions, or two parts 
of the same asymptotically Euclidean region. I calculate the influence of these wormholes on ordi- 
nary quantum fields at low energies in the ipymptotic region. This can be represented by adding 
effective interactions in Bat spacetime which create or annihilate closed universes containing cer- 
tain numbers of particles. The effective interactions are small except for closed universes contain- 
ing scalar particles in the spatially homogeneous mode. If these scalar interactions are not re- 
d u d  by sypersymmetry, it may be that any scalar particles we observe would have to be bound 
states of particles of higher spin, such as the pion. An observer in the asymptotically flat region 
would not be able to measure the quantum state of closed universes that branched off. He would 
therefore have to sum over all possibilities for the closed universes. This would mean that the 
Anal state would appear to be a mixed quantum state, rather than a pure quantum state. 

I. INTRODUCTION 

In a reasonable theory of quantum gravity the topolo- 
gy of spacetime must be able to be different from that of 
flat space. Otherwise, the theory would not be able to 
describe closed universes or black holes. Presumably, 
the theory should allow all possible spacetime topologies. 
In particular, it should allow closed universes to branch 
off, or join onto, our asymptotic flat region of spacetime. 
Of course, such behavior is not possible with a real, non- 
singular, Lorentzian metric. However, we now all know 
that quantum gravity has to be formulated in the Eu- 
clidean domain. There, it is no problem: it is just a 
question of plumbing. Indeed, it is probably necessary 
to include all possible topologies for spacetime to get 
unitarity. 

Topology change is not something that we normally 
experience, at least, on a macroscopic scale. However, 
one can interpret the formation and subsequent evapora- 
tion of a black hole as an example: the particles that fell 
into the hole can be thought of as going off into a little 
closed universe of their own. An observer in the asymp- 
totically flat region could not measure the state of the 
closed universe. He would therefore have to sum over 
all possible quantum states for the closed universe. This 
would mean that the part of the quantum state that was 
in the asymptotically flat region would appear to be in a 
mixed state, rather than a pure quantum state. Thus, 
one would lose quantum coherence.',' 

If it is poasible for a closed universe the size of a black 
hole to branch off, it is also presumably possible for little 
Planck-size closed universes to branch off and join on. 
The purpose of this paper is to show how one can de- 
scribe this process in terms of an effective field theory in 
flat spacetime. I introduce effective interactions which 
create, or destroy, closed universes containing certain 
numbers of particles. I shall show that these effective in- 

teractions are small, except for scalar particles. There is 
a serious problem with the very large effective interac- 
tions of scalar fields with closed universes. It may be 
that these interactions can be reduced by supersym- 
metry. If not, I think we will have to conclude that any 
scalar particles that we observe are bound states offer- 
mions, like the pion. Maybe this is why we have not ob- 
served Higgs particles. 

I base my treatment on general relativity, even though 
general relativity is probably only a low-energy approxi- 
mation to some more fundamental quantum theory of 
gravity, such as superstrings. For closed universes of the 
Planck size, any higher-order corrections induced from 
string theory will change the action by a factor - I. So 
the effective field theory based on general relativity 
should give answers of the right order of magnitude. 

In Sec. 11, I describe how closed universes or 
wormholes can join one asymptotically Euclidean region 
to another, or to another part of the same region. Solu- 
tions of the Wheeler-DeWitt equation that correspond to 
such wormholes are obtained in Sec. 111. These solu- 
tions can also be interpreted as corresponding to Fried- 
mann universes. It is an amusing thought that our 
Universe could be just a rather large wormhole in an 
asymptotically flat space. 

In Sec. IV, I calculate the vertex for the creation or 
annihilation of a wormhole containing a certain number 
of particles. Section V contains a discussion of the ini- 
tial quantum state in the closed-universe Fock space. 
There are two main possibilities: either there are no 
closed universes present initially, or there is a coherent 
state which is an eigenstate of the creation plus annihila- 
tion operators for each species of closed universe. There 
will be loss of quantum coherence in the first case, but 
not the second. This is described in Sec. VI. The in- 
teractions between wormholes and particles of different 
spin in asymptotically flat space are discussed in Sec. 
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VII. Finally, in Sec. VIII, I conclude that wormholes 
will have to be taken into account in any quantum 
theory of gravity, including superstrings. 

This paper supercedes earlier work of mine’-’ on the 
loss. of quantum coherence. These papers were incorrect 
in associating loss of coherence with simply connected 
spaces with nontrivial topology, rather than with 
wormholes. 

11. WORMHOLES 

What I am aiming to do is to calculate the effect of 
closed universes that branch off on the behavior of ordi- 
nary, nongravitational particles in asymptotically flat 
space at energies low compared to the Planck mass. The 
effect will come from Euclidean metrics which represent 
a closed universe branching off from asymptotically flat 
space. One would expect that the effcct would be 
greater, the larger the closed universe. Thus one might 
expect the dominant contribution would come from 
metrics with the l a s t  Euclidean action for a given size 
of closed universe. In the R =O conformal gauge, these 
are conformally flat metrics: 

ds2=R2dx2 , 
b2 n=1+-. 

(x -xo 12. 

At first sight, this looks like a metric with a singularity 
at the point xo. However, the blowing up of the confor- 
mal factor near xo means that the space opens out into 
another asymptotically flat region, joined to the first 
asymptotically flat region by a wormhole of coordinate 
radius 6 and proper radius 26. The other asymptotic re- 
gion can be a separaU asymptotically flat region of the 
Universe, or it can be another part of the first asymptot- 
ic region. In the latter case, the conformal factor will be 
modified slightly by the interaction between the two ends 
of the wormhole, or handle to spacetime.6 However, the 
change will be small when the separation of the two ends 
is large compared to 26, the size of the wormhole. Typi- 
cally, b will be of the order of the Planck length, so it 
will be a good approximation to neglect the interactions 
between wormholes. This conformally flat metric is just 
one example of a wormhole. There are, of course, non- 
conformally flat closed universes that can join onto 
asymptotically flat space. Their effects will be similar, 

but will involve gravitons in the asymptotically flat 
space. Since it is dimcult to observe gravitons, I shall 
concentrate on conformally flat closed universes. 

I shall consider a set of matter flelds 4 in the closed 
universe. Spin-I gauge fields are conformally invariant. 
In the case of matter fields of spin f and 0, the effect of 
any maas will be small for wormholes of the Planck size. 
!.shall therefore take the matter fields 4 to be conformal- 
ly invariant. The effect of mass could be included as a 
perturbation. 

In order to tind the effect of the closed universe or 
wormhole on the matter fields 4 in the asymptotically 
flat spaces, one should calculate the Green’s functions 

(4cy’ )d(Y2 . * * d(y,)4(z, )4(z2 * * * d(2, ) )  , 
where y . . . ,y, and z . . . ,z, are points in the two 
asymptotic regions (which may be the same region). 
This can be done by performing a path integration over 
all matter fields 4 and all metrics gpv that have one or 
two asymptotically flat regions and a handle or 
wormhole connecting them. Let S be a three-sphere, 
which is a cross section of the closed universe or 
wormhole. One can then factorize the path integral into 
a part 

(01 d(Y,) * * * #Y,)  13) , 

( $ 1  4 ( Z ‘ ) .  . 4 Z S )  10) t 

which depends on the fields on one side of S, and a part 

which depends on the fields on the other side of S. 
Strictly speaking, one can factorize in this way only 
when the regions at the two ends of the wormhole are 
separate asymptotic regions. However, even when they 
are the same region, one can neglect the interaction be- 
tween the ends. and factorize the path integral if the ends 
are widely separated. 

In the above 10) represented the usual particle 
scattering vacuum state defined by a path integral over 
asymptotically Euclidean metrics and matter fields that 
vanish at infinity. I $) represented the quantum state of 
the closed universe or wormhole on the surface S. This 
can be described by a wave function Y which depends 
on the induced metric hi, and the values do of the matter 
fields on S. The wave function obeys the Wheeler- 
DeWitt equation 
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UI. WORMHOLE EXCITED =ATIS 

The solutions of the Wheeler-DeWitt equation that correspond to wormholes, that is, closed universes connecting 
two asymptotically Euclidean regions, form a Hilbert space Hw with the inner product 

($1 I~z)=$d~~,,l~[+*~~:U'z .. 

( + ( y , ) .  * * & y r ~ ( z , )  * . . +(z,))=Z (0 I + ( y , )  * * * f&y:', 13, )($, (d(z,) . * . +b,) 10) . 
Let I 46, ) be a basis for !Ifu. Then one can write the Green's function in the factorized form 

What are these wormhole excited states 1 +, )? To find. them one would have to solve the full Wheeler-DeWitt and 
momentum constraint equations. This is too difficult, but one can get an idea of their nature from mode expansions? 
One can write the three-metric h,, on the surface S as 

h,f =oZa2(R,f +€,, 1 . 
Here u2=2/3rm: is a normalization factor, a,, is the metric on the unit three-sphere, and q, is a perturbation, 
which can be expanded in harmonics on the three-sphere: 

The Q ( x ' )  are the standard scalar harmonics on the 
three-sphere. The P,,(x') are given by (suppressing all 
but i, j indices) 

They are traceless, P/=O. The S" are defined by 

where S, are the transverse vector harmonics, S,l'=O. 
The GI are the transverse traceless tensor harmonics 
G:=G,/I=O. Further details about harmonics and their 
normalization can be found in Ref. 7. 

Consider a conformally invariant scalar field 4. One 
can describe it in terms of hypenpherical harmonics on 
the surface S: 

The wave function I is then a function of coefficients a,, 
b,, c,,, d,,, and f,, and the scale factor u. 

One can expand the Wheeler-DeWitt operator to all 
orders in a and to second order in the other coefficients. 
In this approximation, the different modes do not in- 
teract with each other, but only with the scale factor a. 
However, the conformal scalar coefficients f n  do not 
even interact with a. One can therefore write the wave 
function as a sum of products of the form 

I=Yo(a,~,,b,,cj,di) n $ n ( i n )  . 
The part of the Wheeler-DeWitt operator that acts on 

3" is 

It is therefore natural to take them to be harmonic- 
oscillator wave functions 

where @=(n2+1) and H,,, are Hermite polynomials. 
The wave functions qnm can then be interpreted as cor- 
responding to the closed universe containing m scalar 
particles in the nth harmonic mode. 

The treatment for spin-f and -1 fields is similar. The 
appropriate data for the fields on S can be expanded in 
harmonics on the three-sphere. The main difference is 
that the lowest harmonic is not the n =O homogeneous 
mode, as in the scalar case, but has n =f or 1. Again, 
the coefficients,of the harmonics appear in the Wheeler- 
DeWitt equation to second order only as fermionic' or 
bosonic harmonic oscillators, with a frequency indepen- 
dent of a. One can therefore take the wave functions to 
be fermion or boson harmonic-oscillator wave functions 
in the coefficients of the harmonics. They can then be 
interpreted as corresponding to definite numbers of par- 
ticles in each mode, 

In the gravitational part of the wave function, Yo, the 
coefficients a,,, b,, and c, reflect gauge degrees of free- 
dom. They can be made zero by a diffeomorphism of S 
and suitable lapse and shift functions. The coefficients 
d,, correspond to gravitational wave excitations of the 
closed universe. However, gravitons are very difficult to 
observe. I shall therefore take these modes to be in their 
ground state. 

The scale factor a appears in the Wheeler-DeWitt 
equation as the operator 

-_ a2 a ' .  
aa ' 

I shall assume that the zero-point energies of each mode 
are either subtracted or canceled by fermions in a super- 
symmetric theory. The total wave function I will then 
satisfy the Wheeler-DeWitt equation if the gravitational 
part Yo is a harmonic-oscillator wave function in a with 
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unit frequency and level equal to the sum E of the ener- 
gies of the matter-6eld harmonic oscillators. 

The wave hnction Yo will oscillate for a cro  
=(2E)'". In this region one can use the WKB approxi- 
mati~n'*~*'O to relate it to a Lorentzian solution of the 
classical field equations. This solution will be a k = + 1 
Friedmann model filled with cohformally invariant 
matter. The maximum radius of the Friedmann model 
will be a =ro. For a > to, the wave function will be ex- 
ponential. Thus, in this region it will correspond to a 
Euclidean metric. This will be the wormhole metric de- 
scribed in Sec. 11, with b = 1 /2uro. These excited state 
solutions were first found in Ref. 11, but their 
significance as wormholes waa not realized. Notice that 
the wave function is exponentially damped at large a, 

I 

whereas the cosmological wave functions described in 
Refs. 7, 9, and 10 tend to grow exponentially at large u. 
The difference here is that one is looking at the closed 
universe from an asymptotically Euclidean region, in- 
stead of from a compact Euclidean space, as in the 
cosmological case. This changes the sign of the trace K 
surface term in the gravitational action. 

IV. THE WORMHOLE VERTEX 

One now wants to calculate the matrix element of the 
product of the values of # at the points yl,y2, . . . ,yr be- 
tween the ordinary, Bat-space vacuum ( 0  I and the 
closed-universe state I $). This is given by the path in- 
tegral 

The gravitational 6eld is required to be asymptotically 
flat at infinity, and to have a three-sphere S with induced 
metric h,, as its inner boundary. The scalar field # is re- 
quired to be zero a t  infinity, and to have the value #0 on 
S. 

In general, the positions of the points y, cannot be 
specified in a gaugeinvariant manner. However, I shall 
be concerned only with the effects of the wormholes on 
low-energy particle physics. In this case the separation 
of the points y, can be taken to be large compared to the 
Planck length, and they can be taken to lie in flat Eu- 
clidean space. Their positions can then be specified up 
to an overall translation and rotation of Euclidean space. 

Consider first a wormhole state I $) in which only the 
n = O  homogeneous scalar mode is excited above its 
ground state. The integral over the wave function Y of 
the wormhole can then be replaced in the above by 

J da dJoSg(a)+orn(fO) * 

The path integral will then be over asymptotically Eu- 
clidean metrics whose inner boundary is a three-sphere S 
of radius a and scalar Adds with the constant value fo 
on S. The saddle point for the path integral will be flat 
Euclidean space outside a three-sphere of radius a cen- 
tered on a point xo and the scalar field 

(the energy-momentum tensor of this scalar field is zero). 
The action of this saddle point will be ta2+f~) /2 .  The 
determinant A of the small fluctuations about the saddle 
point will be independent of fo. Its precise form will 
not be important. 

The integral over the coefficient fo of the n -0 scalar 
harmonic will contain a factor of 

This will be zero when m, the number of particles in the 
mode n =0, is greater than r, the number of points y, in 
the correlation function. This is what one would expect, 
because each particle in the closed universe must be 
created or annihilated at a pointy, in the asymptotically 
flat region. If r > m, particles may be created at  one 
point y, and annihilated at another point y, without go- 
ing into the closed universe. However, such matrix ele- 
ments are just products of flat-space propagators with 
matrix elements with r =m. It is sufficient therefore to 
consider only the case with r =m. 

The integral over the radius a will contain a factor 

where E = m  is the level number of the radial harmonic 
oscillator. For small m, the dominant contribution will 
come from a - 1, that is, wormholes of the Planck size. 
The value C ( m )  of this integral will be -1. 

The matrix element will then be 

where D ( m )  is another factor -1 .  One now has to in- 
tegrate over the position xo of the wormhole, with a 
measure of the form mp*dx:, and over an orthogonal ma- 
trix 0 which specifies its orientation with respect to the 
points y,. The n =O mode is invariant under 0, so this 
second integral will have no effect, but the integral over 
xo will ensure the energy and momentum are conserved 
in the asymptotically flat region. This is what one would 
expect, because the Wheeler-DeWitt and momentum 
constraint equations imply that a closed universe has no 
energy or momentum. 

The matrix element will be the same as if one was in 
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flat space with an effective interaction of the form 

F(m)m:-m#m(cOm + c L )  , 
where F ( m )  is another coefficient -1 and corn and c i m  
are the annihilation and creation operators for a closed 
universe containing m scalar particles in the n =O 
homogeneous mode. 

In a similar way, one can calculate the matrix ele- 
ments of products of # between the vacuum and a 
closed-universe state containing mo particles in the n =O 
mode, r n ,  particles in the n = l  mode, and so on. The 
energy-momentum tensor of scalar fields with higher 
harmonic angular dependence will not be zero. This will 
mean that the saddle-point metric in the path integral 
for the matrix element will not be flat space, but will be 
curved near the surface S. I n  fact, for large particle 
numbers, the saddle-point metric will be the conformally 
flat wormhole metrics described in Sec. 11. However, the 
saddle-point scalar fields will have a Q,, angular depen- 
dence and a (I” +‘/(x -xo 1” +’ radial dependence in the 
asymptotic flat region. This radial decrease is so fast 
that the closed universes with higher excited harmonics 
will not give significant matrix elements, except for that 
containing two particles in the n = 1 modes. By the con- 
straint equations, or, equivalently, by averaging over the 
orientation 0 of the wormhole, the matrix element will 
be zero unless the two particles are in a state that is in- 
variant under 0. The matrix element for such a universe 
will be the same as that produced by an effective interac- 
tion of the form 

V#V4(c,,+cf, 1 

with a coefficient - 1. 
In a similar way one can calculate the matrix elements 

for universes containing particles of spin or higher. 
Again, the constraint equations or averaging over 0 
mean that the matrix element is nonzero only for 
closed-universe states that are invariant under 0. This 
means that the corresponding effective interactions will 
be Lorentz invariant. In particular, they will contain 
even numbers of spinor fields. Thus, fermion number 
will be conserved mod 2: the closed universes are bo- 
sons. 

The matrix elements for universes containing spin-f 
particles will be equivalent to effective interactions of the 
form 

m:-3m’2Jlmdm +c.c. , 
where 9” denotes some Lorentz-inv!riant combination 
of m spinor fields 9 or their adjoints Jl, and d, is the an- 
nihilation operator for a closed universe containing m 
spin-f particles in n =+ modes. One can neglect the 
effect of closed universes with spin-; particles in higher 
modes. 

In the case of spin-1 gauge particles, the effective in- 
teraction would be of the form 

where g, is the annihilation operator for a closed 

universe containing m spin-1 particles in n = 1 modes. 
As before, the higher modes can be neglected. 

V. THE WORMHOLE INITIAL STATE 

What I have done is introduce a new Fock space Y,,, 
for closed universes, which is based on the one 
wormhole Hilbert space %, . The creation and annihila- 
’ fion operators ci, , c,, , etc., act on Ci, and obey the 
commutation relations for bosons. The full Hilbert 
space of the theory, as far as asymptotically flat space is 
concerned, is isomorphic to Yp@Y,,,,, where Yp is the 
usual flat-space particle Fock space. 

The distinction between annihilation and creation 
operators is a subtle one because the closed univetse 
does not live in the same time as the asymptotically flat 
region. If both ends of the wormhole are in the same 
asymptotic region, one can say that a closed universe is 
created at one point and is annihilated at another. How- 
ever, if a closed universe branches off from our asymp- 
totically flat region, and does not join back on, one 
would be free to say either (1) it was present in the initial 
state and was annihilated at the junction point x o ,  (2) it 
was not present initially, but was created at xo and is 
present in the final state, or (3) as Sidney Coleman 
(private communication) has suggested, one might have 
a coherent state of closed universes in both the initial 
and final states, in such a way that they were both eigen- 
states of the annihilation plus creation operators 
c,,, + e m ,  etc., with some eigenvalue q. 

In this last case, the closed-universe sector of the state 
would remain unchanged and there would be no loss of 
quantum coherence. However, the initial state would 
contain an infinite number of closed universes. Such 
eigenstates would not form a basis for the Fock space of 
closed universes. 

Instead, I shall argue that one should adopt the 
second possibility: there are no closed universes in the 
initial state, but closed universes can be created and ap- 
pear in the final state. If one takes a path-integral ap- 
proach, the most natural quantum state for the Universe 
is the so-called “ground” state, or, “no boundary” state.* 
This is the state defined by a path integral over all com- 
pact metrics without boundary. Calculations based on 
minisuperspace models7-” indicate that this choice of 
state leads to a universe like we observe, with large re- 
gions that appear nearly flat. One can then formulate 
particle scattering questions in the following way: one 
asks for the conditional probability that one observes 
certain particles on a nearly flat surface S, given that 
the region is nearly asymptotically Euclidean and is in 
the quantum state defined by conditions on the surfaces 
S ,  and S3 to either side of S,, and at great distance 
from it in the positive and negative Euclidean-time 
directions, respectively. One then analytically continues 
the position of S2 to late real time. It then measures the 
final state in the nearly flat region. One continues the 
positions of both S, and S, to early real time. One gives 
the time coordinate of S ,  a small positive imaginary 
part, and the time coordinate of S, a small negative 
imaginary part. The initial state is then defined by data 
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on the surfaces SI and S,. 
If one adopts the formulation of particle scattering in 

terms of conditional probabilities, one would impose the 
conditions on the surfaces SI and S3 in the nearly flat 
region. However, one would not impose conditions on 
any closed universss that branched off or joined on be- 
tween S, and S,, becaust one could not observe them. 
Thus, the initial or conditional state would not contain 
any closed universes. A closed universe that branched 
off between SI and Sz (or between S2 and SJ would be 
regarded as having been created. If it joined up again 
between S, and S, 6, and S,, respectively), it would be 
regarded as having b a n  annihilated again. Otherwise, it 
would be regarded M part of the final state. An observer 
in the nearly flat region would be able to measure only 
the part of the final state on S, and not the state of the 
closed universe. He would therefore have to sum over 
all possibilities for the closed universes. This summation 
would mean that the part of the Anal state that he could 
observe would appear to be in a mixed state rather than 
in a pure quantum state. 

VI. THE LOSS OF QUANTUM COHERENCE 

Let I a, ) be a basis for the flat-space Fock space Yp 
and 1 S), be a basis for the wormhole Fock space SW. 
In case (2) above, in which there are no wormholes ini- 
tially, the initial, or conditional, state can be written as 
the state 

hi la , )  lo), , , 
where 10 ) w  is the zero closed-universe state in Yw. 
The Anal state can be written as 

However, an observer in the nearly flat region can mea- 
sure only the states la,) on S2, and not the closed- 
universe states 10, ). He would therefore have to sum 
over all possible states for the closed universes. This 
would give a mixed state in the Yp Fock space with den- 
sity matrix 

P i  =cLiJh,  * 

The matrix p" will be Hermitian and positive 
semidefinite, if the final state is normalized in Yf: 

trp=#p,, = 1 . 
These are the properties required for it to be interpreted 
8.9 the density matrix of a mixed quantum state. A mea- 
sure of the loss quantum coherence is 

This will be zero if the final state is a pure quantum 
state. Another measure is the entropy which can be 
defined as 

-tr(pInp). 

This again will be zero for a pure quantum state. 
If case (3) above is realized, the initial closed-universe 

state is not the no-wormhole state I 0 ) w ,  but a coherent 
state I q ) w  such that 

(cam +C!m)  1 4  ) w = q , m  1 4  ) w  - 
The effective interactions would leave the closed- 
universe sector in the same coherent state. Thus the 
final state would be the product of some state in Yp with 
the coherent state I q ) w .  There would be no loss of 
quantum coherence, but one would have effective 4"' and 
other interactions whose coefacients would' depend on 
the eigenvalues qnm , etc. It would seem that these could 
have any value. 

VII. WORMHOLE EFIWTIVE INTERACIlONS 

There will be no significant interaction between 
wormholes, unless they are within a Planck length of 
each other. Thus, the creation and annihilation opera- 
tors for wormholes are practically independent of the 
positions in the asymptotically flat region. This means 
that the effective propagator of a wormhole excited state 
is S4(p). Using the propagator one can calculate Feyn- 
man diagrams that include wormholes, in the usual 
manner. 

The interactions of wormholes with m scalar particles 
in the n =O mode are alarmingly large. The m =1 case 
would be a disaster; it would give the scalar field a prop- 
agator that was independent of position because a scalar 
particle could go into a wormhole whose other end was 
at a great distance in the asymptotically flat region. 
Suppose, however, that the scalar field were coupled to a 
Yang-Mills field. One would have to average over all 
orientations of the gauge 8roup for the closed universe. 
This would make the matrix element zero, except for 
closed-universe states that were Yang-Mills singlets. In 
particular, the matrix element would be zero ,for m = 1. 
A special case is the gauge group Z,. Such fields are 
known as twisted scalars. They can reverse sign on go- 
ing round a closed loop. They will have zero matrix ele- 
ments for m odd because one will have to sum over both 
signs. 

Consider now the matrix element for the scalar field, 
and its complex conjugate, between the vacuum and a 
closed universe containing a scalar particle and antipar- 
ticle in the n =O mode. This will be nonzero, because a 
particle-antiparticle state contains a Yang-Mills singlet. 
It would give an effective interaction of the form 

where coil is the annihilation operator for a closed 
universe with one scalar particle and one antiparticle in 
the n =O mode. This again would be a disaster; with 
two of these vertices one could make a closed loop con- 
sisting of a closed universe [propagator, s' (~)]  and a sca- 
lar particle (propagator, l/pz). This closed loop would 
be infrared divergent. One could cut off the divergence 
by giving the scalar particle a mass, but the effective 
mass would be the Planck mass. One might be able to 
remove this mass by renormalization, but the creation of 
closed universes would mean that a scalar particle would 
lose quantum coherence within a Planck length. The 
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m =4 matrix element will give a large 4‘ effective ver- 
tex. 

There seems to be four possibilities in connection with 
wormholes containing only scalar particles in the n =O 
mode. 

(1) They may be reduced or candled in a supersym- 
metric theory. 

(2) The scalar field may be absorbed as a conformal 
factor in the metric. This could happen, however, only 
for one scalar field that was a Yang-Mills singlet. 

(3) It may be that any scalar particle that we observe 
is a bound state of particles of higher spin, such as the 
pion. 

(4) The universe may be in a coherent state I q )u as 
described above. However, one would then have the 
problem of why the eigenvalues q should be small or 
zero. This is similar to the problem of why the 0 angle 
should be 90 small, but there are now an intlnite number 
of eigenvalues. 

In the case of particles of spin +, the exclusion princi- 
ple limits the occupation numbers of each mode to zero 
or 1. Averaging over the orientation 0 of the wormhole 
will mean that the lowest-order interaction will be for a 
wormhole containing one fermion and one antifermion. 
This would give an effective interaction of the form 

where dll  is the annihilation operator for a closed 
universe containing a fermion and an antifermion in 
n =+ modes. This would give the fermion a mass of the 
order of the Planck mass. However, if the fermion were 
chiral, this interaction would cancel out under averaging 
over orientation and gauge groups. This is because there 
is no twochiral-fermion state that is a singlet under both 
groups. This suggests that supersymmetry might ensure 
the cancellation of the dangerous interactions with 
wormholes containing scalar particle in the n =O mode. 
Conformally flat wormholes, such as those considered in 
this paper, should not break supersymmetry. 
For chiral fermions, the lowest-order effective interac- 

tion will be of the four-Fermi form 

where dl l l l  is the annihilation operator for a wormhole 
containing a fermion and an antifermion each of species 
1 and 2. This would lead to baryon decay, but with a 
lifetime -10% yr. There will also be Yukawa-type 
effective interactions produced by closed universes con- 

taining one scalar particle, one fermion, and one antifer- 
mion. 

VIII. CONCLUSION 

It would be tempting to dismiss the idea of wormholes 
by saying that they are based on general relativity, and 
we now all know that string theory is the ultimate 
itheory of quantum gravity. However, string theory, or 
any other theory of quantum gravity, must reduce to 
general relativity on scales large compared to the Planck 
length. Even at  the Planck length, the differences from 
general relativity should be only - 1. In particular, the 
ultimate theory of quantum gravity should reproduce 
classical black holes and black-hole evaporation. It is 
difficult to see how one could describe the formation and 
evaporation of a black hole except as the branching off 
of a closed universe. I would therefore claim that any 
reasonable theory of quantum gravity, whether it is su- 
pergravity, or superstrings, should allow little closed 
universes to branch off from our nearly flat region of 
spacetime. 

The effect of these closed univerees on ordinary parti- 
cle physics can be described by effective interactions 
which create or destroy closed universes. The effective 
interactions are small, apart from those involving scalar 
fields. The scalar field interactions may cancel because 
of supersymmetry. Or, any scalar particles that we ob- 
serve may be bound states of particles of higher spin. 
Near a wormhole of the Planck size, such a bound state 
would behave like the higher-spin particles of which it 
was made. A third possibility is that the universe is in a 
coherent l q ) u  state. I do not like this possibility be- 
cause it does not seem to agree with the “no boundary” 
proposal for the quantum state of the Universe. There 
also would not seem to be any way to specify the eigen- 
values q. Yet the values of the eigenvalues for large par- 
ticle numbers cannot be zero if these interactions are to 
reproduce the results of semiclassical calculations on the 
formation and evaporation of macroscopic black holes. 

The effects of little closed universes on ordinary parti- 
cle physics may be small, apart, possibly, for scalar par- 
ticles. Nevertheless, it raises an important matter of 
principle. Because there is no way in which we could 
measure the quantum state of closed universes that 
branch off from our nearly flat region, one has to sum 
over all possible states for such universes. This means 
that the part of the final state that we can measure will 
appear to be in a mixed quantum state, rather than a 
pure state. I think even Gross” will agree with that. 
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This paper examines the claim that the wormhole effects that caw the cosmological constant 
to be zero, also fix the values of all the other effective coupling constants. It is shown that the 
assumption that wormholes can be replaced by effective interactions is valid in perturbation 
theory, but it leads to a path integral that does not converge. Even if one ignores this difficulty, 
the probability measure on the space of effective coupling constants diverges. This does not affect 
the conclusion that the cosmological constant should be zero. However. to find the probability 
distribution for other coupling constants, one has to introduce a cutoff in the probability 
distribution. The results depend very much on the cutoff used. For one choice of cutoff at least, 
the coupling constants do not have unique values, but have a gaussian probability distribution. 

1. Introduction 

The aim of this paper is to discuss whether wormholes introduce an extra degree 
of uncertainty into physics, over and above that normally associated with quantum 
mechanics [1,2]. Or whether, as Coleman [3] and Preskill [4] have suggested, the 
uncertainty is removed by the same mechanism that makes the cosmological 
constant zero. 

Wormholes [5 -71 are four-dimensional positivedefinite (or euclidean) metrics 
that consist of narrow throats joining large, nearly flat regions of space-time. One of 
the original motivations for studying them was to provide a complete quantum 
treatment of gravitational collapse and black-hole evaporation. If one accepts the 
“no boundary” proposal [8] for the quantum state of the universe, the class of 
positive-definite metrics in the path integral, can not have any singularities or edges. 
There thus has to be somewhere for the particles that fell into the hole, and the 
antiparticles to the emitted particles, to go to. (In general, these two sets of particles 
will be different, and so they can not just annihilate with each other.) A wormhole 
leading off to another region of space-time, would seem to be the most reasonable 
possibility [S]. If this is indeed the case, one would not be able to measure the part 
of the quantum state that went down the wormhole. Thus there would be loss of 
quantum coherence, and the final quantum state in our region of the universe would 
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be a mixed state, rather than a pure quantum state. This would represent an extra 
degree of uncertainty that was introduced into physics by quantum gravity, over and 
above the uncertainty normally associated with quantum theory. The entropy of the 
density matrix of the final state would be a measure of this extra degree of 
uncertainty. 

If macroscopic wormholes occur in the formation and evaporation of black holes, 
one would expect that there would also be a whole spectrum of wormholes down to 
the Planck size, and maybe beyond. One might expect that such very small 
wormholes would be branching off from our region of space-time all the time. So 
how is it that quantum coherence seems to be conserved in normal situations? The 
answer [9,10] seems to be that for microscopic wormholes, the extra degree of 
uncertainty can be absorbed into an uncertainty about the values of physical 
coupling constants. The argument goes as follows: 

Step 1. Because Planck-size wormholes are much smaller than the scales on 
which we can observe, one would not see wormholes as such. Instead, they would 
appear as point interactions, in which a number of particles appeared or disap- 
peared from our region of the universe. Energy, momentum, and gauge charges 
would be conserved in these interactions, so they could be represented, at least in 
perturbation theory, by the addition of gauge invariant effective interaction terms 
t9,(+) to the lagrangian, where + are the low-energy effective fields in the large 
regions [5,6]. It is implicitly assumed that there is a discrete spectrum of wormhole 
states labelled by the index i. This will be discussed in another paper [ll]. 

Step 2.  The strengths of the effective interactions will depend on the amplitudes 
for the wormholes to join on. This in turn will depend on what is at the other end of 
the wormholes. In the dilute wormhole approximation, each wormhole is assumed to 
connect two large regions, and the amplitudes are assumed to depend only on the 
vertex functions 6, at each end. Thus the effect of wormholes smaller than the scale 
on which we can observe, can be represented by a bi-local effective addition to the 
action [lo]: 

The position independent matrix A’’ can be set to the unit matrix by a choice of the 
basis of wormhole state and normalization of the vertex functions 0,. The question 
of the sign of the bi-local action will be discussed later. 

Step 3. The bi-local action can be transformed into a sum of local additions to 
the action by using the identity [lo] 
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This means that the path integral 

becomes 

Z(ai)=/d[+]exp[-/d4xfi(L+ cajdj) 1 . 
This can be interpreted as dividing the quantum state of the universe into 

noninteracting super selection sectors labelled by the parameters ai. In each sector, 
the effective lagrangian is the ordinary lagrangian L, plus an a dependent term, 
C aidi. The different sectors are weighted by the probability distribution P(  a). Thus 
the effective interactions d, do not have unique values of their couplings. Rather, 
there is a spread of possible couplings ai. This smearing of the physical coupling 
constants is the reflection for Planck-scale wormholes of the extra degree of 
uncertainty introduced by black-hole evaporation. It means that even if the underly- 
ing theory is superstrings, the effective theory of quantum gravity will appear to be 
unrenormalizable, with an infinite number of coupling constants that can not be 
predicted, but have to be fixed by observation [2]. 

Coleman [3] however has suggested that the probability distributions for the 
coupling constants are entirely concentrated at certain definite values, that could, in 
principle, be calculated. The argument is based on a proposal for explaining the 
vanishing of the cosmological constant (121, and goes as follows: 

Srep 4. The probability distribution P(a) for the a parameters should be 
modified by the factor Z ( a )  which is given by the path integral over all low energy 
fields 4 with the effective interactions C aidi. 

Step 5. The path integral for Z(a) does not converge, because the Einstein- 
Hilbert action is not bounded below. However, one might hope that an estimate for 
Z(a) could be obtained from the saddle point in the path integral, that is, from 
solutions of the euclidean field equations. If one takes the gravitational action to be 

1 
d4x& A ( a ) -  ( 16nG(a) 

the saddle point will be a sphere of radius d m  and action - 3/8G2(a)A(a). 
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If one just took a single sphere, Z ( a )  would be exp(3/8G2A). However, Coleman 
argues that there can be many such spheres connected by wormholes. Thus 

Z(a) = exp exp - ( ( 8:2A)) ' 

Either the single or the double exponentials blow up so rapidly, as A approaches 
zero from above, that the probability distribution will be concentrated entirely at 
those a for which A = 0 [3,12]. 

Step 6. The argument to fix the other effective couplings takes at least two 
alternative forms: 
(i) Coleman's original proposal [3] was that the effective action for a single sphere 
should be expanded in a power series in A. The leading term will be - 3/8GA, but 
there will be higher-order corrections arising from the higher powers of the curva- 
ture in the effective action: 

3 
8GA 

r= -- +f(&) + A g ( & )  + ... , 

where B are the directions in the a parameter space orthogonal to the direction in 
which A ( a )  varies. The higher-order corrections to r would not make much 
difference if Z(a) = e-r. But if 

then 

The factor, ecr, will be very large for A small and positive. Thus a small correction 
to r will have a big effect on the probability. This would cause the probability 
distribution to be concentrated entirely at the minimum of the coefficient, f(&), in 
the power series expansion of r (always assuming that f has a minimum). 
Similarly, one would expect the probability distribution to be concentrated entirely 
at the minimum of the minimum of the higher coefficients in the power series 
expansion. This would lead to an infinite number of conditions on the a parame- 
ters. It is hoped that these would cause the probability distribution to be concen- 
trated entirely at a single value of the effective couplings, a. 
(ii) An alternative mechanism for fixing the effective couplings has been suggested 
by Preskill [4]. If the dominant term in r is -3/G2A, one might expect that the 
probability distribution would be concentrated entirely at G ( a )  = 0, as well as at 
A ( a )  = 0. However, we know that G ( a )  # 0, because we observe gravity. So there 
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must be some minimum value of G(a!). One would expect that the probability 
distribution would be concentrated entirely at this minimum value, and one would 
hope that the minimum would occur at a single value of the effective couplings, a. 

This paper will examine the validity of the above steps. Steps 1 and 2 are usually 
assumed without any supporting calculations. However, an explicit calculation is 
given in sect. 2, for the case of a scalar field. This confirms that wormholes can 
indeed be replaced by a bi-local action, at least for the calculation of low-energy 
Green functions in perturbation theory. The sign of the bi-local action is that 
required for the use of the identity in step 3. However, the sign also means that the 
path integral does not converge, even in the case of a scalar field on a background 
geometry. Thus the procedure of using the effective actions to calculate a back- 
ground geometry for each set of a parameters, is suspect. However, if one is 
prepared to accept it, one would indeed expect that r would diverge on a 
hypersurface in a! space, on which A = 0. Thus the cosmological constant will be 
zero, without any uncertainty. However, to calculate the probability distributions of 
the other effective coupling constants, one has to introduce a cutoff for the 
divergent probability measure. Different cutoffs will give different answers. Indeed, 
a natural cutoff will just give the probability distribution P ( a )  for all effective 
couplings except the cosmological constant. Thus one can not conclude that the 
effective couplings will be given unique values by wormholes. 

2. The bi-local action 

In this section, it will be shown that scalar field Green functions on a class of 
wormhole backgrounds can be calculated approximately from a bi-local addition to 
the scalar field action in flat space. In particular, the sign of the bi-local action will 
be obtained. The wormhole backgrounds will be taken to be hyperspherically 
symmetric, like all the specific examples considered so far. This means that they are 
conformally flat. For definiteness, the conformal factor will be taken to be 

This is the wormhole solution for a conformally scalar field [13], or a Yang-Mills 
field [14]. In the case of a minimally coupled scalar [7], the conformal factor will 
have the same asymptotic form at infinity, and near xo, the infinity in the other 
asymptotically euclidean region. The conformal factors will differ slightly in the 
region of the throat, but this will just make the bi-local action slightly different. 

The metric given above appears to be singular at the point xo. However, one can 
see that this is really infinity in another asymptotically euclidean region, by 

289 



160 

introducing new coordinates that are asymptotically euclidean in the other region 
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where 0; is an orthogonal matrix. In order to study low-energy physics in the 
asymptotically euclidean regions, one needs to know the Green functions for points 
xl, x2,. . . and yl, y 2 , .  . . in the two regions, far from the throat. Consider the Green 
function for a point x in one asymptotic region, and a point y in the other. Since 
the wormhole metric given above has R = 0, the conformally and minimally coupled 
scalar fields will have the same Green functions. One can therefore calculate the 
Green function using conformal invariance as 

1 a( X )  - l ,  

(2 -x) '  
G(x, y )  = a(a)-' 

where x' is the image of the point y under the transformation above. For x and y 
far from the wormhole ends, xo and yo, 

" 
a(x) = 1, a(a) = x = xo.  

( Y  - Y d 2  ' 

Thus 

This is what one would have obtained from a bi-local interaction of the form 

Note that the bi-local action has a negative sign. This is because the Green functions 
are positive. 

Now consider two points x1,x2 and y l ,yz  in each asymptotic region. The 
four-point function will contain a term, G(x,, y,)G(xz,  y2), which will be given 
approximately by the bi-local action 

In general, Green functions involving n-points in each asymptotic region will be 
given by bi-local actions with vertex functions 6(x) of the form, b%pn(x). If one 
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takes gravitational interactions into account, one would expect that the bi-local 
action would be multiplied by a factor e-'w, where I, a n / G  is the action for a 
wormhole containing n scalar particles. 

One can also consider higher-order corrections to the Green functions on a 
wormhole background which arise because the image, 2, of the point, y,  is not 
exactly at xo. These will be reproduced by bi-local actions involving vertex func- 
tions containing derivatives of the scalar field. Only those vertex functions that are 
scalar combinations of derivatives will survive averaging over the orthogonal matrix 
0, which specifies the rotation of one asymptotically euclidean region with respect 
to the other. Thus the vertex terms and the effective action will be Lorentz invariant. 
It seems that any scalar polynomial in the scalar field and its covariant derivatives 
can occur as a vertex function. 

Earlier this year, B. Grinstein and J. Maharana [15] performed a similar calcula- 
tion. 

3. Convergence of the path integral 

The bi-local action has a negative sign, so it appears in the path integral as a 
positive exponential. This is what is required in order to introduce the a parameters 
using the identity in step 3. If the bi-local action had the opposite sign, the integral 
over the a parameters would be /dae+"2/2, which would not converge. On the 
other hand, because the bi-local action is negative, the path integral will not 
converge. This is true even in the case of the path integral over a scalar field on a 
non-dynamic wormhole background. There will be vertex functions of the form 4" 
for each n. In the case of even n, the integral jd4y@"(y) will be positive. This 
means that - /d4x~"(x) ,  the other part of the bi-local action, will give 9 an 
effective potential that is unbounded below. Thus the path integral over 4, with the 
bi-local effective action, will not converge. This does not mean that scalar field 
theory on non-dynamical wormhole backgrounds is not well defined. What it does 
mean is that a bi-local action gives a reasonable approximation to the effect of 
wormholes on low-energy Green functions, in perturbation theory. But one should 
not take the bi-local action too literally. One can see this if one considers introduc- 
ing the a parameters. One will then get a scalar potential which is a polynomial in 
+, with u-dependent coefficients. For certain values of the a, there will be metastable 
states, and decay of the false vacuum. But these obviously have no physical reality. 
The moral therefore is that one can use a bi-local action to represent the effect of 
wormholes in perturbation theory. But one should be wary of using the bi-local 
action to calculate non-perturbative effects, like vacuum states. 

This is even more true of the effective gravitational interactions of wormholes. It 
is not clear whether there is a direct contribution of wormholes to the cosmological 
constant, i.e. whether any of the vertex functions contain a constant term. This 
would show up only in the pure trace contribution to linearized gravitational Green 
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functions in the presence of a wormhole. So far, these have not been calculated. 
However, even if there is no direct wormhole contribution to the cosmological 
constant, there will be indirect contributions arising from loops involving other 
effective interactions. These will be cut off on the scale of the wormholes, that is, on 
the scale on which the wormholes no longer appear to join on at a single point. In a 
similar manner, there does not seem to be a wormhole that makes a direct 
contribution to the Einstein lagrangian, R ,  and hence to Newton's constant. By 
analogy with the case of wormholes with electromagnetic and fermion fields, one 
would expect that such a wormhole would have to contain just a single graviton. 
However, its effect would average to zero under rotations of the wormhole, 
described by the matrix 0. However, there will again be indirect contributions to 
1 / G  from loops involving other effective interactions. 

There are convergence problems with gravitational path integrals, even in the 
absence of wormholes. The Einstein-Hilbert action - /d4x &( R/16wG - A )  is 
not bounded below, because conformal transformations of the metric can make the 
action arbitrarily negative. Still, one might hope that the dominant contribution to 
the path integral would come from metrics that were saddle points of the action, 
that is they were solutions of the euclidean field equations. The spherical metric 
given in sect. 1 has the lowest action of any solution of the euclidean field equations 
with a given value of A. One might therefore expect that 

The problem of the convergence of the path integral is much worse however, if 
one replaces wormholes with a bi-local action. If there were a direct wormhole 
contribution to the effective cosmological constant, the path integral would contain 
a factor ecv2, where V is the volume of space-time. If the constant C were negative, 
the integral over a would not converge. But if C were positive, the path integral 
would diverge. Even rotating the contour of the conformal factor to the imaginary 
axis would not help, because in four dimensions it would leave the volume real and 
positive. One might still hope that the saddie point of the effective action would give 
an estimate of the path integral. However, the bi-local action would give rise to an 
effective cosmological constant of value - 2CV. Unless this were balanced by a very 
large positive cosmological constant of non-wormhole origin, the action of any 
compact solution of the euclidean field equations would be positive. So it would be 
suppressed, rather than enhanced, as in the case of the sphere. Even if there were a 
large positive non-wormhole cosmological constant, it would not give a solution of 
infinite volume, with zero effective cosmological constant. One might still use the a 
identity, replace the bi-local action with a weighted sum over path integrals with an 
a-dependent cosmological constant. But if gravitational path integrals can be made 
sense of only by taking the saddle point, one should presumably also take the saddle 
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paint in the integral over a. In the case of a single exponential, this would give 

and in the case of a double exponential 

= 0, 
3@ 2 - -+  

a 8G2(Ao + a E ) 2  

where A, is the non-wormhole contribution to the cosmological constant. In either 
case, the effective cosmological constant at the saddle point will be of the order 
of A,. 

4. The divergence of the probability measure 

Suppose, as one often does, one ignores problems about the convergence of the 
path integral. Then, as described in sect. 1, there will be a probability measure on 
the space of the a parameters 

where P( a) = exp[E - tala,]  and Z( a) = exp[ - r( a)] or exp[exp[ - r( a)]]. If 

3 
8G2( a)A ( a )  

r= - 

and GZA vanishes on some surface K in a space, the measure p ( a )  will diverge. 
That is to say, the total measure of a space will be infinite. 

The total measure of the part of a space for which G2A > c > 0 may well be finite. 
In this case, one could say that 

with probability one. Since we observe that G # 0, one could deduce that 

A -0. 
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However, with such a badly divergent probability measure, this is about the only 
conclusion one could draw. To go further, and to try to argue as in sect. 1, that the 
probability measure is concentrated entirely at a certain point in a space, one has to 
introduce some cutoff in the probability measure. One then takes the limit as the 
cutoff is removed. The trouble is, different ways of cutting off the probability 
measure will give different results. And it hard to see why one cut-off procedure 
should be preferred to another. 

One can cut off the probability measure by introducing a function F on a, which 
is zero on the surface K where l/r = 0, and which is positive for small negative 
l/r. One then cuts the region 0 4 F <  E out of a space. One would expect the 
probability measure on the rest of a space to be finite, and therefore to give a 
well-defined probability distribution for the effective coupling constants. If Z( a) is 
given by a double exponential, the probability distribution will be highly concen- 
trated near the minimum of r on the surface, F = E. Thus, in the limit E tends to 
zero, the probability would be concentrated entirely at a single point of a space. But 
the point will depend on the choice of the function F, and different choices will give 
different results. For example, Coleman’s procedure [3] is equivalent to choosing 
F = A. On the other hand, Preskill[4] has suggested using a cutoff on the volume of 
space-time. This would be equivalent to using 

F = G2A2. 

But if you minimise G2A for fixed G2A2, you would drive G to zero and A to a 
non-zero value, if G can be zero anywhere in a space. This is not what one wants. 
One therefore has to suppose that G is bounded away from zero, at least in the 
region of a space in which the bi-local action is a reasonable approximation for 
wormholes. 

It seems therefore that one can get different results by different methods of 
cutting off the divergence in the probability measure. There does not seem to be a 
unique preferred cutoff. A possible candidate would be to use r or Z (  a) themselves 
to define the cutoff; for example, F = - l/r. This would lead to A = 0, but the 
other effective couplings would be distributed with the probability distribution 
P(a). In this case, wormholes would have introduced an extra degree of uncertainty 
into physics. This uncertainty would reflect the fact that we can observe only our 
large region of the universe, and not the major part of space-time, which is down a 
wormhole, beyond our ken. 
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Abstract. It is shown that there are restrictions on the possible changes of 
topology of space sections of the universe if this topology change takes place in a 
compact region which has a Lorentzian metric and spinor structure. In particular, 
it is impossible to create a single wormhole or attach a single handle to a spacetime 
but it is kinematically possible to create such wormholes in pairs. Another way of 
saying this is that there is a if, invariant for a closed oriented 3-manifold C which 
determines whether ,Y can be the spacelike boundary of a compact manifold M 
which admits a Lorentzian metric and a spinor structure. We evaluate this 
invariant in terms of the homology groups of ,Y and find that it is the mod2 
Kervaire semi-characteristic. 

Introduction 

There has been great interest recently in the possibility that the topology of space 
may change in a semi-classical theory of quantum gravity in which one assumes 
the existence of an everywhere non-singular Lorentzian metric g$ of signature 
- + + +. In particular, Thorne, Frolov, Novikov and others have speculated that 
an advanced civilization might at some time in our future be able to change the 
topology of space sections of the universe so that they developed a wormhole or 
handle [l-31. If one were to be able to control such a topology change, it would 
have to occur in a compact region of spacetime without singularities at which the 
equations broke down and without extra unpredictable information entering the 
spacetime from infinity. Thus if we assume, for convenience, that space is compact 
now, then the suggestion amounts to saying that the 4-dimensional spacetime 
manifold M, which we assume to be smooth and connected, is compact with 
boundary a M = Z  consisting of 2 connected components, one of which has 
topology S3 and the other of which has topology S1 x S2, and both are spacelike 
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with respect to the Lorentzian metric g$. If (M,g$) is assumed time-oriented, 
which we will justify later, then the S3 component should be the past boundary of 
M and the S’ x Sz component should be the future boundary of M. Spacetimes of 
this type have previously been thought to be of no physical interest because a 
theorem of Geroch [4] states that they must contain closed timelike curves. In the 
last few years, however, people have begun to consider seriously whether such 
causality violating spacetimes might be permitted by the laws of physics. One of 
the main results of this paper is that even if causality violations are allowed, there is 
an even greater obstacle to considering such a spacetime as physically reasonable- 
it does not admit an SL(2, C) spinor structure and therefore it is simply not possible 
on purely kinematical grounds to contemplate a civilization, no matter how 
advanced constructing a wormhole of this type, provided one assumes that the 
existence of two-component Weyl fermions is an essential ingredient of any 
successful theory of nature. We will discuss later the extent to which one might 
circumvent this result by appealing to more exotic possibilities such as Spinc 
structures. 

It appears, however, that there is no difficulty in imagining an advanced 
civilization constructing a pair of wormholes, i.e. that the final boundary is the 
connected sum of 2 copies of S1 x S2, S’ x S2 # S’ x S2. Thus one may interpret our 
results as providing a new topological conservation law for wormholes, they must 
be conserved modulo 2. More generally we are able to associate with any closed 
orientable 3-manifold C a topological invariant, call it u (for universe) such that 
u = o  if c 
(I) bounds a smooth connected compact Lorentz 4-manifold M which admits an 
SI.42, C) spinor structure; 
(2) is spacelike with respect to the Lorentz metric g&, 

and u 3: 1 otherwise. 

3-manifolds, 

Under the connected sum it satisfies 

We shall show that this invariant is additive modulo 2 under disjoint union of 

u(Clu&)=u(Clf+(C2) mod2. 

u( C # C,) = u(Z l) + u(C,) + 1 mod2. 
The connected sum, X # Y of two manifolds X, Y of the same dimension n is 
obtained by removing an n-ball B” and from X and Y and gluing the two manifolds 
together across the common S”-’ boundary component so created. We shall also 
show that u(S3)= 1, and u(S’ x S2)=0. The result that one cannot create a single 
wormhole then follows immediately from the formula for disjoint unions while the 
fact that one can create pairs of wormholes follows from the formula for connected 
sums. Another consequence of these formulae is that for the disjoint union of k 
S3’s, u=k modulo 2. In particular, this prohibits the “creation from nothing” of a 
single S3 universe with a Lorentz metric and spinor structure. 

Our invariant u may be expressed in terms of rather more familiar topological 
invariants of 3-manifolds. In fact, 

u=dimZ,(Ho(Z:; Z,)$H,(C; 2,)) mod2, 
where Ho(C; Z,) is the zeroth and H,(C; Z,) the first homology group of C with Z, 
coefficients. Thus dimz2Ho(Z; 2,) mod2 counts the number of connected compo- 
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nents modulo 2. The right-hand side of this expression for u is sometimes referred 
to as the mod2 Kervaire semi-characteristic. 

So far we have considered the case where the space sections of the universe are 
closed. We can extend these results to cases where the space sections of the 
universe may be non-compact but the topology change takes place in a compact 
region bounded by a timelike tube. Such spacetimes may be obtained from the 
ones we have considered by removing a tubular neighbourhood of a timelike 
curve. 

It seems that a selection rule of this type derived in this paper occurs only if one 
insists on an everywhere non-singular Lorentzian metric. If one gives up the 
Lorentzian metric and passes to a Riemannian metric or if one adopts a “first order 
formalism” in which one treats the vierbein field as the primary variable and allows 
the legs of the vierbein to become linearly dependent at some points in spacetime 
then our selection rule would not necessarily apply. However, in the context of 
asking what an advanced civilization is capable of neither of these possibilities 
seems reasonable. At the quantum level, however, both are rather natural and in 
view of the existence of a number of examples there seems to be little reason to 
doubt that the topology of space can fluctuate at the quantum level. For the 
purposes of the present paper we will adhere to the assumption of an everywhere 
non-singular Lorentz metric. 

Spin-Cobordism and Lorentz-Cobordism 

Every closed oriented 3-manifold admits a Spin(3)= SU(2) spin structure. If the 
3-manifold is not simply connected the spin structure is not unique. The set of spin 
structures is in 1 - I-correspondence with elements of H’(C; ZJ, the first 
cohomology group of the 3-manifold C with Z, coefficients. Given a closed 
oriented 3-manifold C one can always find a spin-cobordism, that is there always 
exists a compact orientable 4-manifold M with boundary dM = C and such that M 
admits a Spin(4)=SU(2) x SU(2) spin structure which when restricted to the 
boundary C coincides with any given spin structure on C [S]. 

A closed 3-manifold C is said to admit a Lorentz-cobordism if one can find a 
compact 4-manifold M whose boundary dM = C together with an everywhere 
non-singular Lorentzian metric with respect to which the boundary Cis spacelike. 
A necessary and sufficient condition for a Lorentz-cobordism is that the manifold 
M should admit a line field V, i.e. a pair (V, -V) at each point, where V is a non- 
zero vector which is transverse to the boundary aM. To show this one uses the fact 
that any compact manifold admits a Riemannian metric g$ If one has a line field 
V, one can define a Lorentzian metric g$ by 

gL”B=gRaB-2I/aYS/(gbrRgI/aI/S). 

Alternatively, given a Lorentzian metric g& one can diagonalize it with respect to 
the Riemannian metric g$. One can choose V to be the eigenvector with negative 
eigenvalue. The Lorentzian metric g& will be time-orientable if and only if one can 
choose a consistent sign for V. For physical reasons we shall generally assume 
time-orientability. If M, g$ is not time-orientable, it will have a double cover that 
is, with twice as many boundary components. 

If one has a time-orientable Lorentz-cobordism, the various connected 
components of the boundary lie either in the past or in the future. Thus one might 
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think that one should specify in the boundary data for a Lorentz-cobordism a 
specification of which connected components lie in the future and which lie in the 
past. However, it is not difficult to show that given a time-oriented Lorentz- 
cobordism for which a particular component lies in, say the future, one can 
construct another time-oriented Lorentz-cobordism for which that component 
lies in the past and the remaining components are as they were in the first Lorentz- 
cobordism. The construction is as follows. Let C be the component in question. 
Consider the Riemannian product metric on C x I, where I is the closed interval 
- 1 4 t 6 I. Now by virtue of being a closed orientable 3-manifold C admits an 
everywhere non-vanishing vector field U which may be normalized to have unit 
length with respect to the metric on C. To give Z x I a time-orientable Lorentz 
metric we choose as our everywhere non-vanishing unit timelike vector field V: 

a v = a( t )  - at + b(t)U , 

where u2 + bZ = I and a(t) passes smoothly and monotonically from - 1 at t = + 1 
to + I at t = I. Thus V is outward directed on both boundary components. One can 
now attach a copy of C x I with this metric, or its time reversed version, to the given 
Lorentz-cobordism so reversing the direction of time at the boundary desired 
component. Of course, one will have to arrange that the metrics match smoothly 
but this is always possible. Considered in its own right the spacetime we have just 
used could serve as a model for the “creation from nothing” of a pair of twin 
universes. In general, it will not be geodesically complete and it contains closed 
timelike curves inside the Cauchy Horizons which occur at the two values of t for 
which u2 =bZ. However, it is a perfectly valid Lorentz-cobordism. 

If a Lorentzian spacetime admits an SL42, C) spinor structure it must be both 
orientable and time-orientable and in addition admit a Spin($) structure [9, lo]. 
For example, since any closed orientable 3-manifold is a spin manifold, the time 
reversing product metric we constructed above admits an SL(2, C) structure. By 
contrast the next example, which could be said to represent the creation of a single, 
i.e. connected, universe from nothing, does not admit an SL(2, C) spinor structure 
because it is not time-orientable. Let C be a closed connected orientable 
Riemannian 3-manifold admitting a free involution r which is an isometry of the 
3-metric on C. A Lorentz-cobordism for C is obtained by taking C x I as before but 
now with the product Lorentzian metric, i.e. with a= 1 and b=O. One now 
identifies points under the free Z, action which is the composition of the 
involution f acting on ,Z and reversal of the time coordinate t on the interval I, 
- I I. Because its double cover has no closed time like curves, the identified 
space has none either. Of course, it may be that two points xu and x’” lying on 
a timelike curve y in C x I are images of one another under the involution r. On 
the identified space (C x I)/r the timelike curve y will thus intersect itself. How- 
ever, the two tangent vectors at the identified point lie in different halves of the 
light cone at that point. Thus a particle moving along such a curve may set 
out into the future and subsequently return from the future or vice versa. This 
is not what is meant by a closed timelike curve because if such a curve has a 
discontinuity in its tangent vector at some point the two tangent vectors must 
lie in the same half of the light cone at that point. 

The special case when C is the standard round 3-sphere and the involution f 
is the antipodal map gives a Lorentz-cobordism for a single S3 universe. If one 
modifies the product metric by multiplying the metric on C by a square of scale 

t 
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factor which is a non-vanishing even function of time one obtains a Friedman- 
Lemaitre-Robertson-Walker metric. Identifying points in the way described 
above is referred to as the “elliptic interpretation”. A particular case arises when 
one considers de-Sitter spacetime. If one regards this as a quadric in 5dimen- 
sional Minkowski spacetime the identification is of antipodal points on the 
quadric. In this case there are no timelike or lightlike curves joining antipodal 
points, however, there remains a number of dificulties with this interpretation 
from the point of view of physics [ll], not the least of which is the absence of 
a spinor structure. In fact, as we shall see below, this problem is quite general: 
there is no spin-Lorentz-cobordism for a single S 3  universe. 

A necessary and sufficient condition for the existence of a line field transverse to 
the boundary aM of a compact manifold M is, by a theorem of Hopf, the vanishing 
of the Euler characteristic x(M). Given an oriented cobordism M of Z, one can 
obtain another cobordism by taking the connected sum of M and a compact four 
manifold without boundary. Under connected sums of 4-manifolds the Euler 
characteristic obeys the equation 

X W I  Mz) = X(M - 1) + X W Z )  - 2. 
Thus we can increase the Euler characteristic by two by taking the connected 

sum with Sz x Sz and decrease it by two by taking the connected sum with S’ x S3.  
Therefore, if we start with a spin-cobordism for which the Euler characteristic is 
even we may, by taking connected sums, obtain an orientable spin-cobordism with 
zero Euler characteristic and hence a spin-Lorentz-cobordism. On the other hand, 
if the initial spin-cobordism had odd Euler characteristic we would be obliged to 
take connected sums with closed 4-manifolds with odd Euler characteristic in 
order to obtain a Lorentz-cobordism. Examples of such manifolds are I R P  which 
has Euler characteristic 1 and CP2 which has Euler characteristic 3. However, the 
former is not orientable while the latter, though orientable, is not a spin-manifold. 
In fact, quite generally, it is easy to see that any four-dimensional closed spin 
manifold must have even Euler characteristic and thus it is not possible, by taking 
connected sums, to find a spin-Lorentz-cobordism if the initial spin-cobordism 
had odd Euler characteristic. To see that a closed spin 4-manifold has even Euler 
characteristic recall from Hodge theory that on a closed orientable 4-manifold one 
has, using Poincarb duality: 

~ = 2 - 2 6 ;  + b i  + b ; ,  

where b, is the first Betti number and 6: and b; are the dimensions of the spaces of 
harmonic 2-forms which are self-dual or anti-self-dual, respectively. On the other 
hand, from the Atiyah-Singer theorem the index of the Dirac operator with respect 
to some, and hence all, Riemannian metrics on a closed 4-manifold is given by 

index(Dirac) = (6; - b;)/8.  

The index of the Dirac operator is always an integer, in fact on a closed 4-manifold 
it is always an even integer. It follows therefore that for a spin 4-manifold x must be 
even. The arguments we have just given suggest, but do not prove, that the Euler 
characteristic of any spin-cobordism for a closed 3-manifold Z is a property only 
of Z. This is in fact true, as we shall show in the next section. It then follows from 
our discussion above that we may identify our invariant u(Z) with the Euler 
characteristic mod2 of any spin cobordism for X. 
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Even without the results of the next section it is easy to evaluate our invariant 
u(c) for a number of 3-manifolds of interest using comparatively elementary 
arguments. Suppose there were a spin-Lorentz-cobordism M for S3. Then one 
could glue M across the S3 to a four-ball, B". The Euler characteristic of the 
resulting closed manifold would be the Euler characteristic of M, which is zero, 
plus the Euler characteristic of the four-ball, which is one. It is clear that the unique 
spin structure induced on the boundary would extend to the interior of the 4-ball 
and so one obtains a contradiction. The same contradiction would result if we 
took thedisjoint union of an odd number of S3's. If we take thedisjoint union of an 
even numbcr of S3's it is easy to construct spin-Lorentz-cobordisms. Thus 
although there exists a spin-Lorentz-cobordism with two S3's in the past and two 
in the future, our results show that one cannot slice this spin-Lorentz-cobordism 
by a spacelike hypersurface diffeomorphic to S3 which disconnects the spacetime. 
If this were possible we would have obtained a spin-Lorentz-cobordism for three 
S3's which is impossible. In the language of particle physics: there is a 4-fold vertex 
but no 3-fold vertex. 

If we regard S' x Sz as the boundary of S' x B3, where B3 is the 3-ball we may 
fill it in with S' x B3. There are two possible spin structures to consider but in Ith 
cases they extend to the interior and one obtains a spin-cobordism with vanishing 
Euler Characteristic. Starting with the flat product Riemannian metric on S' x B3 it 
is easy to find an everywhere non-vanishing unit vector field V which is outward 
pointing on the boundary: one simply takes a linear combination of the radial 
vector field on the 3-ball and the standard rotational vector field on the circle S' 
with radiusdependent coefficients such that the coefficient of the radial vector 
field vanishes at the origin of the 3-ball and the coefficient of the circular vector 
field vanishes on the boundary of the 3-ball. As with our product example above 
the resulting spacetime will, in general, be incomplete and have closed timelike 
curves but it is a valid spin-Lorentz-cobordism. 

These results are sufficient to justify the claim in the introduction that 
wormholes must be created in pairs according to the Lorentzian point of view. One 
can also establish easily enough, using suitable connected sums of spin-lorentz- 
cobordisms, that our invariant u(C) is well defined and has the stated behaviour 
under disjoint union and connected sum of 3-manifolds as long as one fixes a spin 
structure on the boundary. However, our invariant is independent of the choice of 
spin structure on the boundary, as we have seen in the examples given above. 
In order not to have to keep track of the spin structure on the boundary 
it is advantageous to proceed in a slightly different fashion by using some 
Z,-cohomology theory. This we shall do in the next section. 

The Euler Characteristic and the Kervaire Semi-Characteristic 

The calculations which follow owe a great deal to conversations with Michael 
Atiyah, Nigel Hitchin, and Graeme Segal for which we are grateful. We begin 
by recalling the following exact sequence of homomorphisms of cohomology 
groups for an orientable cobordism M of a closed orientable 3-manifold C, the 
coefficient group being 2, : 

Now if we define W to be the image of H2(M,C)  in H z ( M )  under the last 
homomorphism, and we use Lefshetz-Poincark duality between relative coho- 

0 --* HO(M) -+ HO(C) + H'(M, C) --* H' (M) --* H'(C) -+ H y M ,  C) -b H y M )  + . . . . 

301 



Topology Change 351 

mology and absolute homology groups together with the fact that the com- 
pact manifold M is connected we obtain the following exact sequence: 

0 +Z2 + HO(C) -+ H , ( M )  * H'(M) +H'(Z)+ H,(M) + w -0. 

By virtue of exactness, the alternating sum of the ranks, or equivalently the 
dimensions of these vector spaces over Z,, must vanish. Now the Euler 
characteristic z ( M )  is given by: 

x ( M )  = C (- l)'dimH,(M; Z,) 
1=4 

i = o  

while the Z, Kervaire semi-characteristic s(C) is given by: 

s(C) =dimHo(C; Z,)+dimH'(C; Z,). 

If dimensions are taken modulo 2 we may reverse any of the signs in these 
expressions to obtain the relation: 

~(M)-s(C)=dim Wmod2. 

So far we have not used the .condition that the compact 4-manifold M is 
a spin manifold. To do so we consider the cup product, u which gives a map: 

HZ(M, C) x H,(M)-bH4(M). 

For a compact connected 4-manifold H 4 ( M ;  Z 2 ) r Z 2  so the cup product pro- 
vides a well defined Z, valued bilinear form Q on the image of H 2 ( M , C )  in 
H 2 ( M )  under the same homomorphism as above. In other words Q is non- 
degenerate on the vector space W. [A symmetric bilinear form Q on a vector- 
space W is non-degenerate if and only if Q(x, y) = 0 Vx E W * y = 0.1 

The obstruction to the existence of a spin structure, the second Stiefel- 
Whitney class w2 E H 2 ( M ;  Z,), is characterized by [I23 : 

W,UX=XUX VXE H'(M; Z,). 
Thus if M is a spin manifold w, must vanish and hence 

Q(x, X) = xux = 0 VXE H 2 ( M ;  Z,) . 
Now over Z,, a symmetric bilinear form which vanishes on the diagonal is 
the same thing as skew-symmetric bilinear form. But a skew-symmetric bi- 
linear form over any field must have even rank and since Q is non-degenerate 
this implies that the dimension of W must be even. Indeed, one may identify 
the dimension of W modulo two as the second Stiefel-Whitney class in this 
situation. We have thus established that for an orientable spin-cobordism 

x( M) = s( C) mod 2 
and hence : 

u(C) = s(C) mod2. 

Thus, for example, u(RlP3)=0 since it is connected and H,(lRlP3; Z)=Z,. 
It is straightforward to check this example directly by regarding W3 as the 
boundary of the cotangent bundle of the 2-sphere, T*(S2).  Similar remarks 
apply to the lens spaces L ( k , l )  which may be regarded as the boundary of 
the 2-plane bundle over S2 with first Chern class cl = k  and which have 
Hl(L(k, 1); Z)=Z,. If the integer k is even they spin-Lorentz bound and if it 
is odd they do not. 
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The properties of our invariant u(C) under disjoint union and connected 
sum now follow straightforwardly from the behaviour of homology groups 
under these operations. 

Generalized Spiaor Structure 

One way of introducing spinors on a manifold which does not admit a 
conventional spinor structure is to introduce a U(1) gauge field with respect to 
which all spinorial fields are charged, the charges being chosen so that the 
unremovable f I ambiguity in the definition of conventional spinors is precisely 
cancelled by the holonomy of the U(1) connection [13]:In other words we pass to 
a SpinC(4)= Spin(4) xz l  U(1) structure. For general n it is not always possible to lift 
the tangent bundle of an orientable manifold, with structural group SO(n) to a 
Spinc(4) bundle because the obstruction to lifting to a Spin(n), i.e. the second Stiefel- 
Whitney class w2, may not be the reduction of an integral class in H 2 ( M ; Z ) .  
However, according to Killingback and Rees [I41 (see also Whiston [IS]) this 
cannot happen for a compact orientable 4-manifold. From a topological point of 
view we may clearly replace Spin'(4) by its Lorentzian analogue: SL(2, a!) xz2 U(1). 
Thus from a purely mathematical point of view we could always get around the 
difficulty of not having a spinor structure by using the simplest generalization of a 
spinor structure at the cost of introducing an extra and as yet unobserved U(1) 
gauge field. Another possibility would be to use a non-abelian gauge field as 
suggested by Back, Freund, and Forger [I61 and discussed by Isham and Avis 
[17]. There is no evidence for a gauge field that is coupled in this way to all 
fermions. It is also not clear that one could arrange that all the anomalies that 
would arise from such a coupling would cancel. 
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It has been suggested that an advanced civilization might have the technology to warp spacetime so 
that closed timelike curves would appear, allowing travel into the past. This paper examines this poSai- 
bility in the case that the causality violations appear in a finite region of spacetime without curvature 
singularities. There will be a Cauchy horizon that is compactly generated and that in general contains 
one or more closed null geodesics which will be incomplete. One can define geometrical quantitiea that 
measure the Lorentz boost and area increase on going round these closed null geodesics. If the caueality 
violation developed from a noncompact initial surface, the averaged weak energy condition must be 
violated on the Cauchy horizon. This shows that one cannot create closed timelike curves with finite 
lengths of cosmic string. Even if violations of the weak energy condition are allowed by quantum theory, 
the expectation value of the energy-momentum tensor would get very large if timelike curves become al- 
most closed. It seems the back reaction would prevent closed timelike curves from appearing. These re- 
sults strongly support the chronology protection conjecture: The laws of physics do not allow the appear- 
ance of closed timelike curves. 

PACS numberk): 04.20.Cv, 04.60. + n 

I. INTRODUCTION 

There have been a number of suggestions that we 
might be able to warp spacetime in such a way as to allow 
rapid intergalactic space travel or travel back in time. Of 
course, in the theory of relativity, time travel and faster- 
than-light space travel are closely connected. If you can 
do one, you can do the other. You just have to travel 
from A to B faster than light would normally take. You 
then travel back, again faster than light, but in a different 
Lorentz frame. You can arrive back before you left. 

One might think that rapid space travel might be possi- 
ble using the wormholes that appear in the Euclidean ap- 
proach to quantum gravity. However, one would have to 
be able to move in the imaginary direction of time to use 
these wormholes. Further, it seems that Euclidean 
wormholes do not introduce any nonlocal effects. So they 
are no good for space or time travel. 

Instead, I shall consider real-time, Lorentzian metrics. 
In these, the light-cone structure forces one to travel at 
less than the speed of light and forward in time in a local 
region. However, the global structure of spacetime may 
allow one to take a shortcut from one region to another 
or may let one travel into the past. Indeed, it has been 
suggested by Morris and Thorne and others [ 1-31 that in 
the future, with improved technology, we might be able 
to create traversable wormholes connecting distant re- 
gions of spacetime. These wormholes would allow rapid 
space travel and, thus, travel back in time. However, one 
does not need anything as exotic as wormholes. Gott [4] 
has pointed out that an infinite cosmic string warps 
spacetime in such a way that one can get ahead of a beam 
of light. If one has two infinite cosmic strings, moving at 
high velocity relative to each other, one can get from A 
to B and back again before one sets out. This example is 

worrying, because unlike wormholes, it does not involve 
negative-energy densities. However, I will show that one 
cannot create a spacetime in which one can travel into 
the past if one only uses finite lengths of cosmic string. 

The aim of this paper is to show that even if it is possi- 
ble to produce negative-energy densities, quantum effects 
are likely to prevent time travel. If one tries to warp 
spacetime to allow travel into the past, vacuum polariza- 
tion effects will cause the expectation value of the 
energy-momentum tensor to be large. If one fed this 
energy-momentum tensor back into the Einstein equa- 
tions, it appears to prevent one from creating a time 
machine. It seems there is a chronology protection agen- 
cy, which prevents the appearance of closed timelike 
curves and so makes the universe safe for historians. 

Kim and Thorne (51 have considered the expectation 
value of the energy-momentum tensor in a particular 
model of a time machine. They find that it diverges, but 
argue that it might be cut off by quantum-gravitational 
effects. They claim that the perturbation that it would 
produce in the metric would be so small that it could not 
be measured, even with the most sensitive modem tech- 
nology. Because we do not have a well-defined theory of 
quantum gravity, it is difficult to decide whether there 
will be a cutoff to quantum effects calculated on a back- 
ground spacetime. However, I shall argue that even if 
there is a cutoff, one would not expect it to come into 
effect until one was a Planck distance from the region of 
closed timelike curves. This Planck distance should be 
measured in an invariant way, not the frame-dependent 
way that Kim and Thorne adopt. This cutoff would lead 
to an energy density of the Planck value, low g/cc, and a 
perturbation in the metric of order 1. Even if “order 1” 
meant lo-* in practice, such a perturbation would create 
a disturbance that was enormous compared with chemi- 
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cal binding energies of order or lo-’’. So one could 
not hope to travel through such a region and back into 
the past. Furthermore, the sign of the energy-momentum 
tensor of the vacuum polarization seems to be such as to 
resist the warping of the light cones to produce closed 
timelike curves. 

Morns and Thorne build their time machine out of 
traversable Lorentzian wormholes, that is, Lorentzian 
spacetimes of the form B X R. Here R is the time direc- 
tion and Z is a three-dimensional surface, that is, asymp- 
totically flat, and has a handle or wormhole connecting 
two mouths. Such a wormhole would tend to collapse 
with time, unless it were held up by the repulsive gravity 
of a negative-energy density. Classically, energy densities 
are always positive, but quantum field theory allows the 
energy density to be negative locally. An example is the 
Casimir effect. Morris and Thorne speculate that with 
future technology it might be possible to create such 
wormholes and to prevent them from collapsing. 

Although the length of the throat connecting the two 
mouths of the wormhole will be fairly short, the two 
mouths can be arbitrarily far apart in the asymptotically 
flat space. Thus going through a wormhole would be a 
way of traveling large distances in a short time. As 
remarked above, this would lead to the possibility of trav- 
el into the past, because one could travel back to one‘s 
starting point using another wormhole whose mouths 
were moving with respect to the first wormhole. In fact, 
it would not be necessary to use two wormholes. It 
would be sufficient just for one mouth of a single 
wormhole to be moving with respect to the other mouth. 
Then there would be the usual special-relativistic timc- 
dilation factor between the times as measured at the two 
mouths. This would mean that at some point in the 
wormhole’s history it would be possible to go down one 
mouth and come out of the other mouth in the past of 
when you went down. In other words, closed timelike 
curves would appear. By traveling in a space ship on one 
of these closed timelike curves, one could travel into 
one’s past. This would seem to give rise to all sorts of 
logical problems, if you were able to change history. For 
example, what would happen if you killed your parents 
before you were born. It might be that one could avoid 
such paradoxes by some modification of the concept of 
free will. But this will not be necessary if what I call the 
chronology protection conjecture is correct: The Iows of 
physics prevent closed timelike curves from oppearing. 

Kim and Thorne [5,6] suggest that they do not. I will 
present evidence that they do. 

11. CAUCHY HORIZONS 
The particular time machine that Kim and Thorne [S] 

consider involves wormholes with nontrivial topology. 
But as I will show, to create a wormhole, one has to dis- 
tort the spacetime metric so much that closed timelike 
curves appear. I shall therefore consider the appearance 
of closed timelike curves in general, without reference to 
any particular model. 

I shall assume that our region of spacetime develops 
from a spacelike surface S without boundary. By going 
to a covering space if necessary [7], one can assume that 

spacetime is time orientable and that no timelike curve 
intersects S more than once. Let us suppose that the ini- 
tial surface S did not contain any wormholes: Say it was 
simply connected, like R or S? But let us suppose we 
had the technology to warp the spacetime that developed 
from S, so that a later spacelike surface S’ had a different 
topology, say, with a wormhole or handle. It seems 
reasonable to suppose that we would be able to warp 
spacetime only in a bounded region. In other words, one 
could find a timelike cylinder T which intersected the 
spacelike surfaces S and S’ in compact regions ST and S; 
of different topology. In that case the topology change 
would take place in the region of spacetime MT bounded 
by T, S, and S’. The region M, would not be compact if 
it contained a curvature singularity or if it went off to 
infinity. But in that case, extra unpredictable informa- 
tion would enter the spacetime from the singularity or 
from infinity. Thus one could not be sure that one’s 
warping of spacetime would achieve the result desired if 
the region MT were noncompact. It therefore seems 
reasonable to suppose that M, is compact. In Sec. V, I 
show that this implies that MT contains closed timelike 
curves. So if you try to create a wormhole to use as a 
time machine, you have to warp the light-cone structure 
of spacetime so much that closed timelike curves appear 
anyway. Furthermore, one can show the requirement 
that MT have a Lorentz metric and a spin structure im- 
ply that wormholes cannot be created singly, but only in 
multiples of 2 (81. I shall therefore just consider the ap- 
pearance of closed timelike curves without there neces- 
sarily being any change in the topology of the spatial sec- 
tions. 

If there were a closed timelike curve through m point p 
to the future of S, then p would not lie in the future Cau- 
chy development [7] D + ( S ) .  This is the set of points q 
such that every past-directed curve through q intersects S 
if continued far enough. So there would have to be a fu- 
ture Cauchy horizon H + ( S )  which is the future bund-  
ary of D + W .  I wish to study the creation of closed 
timelike curves from the warping of the spacetime metric 
in a bounded region. I shall therefore consider Cauchy 
horizons H + ( S )  that are what I shall call “compactly 
generated.” That is, all the pastdirected null geodesic 
generators of H + ( S )  enter and remain within a compact 
set C. One could generalize this definition to a situation 
in which there were a countable number of disjoint com- 
pact sets C, but for simplicity I shall consider only a sin- 
gle compact set. 

What this condition means is that the generators of the 
Cauchy horizon do not come in from inflnity or a singu- 
larity. Of course, in the presence of closed timelike 
curves, the Cauchy problem is not well posed in the strict 
mathematical sense. But one might hope to predict 
events beyond the Cauchy horizon if it is compactly gen- 
erated, because extra information will not come in from 
infinity or singularities. This idea is supported by some 
calculations that show there is a unique solution to the 
wave equation on certain wormhole spacetimes that con- 
tain closed timelike curves [15]. But even if there is not a 
unique solution beyond the Cauchy horizon, it will not 
affect the conclusions of this paper because the quantum 
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effects that I shall describe occur in the future Cauchy 
development D + ( S ) ,  where the Cauchy problem is well 
posed and where there is a unique solution, given the ini- 
tial data and quantum state on S. 

The inner horizons of the Reissner-Norstrom and Kerr 
solutions are examples of Cauchy horizons that are not 
compactly generated. Beyond the Cauchy horizon, new 
information can come in from singularities or infinity, 
and so one could not predict what will happen. In this 
paper I will restrict my attention to compactly generated 
Cauchy horizons. It is, however, worth remarking that 
the inner horizons of black holes suffer similar quantum- 
mechanical divergences of the energy-momentum tensor. 
The quantum radiation from the outer black-hole horizon 
will pile up on the inner horizon, which will be at a 
different temperature. 

By contrast, the Taub-Newman-Unti-Tamburino 
(NUT) universe is an example of a spacetime with a com- 
pactly generated Cauchy horizon. It is a homogeneous 
anisotropic closed universe, where the surfaces of homo- 
geneity go from being spacelike to null and then timelike. 
The null surface is a Cauchy horizon for the spacelike 
surfaces of homogeneity. This Cauchy horizon will be 
compact and therefore will automatically be compactly 
generated. However, I have deliberately chosen the 
definition of compactly generated, so that it can apply 
also to Cauchy horizons that are noncompact. Indeed, if 
the initial surface S is noncompact, the Cauchy horizon 
H + ( S )  will be either noncompact or empty. To show 
this one uses the standard result, derived in Sec. V, that a 
manifold with a Lorentz metric admits a timelike vector 
field Yo. (Strictly, a Lorentz metric implies the existence 
of a vector field up to a sign. But one can choose a con- 
sistent sign for the vector field if the spacetime is time 
orientable, which I shall assume.) Then the integral 
curves of the vector field give a mapping of the future 
Cauchy horizon H + ( S )  into S. This mappin will be 
continuous and one to one onto the image of H ( S )  in S. 
But the future Cauchy horizon H + ( S )  is a three-manifold 
without boundary. So, if S is noncompact, H + ( S )  must 
be noncompact as well. However, that need not prevent 
it from being compactly generated. 

An example will illustrate how closed timelike curves 
can appear without there being any topology change. 
Take the spacetime manifold to be R' with coordinates 
t,r,t),& Let the initial surface S be t-0 and let the 
Spacetime metric gab be the flat Minkowski metric qab  for 
t negative. For positive f let the metric still be the flat 
Minkowski metric outside a timelike cylinder, consisting 
of a two-sphere of radius L times the positive-time axis. 
Inside the cylinder let the light cones gradually tip in the 
t j  direction, until the equator of the two-sphere, r = fL ,  
becomes first a closed null curve y and then a closed 
timelike curve. For example, the metric could be 

8 

ds2= -dt2+2f  dt d + -  f d#2+dr2 

+rZ(d82+ sin2@ d+') , 

The Cauchy horizon will be. generated by null geodesics 
that in the past direction spiral toward the closed null 
geodesic y .  They will all enter and remain within any 
compact neighborhood C of y .  Thus the Cauchy horizon 
will be compactly generated. 

One could calculate the Einstein tensor of this metric. 
As I will show, it will necessarily violate the weak energy 
condition. But one could take the attitude that quantum 
field theory in curved space allows violations of the weak 
energy condition, as in the Casimir effect. One might 
hope, therefore, that in the future we might have the 
technology to produce an energy-momentum tensor equal 
to the Einstein tensor of such a spacetime. It is worth re- 
marking that, even if we could distort the light cones in 
the manner of this example, it would not enable us to 
travel back in time to before the initial surface S. That 
part of the history of the universe is already flxcd. Any 
time travel would have to be confined to the future of S. 

I shall mainly be interested in the case where the initial 
surface S is noncompact, because that corresponds to 
building a time machine in a local region. However, 
most of the results in this paper will also apply to the 
cosmological case, in which Scan be compact. 

The Csuchy horizon is generated by null geodesic seg- 
ments [7]. These may have future end points, where they 
intersect another generator. The future end points will 
form a closed set B of measure zero. On the other hand, 
the generators will not have past end points. If the hor- 
izon is compactly generated, the generators will enter and 
remain within a compact set C. One can introduce a null 
tetrad I ' ,n ' ,m ' ,~ '  in a neighborhood of 
( H + ( S ) - B ) n C .  The vector 1' is chosen to be the 
futuredirected tangent to the generators of the Cauchy 
horizon. The vector no is another futuredirected null 
vector. &cause 1 am using the signature - + + +, rath- 
er than the + - - - signature of Newman and Penrose, 
I normalize them by 1%' = - 1. The complexconjugate 
null vectors m ' and iR ' are orthogonal to I' and n ' and 
are normalized by mama = 1. One can then define the 
Newman-Penrose quantities [9, lo] 

E =  - ~ ( n a l a ~ c l c - i R ' m a ~ c l c )  , 
u= -m'la;rlc , 
p=-m'l,,,,iRc , 

u = - m ' l a ; c m c .  

Note that these definitions have the opposite sign to those 
of Newman and Penrose. This is because of the different 
signature of the metric. 

Because the generators are null geodesics and lie in a 
null hypersurface, K=O and p=p .  The convergence p 
and shear (I obey the Newman-Penrose equations along 
r: 

d a  - =@(I + ( 3c- Z)(I + CaM1"m blcRi , dt 

where f is the parameter along the generators such that 
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I = dx "/dt. 
The real and imaginary parts of E,  respectively, mea- 

sure how the vectors lo  and mo change compared to  a 
parallel-propagated basis. By choosing an d n e  parame- 
ter Ton the generators, one can rescale the tangent vector 
1' so that r+F=O. The generators may be geodesically 
incomplete in the future direction; i.e., the affine parame- 
ter may have an upper bound. But one can adapt the 
lemma in Ref. [7], p. 295, to show that the generators of 
the horizon are complete in the past direction. 

Now suppose the weak energy condition holds: 

for any null vector I". Then the Einstein equations (with 
or without cosmological constant) imply 

RobIoIb?O. 

It then follows that the convergence p of the generators 
must be. non-negative everywhere on the Cauchy horizon. 
For suppose p = p , < O  at a point p on a generator y .  
Then one could integrate the Newman-Penrose equation 
for p in the negative Tdirection along y to show that p 
diverged at some point q within an afane distance p;' to 
the past of p. Such a point q would be a past end point of 
the null geodesic wgment y in the Cauchy horizon. But 
this is impossible because the generators of the Cauchy 
horizon have no past end points. This shows that p must 
be. everywhere non-negative on a compactly generated 
Cauchy horizon if the weak energy condition holds. 

I shall now establish a contradiction in the case that 
the initial surface S is noncompact. The argument is 
similar to that in Ref. [7], p. 297. On C one can intro- 
duce a unit timelike vector field V'. One can then define 
a positive definite metric by 

gob =gab f2Ya v b  * 

In other words, $? is the spacetime g with the sign of the 
metric in the timelike V" direction reversed. 

One can normalize the tangent vector to the generators 
by g,,blOvb=l/fi. The parameter t on the generators 
then measures the proper distance in the metric gob. One 
can define a map 

~,:(H+(S)--B)nC~(H+(S)--B)nc , 

by moving each point of the Cauchy horizon a parameter 
distance t to the past along the generators. The three- 
volume (measured with respect to the metric $?"* ) of the 
image of the Cauchy horizon under this map will change 
according to 

The change in volume cannot be positive because the 
Cauchy horizon is mapped into itself. If the initial sur- 
face S is noncompact, the change in volume will be strict- 
ly negative, because the Cauchy horizon will be noncom- 
pact and will not lie completely in the compact set C. 
This would establish a contradiction with the rcquire- 
ment that p L 0 if the weak energy condition is satisfied. 

Thus a compactly generated Cauchy horizon cannot form 
if the weak energy condition holds and S is noncompact. 

On the other hand, the example of the Taub-NUT 
universe shows that it is possible to have a compactly 
generated Cauchy horizon if S is compact. However, in 
that case the weak energy condition would imply that p 
and u would have to be zero everywhere on the Cauchy 
horizon. This would mean that no matter or informa- 
tion, and in particular no observers, could cross the Cau- 
chy horizon into the region of closed timelike curves. 
Moreover, as will be shown in the next section, the solu- 
tion will be classically unstable in that a small matter- 
field perturbation would pile up on the horizon. Thus the 
chronology protection conjecture will hold if the weak 
energy condition is satisfled whether or not S is compact. 
In particular, this implies that if no closed timelike 
curves are present. initially, one cannot create them by 
warping the metric in a local region with finite loops of 
cosmic string. If the weak energy condition is satisfied, 
closed timelike curves require either singularities (as in 
the Kerr solution) or a pathological behavior at infinity 
(as in the Godel and Gott spacetimes). 

The weak energy condition is satisfied by the classical 
energy-momentum tensors of all physically reasonable 
fields. However, it is not satisfied locally by the quantum 
expectation value of the energy-momentum tensor in cer- 
tain quantum states in flat space. In Minkowski space 
the weak energy condition is still satisfied if the expecta- 
tion value is averaged along a null geodesic [ll], but 
there are curved-space backgrounds where even the aver- 
aged expectation values do not satisfy the weak energy 
condition. The philosophy of this paper is therefore not 
to rely on the weak energy condition, but to look for vac- 
uum polarization effects to enforce the chronology pro- 
tection conjecture. 

XII. CLOSED NULL GEODESICS 

The pastdirectioned generators of the Cauchy horizon 
will have no past end points. If the horizon is compactly 
generated, they will enter and remain within a compact 
set C. This means they will wind round and round inside 
C. In Sec. V it is shown that there is a nonempty set E of 
generators, each of which remains in a compact set C in 
the future direction, as well as in the past direction. 

The generators in E will be almost closed. That is 
there will be points q such that a generator in E will re- 
turn infinitely often to any small neighborhood of q. But 
they need not actually close up. For example, if the ini- 
tial surface is a three-torus, the Cauchy horizon will also 
be a three-torus, and the generators can be nonrational 
curves that do not close up on themselves. However, this 
kind of behavior is unstable. The least perturbation of 
the metric will cause the horizon to contain closed null 
geodesics. More precisely, the space of all metrics on the 
spacetime manifold M can be given a C" topology. 
Then, if g is a metric that has a compactly generated hor- 
izon which does not contain closed null geodesics, any 
neighborhood of g will contain a metric g' whose Cauchy 
horizon does contain closed null geodesics. 

The spacetime metric is presumably the classical limit 
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of an inherently quantum object and ao can be defined 
only up to some uncertainty. Thus the only properties of 
the horizon that are physically significant are those that 
are maintained under small variations of the metric. In 
Sec. V it will be shown that in general the closed null geo- 
desics in the horizon have this property. That is, if g is a 
metric such that the Cauchy horizon contains closed null 
geodesics, then there is a neighborhood U of g such that 
e v ~ y  metric g' in U has closed null geodesics in its Cau- 
chy horizon. I shall therefore assume that in general E 
consists of one or more disjoint closed null geodesics. 
The example given above of the metric with closed time- 
like curves shows that the Cauchy horizon need not con- 
tain more than one. 

I shall now concentrate attention on a closed null geo- 
desic y in the Cauchy horizon. Pick a point p on y and 
parallel propagate a frame around y and back to p. The 
result will be a Lorentz transformation A of the original 
frame. This Lorentz transformation will lie in the four- 
parameter subgroup that leaves unchanged the null direc- 
tion tangent to the generator. It will be generated by an 
antisymmetric tensor 

A=&".  

The null vector I" tangent to the null geodesic will be an 
eigenvec:or of o because its direction is left unchanged by 
A: 

!"=hCO'blb. 

The eigenvalue h determines the change of scale, eh,  of 
the tangent vector after it has been parallel propagated 
around the closed null geodesic in the future direction. 
In Sec. V it is shown that if h were negative, one could 
move each point of y to the past to obtain a closed time- 
like curve. But this curve would be in the Cauchy devel- 
opment of S, which is impossible, because the Cauchy de- 
velopment d a s  not contain any closed timelike curves. 
This shows that h must be positive or zero. Clearly, h =O 
is a limiting case. In practice, one would expect k to be 
positive. This will mean that each time one gocs round 
the closed null geodesic, the parallel-propagated tangent 
vector will increase in size by a factor eh. The affine- 
parameter distance around will decrease by a factor e -h. 
Thus the cloeed null geodesic y will be incomplete in the 
future direction, although it will remain in the compact 
set C and so it will not end on any curvature singularity. 
Because h ? 0, y will be complete in the past direction. 

If h#O, there will be another null vector n ", which is 
an eigenvector of wab with eigenvalue - h. The Lorentz 
transformation A will consist of a boost e in the timelike 
plane spanned by I" and n" and a rotation through an an- 
gle B in the orthogonal spacelike plane. 

The quantity h is rather like the surface gravity or a 
black hole. It measures the rate at which the null cones 
tip over near 7.  As in the black-hole case, it gives rise to 
quantum effects. However, in this case, they will have 
imaginary temperature, corresponding to periodicity in 
real time, rather than in imaginary time, as in the black- 
hole case. 

Another important geometrical quantity associated 

with the closed null geodesic 7 in the Cauchy horizon is 
the change of cross-sectional area of a pencil of genera- 
ton of the horizon as one goes round the closed null geo- 
desic. Let 

f= ln  [ +] , 

where A, and A, +, are the areas of the pencil on succes- 
sive passes of the point p in the future direction. The 
quantity f measures the amount the generators are 
diverging in the future direction. Because neighboring 
generators tend toward the closed null geodesic y in the 
past direction, f will be greater than or equal to zero. 
Again, f=O is a limiting case. In general, f will be 
greater than zero. 

The quantity f determines the classical stability of the 
Cauchy horizon. A small, high-frequency wave packet 
going round the horizon in the neighborhood of y will 
have its energy blueshifted by a factor eh each time it 
comes round. This increased energy will be spread across 
a cross section transverse to y .  On each circuit of y ,  the 
two-dimensional area of the cross section will increase by 
a factor e l .  The time duration of the cross section will be 
reduced by a factor e-h.  So the local energy density will 
remain bounded and the Cauchy horizon will be classical- 
ly stable if 

f > 2 h .  

This is true of the wormholes that Kim and Thorne con- 
sider, providtd they are moving slowly. But it seems they 
will still be unstable quantum mechanically. 

One can relate the result of going round y to integrals 
of the Newman-Penrose quantities dehed  in the last sec- 
tion: 

$ p d t = - - . f f ,  

# r d r = - + ( h  + i e ) ,  

where e h  is the boost in the P-n" plane and el9 is the spa- 
tial rotation in the m '-Ria plane of a tetrad that is paral- 
lel propagated after one circuit of y. One can also define 
the distortion q of an initially circular pencil of genera- 
tors by 

# o d r  = - f q .  

One can choose the parameter t on y so that E + F  is 
constant and so that the parameter distance of one circuit 
of y is 1. Then 

s + V = - h .  

One can now integrate the Newman-Penrose equation for 
p around a circuit of y and use the Schwarz inequality to 
show 

This gives a measure of how much the weak energy con- 
dition has to be violated on y .  In particular, it cannot be 
satisfled unless f =q=O. 
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IV. QUANTUM FIELDS ON THE BACKGROUND 

Quantum effects in the spacetime will be determined by 
the propagator or two-point function 

This will be singular when the two points x and y can be 
joined by a null geodesic. Thus quantum effects near 7 
will be dominated by closed or almost-closed null geo- 
desics. 

One can construct a simple spacetime that reproduces 
the Lorentz transformation A on going around y ,  but not 
the area increase e', in the following way. One starts 
with Minkowski space and identifies points that are taken 
into each other by the Lorentz transformation A. For 
simplicity, I will just describe the case where A is a pure 
boost in the n"-P plane. Consider the past light cone of 
the origin in two-dimensional Minkowski space. The or- 
bits of the boost Killing vector will be spacelike. Identify 
a point p with its image under the boost A. This gives 
what is called Misner space [12,7] with the metric 

ds2= -dr2+t2&' , 
on a half-cylinder defined by f <O with the x coordinate 
identified with period I r .  This metric has an apparent 
singularity at t=O. However, one can extend it by intro- 
ducing new coordinates 

The metric then takes the form 

This can then ba extended through T=O. This corre- 
sponds to extending from the bottom quadrant into the 
left-hand quadrant. One then gets a metric on a cylinder. 
This develops from a spacelike surface S. However, at 
r=O, the light cones tip over and a closed null geodesic 
appears. For negative T, closed timelike curves appear. 
The full fourdimensional space is the product of this 
two-dimensional Misner space with two extra Bat dimen- 
sions. One can identifj thew other dimensions periodi- 
cally if one wants to have a spacetime in which the initial 
surface S and the Cauchy horizon D + ( S )  are compact. 
However, such a compactificetion will not change the na- 
ture of the behavior of the energy-momentum tensor on 
the horizon. 

Misner space has a four-parameter group of isometrics 
and is also invariant under an overall dilation. It is there- 
fore natural to expect the quantum state of a conformally 
invariant field also to have these symmetries. By the con- 
servation equations and the trace-anomaly equation, the 
expectation value of the energy-momentum tensor for a 
conformally invariant field must then have the form 

608 S. W. HAWKINO 16 

. I  

B 
( Tab )o=diag(K,3K, -K, - K), K = - 

1' ' 
in an orthonormal basis along the (t,x,y,z) axes. The 
coefficient B will depend on the quantum state and spin 
of the field. 

Because the space is fiat, it is easy to calculate a propa- 

gator ( T#(x)#y) ),, for a particular quantum state of any 
free field with these symmetries. One just takes the usual 
Minkowski propagator and puts in image charges under 
A. One can then calculate the expectation vdue of the 
energy-momentum tensor by taking the limit of this 
propagator minus the ueual Minkowski propagator. This 
has been done by Hiacock and Konkowski [13] for the 
case of a conformally invariant scalar field. They found 
that B is negative, implying that the expectation value of 
the energy density is negative and diverges on the Cauchy 
horizon. 

The quantum state that the propagator ( T#x)#(y) )o 
corresponds to is a particularly natural one, but is cer- 
tainly not the only quantum state of the spacetime. The 
propagator in any other state will obey the same wave 
equation. Thus it can be written 

where $. are solutions of the homogeneous wave equa- 
tion that are nonsingular on the initial surface S. The ex- 
pectation value of the energy-momentum tensor in this 
state will be 

where T$ [ $,, ] is the classical energy-momentum tensor 
of the fleld qn. One can think of the last term as the en- 
ergy momentum of particles in modes corresponding to 
the solutions $,,. 

One could ask if there was a propagator that gave an 
energy-momentum tensor that did not diverge on the 
Cauchy horizon. I have found propagatom that give the 
expectation value of the energy momentum to be zero 
everywhere, but they do not satisfy the positivity condi- 
tions that are required for them to be the time-ordered 
expectation values of the field operators in a well-defined 
quantum state. I am grateful to Bernard Kay for point- 
ing this out. One way of getting a propagator that was 
guaranteed to satisfy the positivity conditions would be 
to add particle excitations to the ( lo state. However, no 
distribution of particlee would have a strese in the x 
direction that is 3 times the energy density. Unlese the 
energy-momentum tensor of the particles had the name 
form as that of it would not diverge with the 
same power of distance away from the horizon and so 
could not cancel the divergence. Thus I am almost sure 
there is no quantum state on Misner space for which 
(Tub)  is finite on the horizon, but I do not have a 
rigorous proof. 

In the general case in which there is a negative Ricci 
tensor and f > 0, it is difficult to calculate the expectation 
value of the energy-momentum tensor exactly because 
one does not have a closed form for the propagator. 
However, near the Cauchy horizon the metric and quan- 
tum state will asymptotically have the same symmetriee 
and scale invariance aa in Misner space. Thur one would 
still expect the same Bt-' behavior, where the value off 
at a point is now defined to be the least upper bound of 
the lengths of timelike curves from the point to the closed 
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null geodesic y .  If h > 0, r will be finite on D +(S). 
Again, the coefficient B will depend on the quantum 

state. Approximate WKB calculations by Kim and 
Thorne [5] for a wormhole spacetime indicate that there 
is a quantum state for this spacetime for which B is nega- 
tive. Because the classical stability condition f >2h is 
satisfied, it docs not seem possible to cancel the negative- 
energy divergence with positive-energy quanta. Thus it 
seems that the expectation value of the energy- 
momentum tensor will always diverge on the Cauchy 
horizon for any quantum state. 

V. GLOBAL RESULTS 

If there is a timelike tube T connecting surfaces S and 
S' of different topology, then the region M, contains closed 
timelike curves. 

This is a modification of a theorem of Geroch [14]. I 
shall describe it here because it involves constructions 
that will be useful later. One first puts a positive-definite 
metric gab on the spacetime manifold M. (This can al- 
ways be done.) Then one can define a timelike vector 
field Va as an eigenvector with negative eigenvalue of the 
physical metric gab with respect to gab: 

One can normalize V a  to have unit magnitude in the 
spacetime metric gab. With a bit more care, one can 
choose the vector field Y" so that it is tangent to the time- 
like tube T. One can define a mapping 

/ .&:ST+Sf ,  

by moving points along the integral curves of Yo. If each 
integral curve that cuts S, were also to cut S;, p would 
be one-to-one and onto. But this would imply that ST 
and Sf have the same topology, which they do not. 
Therefore there must be some integral curve y which 
cuts ST but which winds round and round inside the 
compact set MT and does not intersect Sf. This implies 
there will be points p E M T  that ace limit points of y .  
Through p there will be an integral curve 7, each point of 
which is a limit point of y ,  But because 7 is timelike, it 
would be pbssible to deform segments of y to form closed 
timelike curves. 

A compactly generared Couchy horizon D +(S) contains 
a set E of genemtors which have no past or future end 
points and which are contained in rhe compact set C. 

Let A be a generator of the Cauchy horizon. This 
means that it may have a future end point (where it inter- 
sects another generator), but it can have no past point. 
Instead, because the horizon is compactly generated, in 
the past direction A will enter and remain within a com- 
pact set C. This means that there will be points q'in C 
which are such that every small neighborhood of q is in- 
tersected by A an infinite numbers of times. Let B be a 
normal coordinate ball about a limit point q. There will 
be points p and r on aB to the future and past of q which 
will be. limit points of where A intersects aB. It is easy to 
see that p and r must lie on a null geodesic segment y 
through q. By repeating this construction about p and r, 

one can extend y to a null geodesic without future or past 
end points, each point of which is a limit point for A. Be- 
cause A enters and remains within C, y must remain 
within C in both past and future directions. the set E 
consists of all such limit geodesics y .  
If y is 4 closed null geodesic with h <0, then y can be 

deformed to give a closed timelike curve A to the past of y .  
Let Ia=dxa/dr be the future-directed vector tangent to 

y and let a be defined by 

K b P = a 1 a .  

Then a = ( E + V ) ,  and so 

$ a d t = - h .  

Let Va be a future-directed timelike vector field normal- 
ized so that Iavbgab=-l. Then one can find a one- 
parameter family of curves y (  t ,  u )  such that 

y ( t , O ) = y ( t )  , 

where x is a given function on y .  Then 

ax 
at 

= 2 - - 2 a x .  

Let 

x = e x p [ J o f a d t + h t 6 - ' ]  , 

where 6 =$dr. Then, for suficiently small u >O, y ( t , v )  
will be. a closed timelike curve to the past of y .  
If rhe metric g is such that the Cauchy horizon H '(S) 

contains a closed null geodesic y with h > O  and 
f - 1q120, then the property of having a closed null gee 
desic is stable; i.e., g will haue a neighborhood U such that 
for ony metric g'E U. there will also be a closed null g e e  . 
desic in the Cauchy horizon. 

Let p be a point on y .  A point q in I - ( p ) ,  the chrono- 
logical past of p, will lie in the Cauchy development 
D + ( S ) ,  and J - ( p ) f l J + ( S ) ,  the intersection of the causal 
past of p with the causal future of S, will be compact. 
This means that a sufficiently small variation of g will 
leave q in the Cauchy develpment of S. On the other 
hand, because h > 0, the previous result implies there is a 
closed timelike curve A through a point r just to the fu- 
ture of p. A sufficiently small variation of the metric will 
leave A a closed timelike curve and hence will leave r not 
in the Cauchy development. Thus the existence of a Cau- 
chy horizon will be a stable property of the metric g. 
Similarly. the positions, directions, and derivatives of the 
generators will be continuous functions of the metric g in 
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a neighborhood of y .  
Let Wbe a time like three-surface through p transverse 

to the Cauchy horizon. Then the generators of the hor- 
izon near y define a map 

Y: wnD+(s)+wnD+(s) ,  
by mapping where they intersect W to where they inter- 
sect it again the next time round. Iff - IqlZO, the eigen- 
values of dv will be bounded away from 1. It then fol- 
lows that the existence of a closed orbit is a stable proper- 
ty. 

VI. CONCLUSIONS 

As one approaches a closed null geodesic y in the Cau- 
chy horizon, the propagator will acquire extra singulari- 
ties from null geodesics close to y that almost return to 
the original point. In the Misner-space example in Sec. 
IV, these extra contributions came from the image 
charges under the boost. When one approached the Cau- 
chy horizon, which corresponded to the past light cone of 
the origin in two-dimensional Minkowski space, these im- 
age charges became nearly null separated and their light 
cones became nearly on top of each other. It was there- 
fore natural to find that the expectation value of the 
energy-momentum tensor diverged as one approached 
the Cauchy horizon. 

If the boost h on going round y is zero, the distance t 
from y to any point to the past of y in the Cauchy devel- 
opment will be infinite. This is rather like the fact that 
there is an infinite spatial distance to the horizon of a 
black hole with zero surface gravity. If the expectation 
value were of the form of Bt-' with finite B, it would 
therefore be zero. Even if the energy-momentum tensor 
of individual fields did not have this form and still 
diverged on the Cauchy horizon, one might expect that 
the total energy-momentum tensor might vanish in a su- 
persymmetric theory, because the contributions of boson- 
ic and fermionic fields might have opposite signs. How- 
ever, one would not expect such a cancellation unless the 
spacetime admitted a supersymmetry at least on the hor- 
izon. This would require that the tangent vector to the 
horizon corresponded to a Killing spinor, which would 
imply 

e=p=a=O 

in addition to 

I - 0 .  

Theso conditions will not hold on a general horizon, but 
it is possible that the back reaction could drive the 
geometry to satisfl them, as the back reaction of black- 
hole evaporation can drive the surface gravity to zero in 
certain circumstances. 

If one assumes that the expectation value of the 
energy-momentum tensor diverges on the horizon, one 
can ask what effect this would have if one fed it back into 
the field equations. On dimensional grounds one would 
expert the eigenvalues of the energy-momentum tensor to 

diverge as Bt -', where B is a constant that depends on 
the quantum state and t is the distance function to the 
horizon. However, because of boost and other factors, 
the energy density measured by an observer who crosses 
the Cauchy horizon on a timelike geodesic will go as 
Bd - 's -3, where s is proper distance along the observer's 
world line until the horizon and d is some typical length 
in the problem. In Misner space, d is the length of the 
spacelike geodesic from the origin orthogonal to the 
observer's world line. 

To get the metric perturbation generated by this 
energy-momentum tensor, one has to integrate with 
respect to s twice. Thus the metric perturbation will 
diverge as GBd-Is-'. Kim and Thome [S] agree that 
the metric perturbation diverges, but claim that 
quantum-gravitation effects might cut it off when the 
observer's proper time before crossing the Cauchy hor- 
izon, s, is the Planck time. This would give a metric per- 
turbation of order 

Bl,d - I  . 
If d were of order 1 m, the metric perturbation would be 
of order This is far less than about which is 
the best that can be detected with the most sensitive 
modem instruments. 

It may be that quantum gravity introduces a cutoff at 
the Planck length. But one would not expect any cutoff 
to involve the observer-dependent time s. If there is a 
cutoff, one would expect it to occur when the invariant 
distance t from the Cauchy horizon was of order the 
Planck length. But t 2  is of order ds. So a cutoff in t at 
the Planck length would give a metric perturbation of or- 
der 1. This would completely change the spacetime and 
probably make it impossible to cross the Cauchy horizon. 
One would not therefore be able to use the region of 
closed timelike curves to travel back in time. 

If the coefficient B is negative, the energy-momentum 
tensor will have a repulsive gravitational effect in the 
equation for the rate of change of the volume. This will 
tend to prevent the spacetime from developing a Cauchy 
horizon. The calculations that indicate B is negative 
therefore suggest that spacetime will resist being warped 
so that closed timelike curves appear. On the other hand, 
if E were positive, the graviational effect would be attrac- 
tive, and the spacetime would develop a singularity, 
which would prevent one reaching a region of c l o d  
timelike curves. Either way, there seem to be theoretical 
reasons to believe the chronology protection conjecture: 
The l a w  of physics prevent the appeamnce of clmed time- 
like curves. 

There is also strong experimental evidence in favor of 
the conjecture from the fact that we have not been invad- 
ed by hordes of tourists from the future. 
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