

#### Talk outline

- The radio window
  - Basic emission mechanisms

- Some basics of radio telescopes
  - Feeds, illumination
  - Sensitivity & noise

- Whistle-stop tour of a single-dish system
  - Principal components
  - Example observation

### The electromagnetic windows



## The Night Sky in Radio



## Multi-wavelength astronomy



# Radiation mechanisms (the quite short version)

- Thermal radiation
  - aka "free-free" or "bremsstrahlung" emission electrons
- Non-thermal emission
  - Synchrotron emission
  - Atomic and molecular spectral lines
  - masers
  - gyrotron / synchro-gyrotron
  - Cerenkov
- Absorption and radiative transfer

#### Thermal radiation

Radio astronomy we're (nearly) always in the "Rayleigh-Jeans" regime;

$$B(\nu) = 2kT/\lambda^2$$

units: Watt/m<sup>2</sup>/Hz/sterad

short-hand: refer instead to "brightness temperature" T



# Synchrotron or "non-thermal" radiation





 $F = v^{\alpha}$ : "power-law" spectrum

α : spectral index

α ~ 0 to -0.5 "flat spectrum"

α < -1 "steep spectrum"

 $\alpha > 0$ : "inverted spectrum"

GPS: "GHz Peaked spectrum"

## The radio sky at 408MHz (70cm)



 ${\it Jodrell-Bank\ 250-feet\ +\ Effelsberg\ 100-m\ +\ Parkes\ 64-m}$ 

### Jupiter in the radio

22cm = 1.3GHz

Synchrotron emission from electrons trapped in Jovian magnetic field



13cm = 2.4GHz

Thermal emission from Jupiter's atmosphere much more prominent



ATCA images by Dulk, Leblanc, Sault & Hunstead

# Spectral lines – cosmic "tuning forks"



Neutral atomic Hydrogen – HI the "spin-flip" hyperfine transition produces photons at  $\lambda = 21$ cm or 1420.40575177 MHz

(same transition as used by Hydrogen maser atomic clocks)

Fig. 1. Distribution of neutral hydrogen in the galactic system.

#### Molecular Lines



(Rohlfs & Wilson 1996)

| Molecule<br>name    | Chemical formula <sup>a</sup> | Transition                      | $ u/\mathrm{GHz}^\mathrm{b}$ | $E_u/K^c$ | $A_{ij}/s^{-1d}$      |
|---------------------|-------------------------------|---------------------------------|------------------------------|-----------|-----------------------|
| ОН                  | hydroxyl radical              | $^{2}\Pi_{3/2}F = 1 - 2$        | 1.612231                     | 0.1       | $1.3 \times 10^{-11}$ |
| OH                  | hydroxyl radical              | $^{2}\Pi_{3/2}F = 1 - 1$        | 1.665400                     | 0.1       | $7.1 \times 10^{-11}$ |
| OH                  | hydroxyl radical              | $^{2}\Pi_{3/2}F = 2 - 2$        | 1.667358                     | 0.1       | $7.7 \times 10^{-11}$ |
| OH                  | hydroxyl radical              | $^{2}\Pi_{3/2}F = 2 - 1$        | 1.720529                     | 0.1       | $0.9 \times 10^{-11}$ |
| H <sub>2</sub> CO   | ortho-formaldehyde            | $J_{K_aK_c} = 1_{10} - 1_{11}$  | 4.829660                     | 14        | $3.6 \times 10^{-9}$  |
| СН3ОН               | methanol*                     | $J_K = 5_1 - 6_0 A^+$           | 6.668518                     | 49        | $6.5 \times 10^{-10}$ |
| HC <sub>3</sub> N   | cyanoacetylene                | J = 1 - 0, F = 2 - 1            | 9.009833                     | 0.4       | $3.8 \times 10^{-8}$  |
| CH <sub>3</sub> OH  | methanol**                    | $J_K = 2_0 - 3_{-1}E$           | 12.178593                    | 12        | $8.2 \times 10^{-9}$  |
| H <sub>2</sub> CO   | ortho-formaldehyde            | $J_{K_aK_c} = 2_{11} - 2_{12}$  | 14.488490                    | 22        | $3.2 \times 10^{-8}$  |
| $C_3H_2$            | ortho-cyclopropenylidene      |                                 | 18.434145                    | 0.9       | $3.9 \times 10^{-7}$  |
| H <sub>2</sub> O    | ortho-water*                  | $J_{K_a K_c} = 6_{16} - 5_{23}$ | 22.235253                    | 640       | 1.9 ×10 <sup>-9</sup> |
| NH <sub>3</sub>     | para-ammonia                  | (J, K) = (1, 1) - (1, 1)        | 23.694506                    | 23        | $1.7 \times 10^{-7}$  |
| $NH_3$              | para-ammonia                  | (J,K) = (2,2) - (2,2)           | 23.722634                    | 64        | $2.2 \times 10^{-7}$  |
| NH <sub>3</sub>     | ortho-ammonia                 | (J,K) = (3,3) - (3,3)           | 23.870130                    | 122       | $2.5 \times 10^{-7}$  |
| SiO                 | silicon monoxide*             | J = 1 - 0, v = 2                | 42.879916                    | 3512      | 3.0 ×10 <sup>-6</sup> |
| SiO                 | silicon monoxide*             | J = 1 - 0, v = 1                | 43.122080                    | 1770      | $3.0 \times 10^{-6}$  |
| SiO                 | silicon monoxide              | J = 1 - 0, v = 0                | 43.423858                    | 2.1       | $3.0 \times 10^{-6}$  |
| CS                  | carbon monosulfide            | J = 1 - 0                       | 48.990964                    | 2.4       | $1.8 \times 10^{-6}$  |
| DCO+                | deuterated formylium          | J = 1 - 0                       | 72.039331                    | 3.5       | $1.6 \times 10^{-5}$  |
| SiO                 | silicon monoxide*             | J = 2 - 1, v = 2                | 85.640456                    | 3516      | $2.0 \times 10^{-5}$  |
| SiO                 | silicon monoxide*             | J = 2 - 1, v = 1                | 86.243442                    | 1774      | $2.0 \times 10^{-5}$  |
| H <sup>13</sup> CO+ | formylium                     | J = 1 - 0                       | 86.754294                    | 4.2       | $2.8 \times 10^{-5}$  |
| SiO                 | silicon monoxide              | J = 2 - 1, v = 0                | 86.846998                    | 6.2       | $2.0 \times 10^{-5}$  |
| HCN                 | hydrogen cyanide              | J = 1 - 0, F = 2 - 1            | 88.631847                    | 4.3       | $2.4 \times 10^{-5}$  |
| HCO+                | formylium                     | J = 1 - 0                       | 89.188518                    | 4.3       | $3.0 \times 10^{-5}$  |
| HNC                 | hydrogen isocyanide           | J = 1 - 0, F = 2 - 1            | 90.663574                    | 4.3       | $2.7 \times 10^{-5}$  |
| $N_2H^+$            | diazenylium                   | $J=1-0, F_1=2-1,$               |                              |           |                       |
|                     |                               | F = 3 - 2                       | 93.173809                    | 4.3       | $3.8 \times 10^{-5}$  |
| CS                  | carbon monosulfide            | J = 2 - 1                       | 97.980968                    | 7.1       | $2.2 \times 10^{-5}$  |
| C <sup>18</sup> O   | carbon monoxide               | J = 1 - 0                       | 109.782182                   | 5.3       | $6.5 \times 10^{-8}$  |
| <sup>13</sup> CO    | carbon monoxide               | J = 1 - 0                       | 110.201370                   | 5.3       | $6.5 \times 10^{-8}$  |
| CO                  | carbon monoxide               | J = 1 - 0                       | 115.271203                   | 5.5       | $7.4 \times 10^{-8}$  |
| $H_2^{13}CO$        | ortho-formaldehyde            | $J_{K_aK_c} = 2_{12} - 1_{11}$  | 137.449959                   | 22        | $5.3 \times 10^{-5}$  |
| H <sub>2</sub> CO   | ortho-formaldehyde            | $J_{K_aK_c} = 2_{12} - 1_{11}$  | 140.839518                   | 22        | $5.3 \times 10^{-5}$  |
| CS                  | carbon monosulfide            | J = 3 - 2                       | 146.969049                   | 14.2      | 6.1 ×10 <sup>-5</sup> |
| C <sup>18</sup> O   | carbon monoxide               | J = 2 - 1                       | 219.560319                   | 15.9      | $6.2 \times 10^{-7}$  |
| <sup>13</sup> CO    | carbon monoxide               | J = 2 - 1                       | 220.398714                   | 15.9      | $6.2 \times 10^{-7}$  |
| CO                  | carbon monoxide               | J = 2 - 1                       | 230.538001                   | 16.6      | $7.1 \times 10^{-7}$  |
| CS                  | carbon monosulfide            | J = 5 - 4                       | 244.935606                   | 33.9      | $3.0 \times 10^{-4}$  |
| HCN                 | hydrogen cyanide              | J = 3 - 2                       | 265.886432                   | 25.5      | $8.5 \times 10^{-4}$  |
| HCO <sup>+</sup>    | formylium                     | J = 3 - 2                       | 267.557625                   | 25.7      | $1.0 \times 10^{-3}$  |
| HNC                 | hydrogen isocyanide           | J = 3 - 2                       | 271.981067                   | 26.1      | $9.2 \times 10^{-4}$  |

### Spectral lines – a new dimension



Images: Paolo Serra

### You'll need a telescope

The two main functions;

Sensitivity (collecting area)

Area ~ Diameter^2

- Magnification, angular resolution
  - ~Diameter (largest dimension)

 $\theta \sim \lambda/D$ 



### Some well known telescopes



posterior chamber anterior chamber nodal point

visual axis

©1994 Encyclopaedia Britannica, Inc



rectus medialis

blind spot-

sclera











## The parabolic reflector ("Dish")

Parkes 64-metre

Prime-focus: f/D ~ 0.4

74 MHz – 26 GHz (2.5 decades)

Prime focus
vs
Secondary;
Cassegrain etc



### Diffraction limit – simplified



### Diffraction limit



Diffraction theory
Airy pattern →



# Angular resolution: the Rayleigh criterion



Rayleigh criterion to resolve two point sources:

peak of first source lies on first null of second source

$$d\theta = 1.22\lambda/D$$

### Multiple reflector systems



Fig. 6.7. The geometry of (a) Cassegrain, (b) Gregory, (c) Nasmyth and (d) offset Cassegrain systems

### Telescope beams





### Antenna effective area

S(v)

S(v): flux density (W/m<sup>2</sup>/Hz) – discrete sources

Jansky:  $1Jy = 10^{-26} \text{ W/m}^2/\text{Hz}$ 

Antenna Effective Area: how much flux is collected?

matched power density, pol i

$$P_i(\theta, \nu) = S_i(\nu) \text{Aeff}(\theta, \nu)$$

$$S_i(\nu) = \frac{1}{2}S(\nu)$$
 for unpolarized source



 $A_{eff}(\theta)$ : the beamshape

### Two handy antenna facts

# All-sky integral of A<sub>eff</sub> depends only on wavelength:

$$\oint A_{eff}(\hat{\mathbf{n}}).d\Omega = \lambda^2$$

high gain = small beam area

"no high-gain isotropics"

$$A_{iso} = \lambda^2 / 4\pi$$

#### Reciprocity theorem;

transmit beamshape = receive beamshape

### Antenna response

GEOMETRIC AREA "A"

B(v,n): Brightness - Watts/Hz/m<sup>2</sup>/sterad

 $A(v, \mathbf{n}_0)$ : Effective collecting area –  $m^2$ 

Received power density in pol. i:

$$P_i(\hat{\mathbf{n}}_0) = \oint B_i(\hat{\mathbf{n}}) A_{eff}(\hat{\mathbf{n}} - \hat{\mathbf{n}}_0) d\Omega$$

For "broad" sources;

$$P_i(\hat{\mathbf{n}}_0) = \lambda^2 B_i(\hat{\mathbf{n}}_0) = kT_B(\hat{\mathbf{n}}_0)$$



# Perfectly-illuminated circular aperture

$$A_{eff}(0) = A_{physical} = \pi r^2$$
 (projected area)



### The "Dish" Advantage

Simplicity - cost effective for collecting area

Sensitivity – hard to beat

Versatility – imaging, spectral line, pulsars ....

Adaptability - still going strong after ~50 years!













### The real world — "Galileo" Feed



#### A real 64-metre beam – at 2.3GHz



### Multibeam Feeds

Why stop at one?

The simple parabolic reflector is best.

Shaped reflectors and Cassegrains can't compete



## Transforming technology



### Phased Array Feed



#### BETA – a PAF interferometer



Image: Ian Heywood



## Antenna/feed sensitivity

Aliases for A<sub>eff</sub> (effective area);

Aperture efficiency  $\eta = A_{eff}/A_{physical}$ Forward gain (dBi)  $G = 10*log(A_{eff}/A_{iso})$ 

 $\lambda^2/4\pi$ 

S/T ("Jy per Kelvin") :=  $2k/A_{eff}$  .  $10^{26}$ 

## Antenna gain (A<sub>eff</sub>) vs elevation

22.235GHz 25-Jul-2001 (P371A)



#### Nyquist noise theorem

(Thompson-Nyquist Theorem)



## Antenna noise temperature: T<sub>A</sub>

T<sub>A</sub>: temperature of a resistor producing the same power density in the receiver;

$$P_i = kT_A dv = kT_{ref} dv \rightarrow T_A := T_{ref}$$

Alternatively for uniform T<sub>B</sub>;

$$P_i(\hat{\mathbf{n}}_0) = \lambda^2 B_i(\hat{\mathbf{n}}_0) = kT_B(\hat{\mathbf{n}}_0)$$

$$\rightarrow$$
  $T_A := T_B$ 

T<sub>A</sub>: temperature of an equivalent uniform black-body radiation giving same power density

The Dicke switch



## The noise equation

 $T_{sys}$  = total receiver power expressed as a temperature



Typically,  $T_A$  < Tsys in radio astronomy!

## Signal-to-Noise: extended source

Large source, small beam:  $\theta_{src} >> \theta_{FWHM}$ Equivalent black-body at  $T_B$ 

then  $T_A = T_B$ independent of antenna size,gain

$$SNR = T_B / T_{sys}$$

T<sub>sys</sub> is figure of (de)merit for extended sources

## SNR small (unresolved) sources

Point source, unpol. flux density S,  $\theta_{src} \ll \theta_{FWHM}$ 

$$kT_A = \frac{1}{2} S^*A_{eff}(0)$$

$$SNR = T_A / T_{sys} = SA_{eff}(0) / kT_{sys}$$



Figure of merit:  $A_{eff}(0) / T_{sys}$ 

= 
$$2k^*T_{sys}/A_{eff}(0)$$

## The single-dish millstone

Large and quasi~constant "DC" noise pedestal floor – Small fluctuations with time/frequency are important!



## Averaging to measure T<sub>A</sub>



## Radiometer Equation

Basic problem: want  $T_A = T_{sys}$  (on source)  $- T_{sys}$ (off source)

$$SE(T_{sys}) = \alpha . T_{sys} / \sqrt{t . \Delta f}$$

#### where;

t = integration time (seconds)

 $\Delta f$  = detector bandwidth (Hz)

 $\alpha$  = factor of order unity (system dependent)

1 sigma (SE) not usually enough → 3 or 5 sigma

NB: only valid for "white noise", not "1/f" noise etc.

## Single-dish system – the basics



## Why we use filterbanks

Frequency dispersion of Vela pulsar, folded observation



#### Pulsars: average "off pulse" noise;



#### Out of scope

- Secondary reflector systems
- Surface accuracy deformations
- Holography
- Pointing models
- Fourier theory (aperture ←→ beams)
- Aperture blockage
- Polarization
- •

### Further reading: the classics

"Radiotelescopes" - Christiansen & Hogbom

"Radio Astronomy" – Kraus

"Interferometry and Synthesis in Radio Astronomy" - Thompson Moran & Swenson

This talk terminates here!

# Stop!

Talk limits exceeded