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Mass and Motion in General Relativity*

From the infinitesimal scale of particle physics to the cosmic scale of the universe,
research is concerned with the nature of mass. While there have been spectacular
advances in physics during the past century, mass still remains a mysterious entity
at the forefront of current research. Particle accelerators in the quest for the Higgs
boson responsible for the mass of particles, laser interferometers that are sensitive
enough to respond to gravitational waves generated by the motion of astrophysi-
cal bodies, equivalence principle tests of the relationship between gravitational and
inertial mass are among the most ambitious and expensive experiments that funda-
mental physics has ever envisaged.

Our current perspective on gravitation has arisen over millennia, through falling
apples, lift thought experiments and stars spiraling into black holes. In this volume,
the world’s leading scientists offer a multifaceted approach to mass by giving a con-
cise and introductory presentation into their particular research on gravity. The main
theme is mass and its motion within general relativity and other theories of gravity,
particularly for compact bodies. Within this framework, all articles are tied together
coherently, covering post-Newtonian and related methods applied to in-spiraling
compact binaries, as well as the self-force approach to the analysis of motion.

All contributions reflect the fundamental role of mass in physics, from issues
related to Newton’s laws, via the effect of self-force and radiation reaction within
theories of gravitation, to the role of the Higgs boson in modern physics. Precision
measurements are described in detail; modified theories of gravity reproducing ex-
perimental data are investigated as alternatives to dark matter and the fundamental
problem of reconciling the theory of gravity with the physics of quantum fields is
addressed.

Radiation and motion have been hotly debated within general relativity from the
inception of the theory well beyond the theoretician’s arena. Mass and motion are
intimately intertwined as self-acceleration depends directly on the mass of the body

*Lectures from the School on Mass held at Orléans on 23-25 June 2008
Organised by the Observatoire des Sciences de I’Univers en région Centre OSUC, Université
d’Orléans UO, Centre National de la Recherche Scientifique CNRS
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experiencing it. Recent developments have shown that the computation of radiation
reaction is unavoidable for determining the gravitational waveforms emitted not
only by large bodies in binary formation but also from sources such as the capture
of stellar size objects by super-massive black holes.

The main theme of this volume is indeed mass and its motion within general
relativity (and other theories of gravity), particularly for compact bodies, to which
many articles directly refer.

Within this framework, after a presentation of the mass and momentum in gen-
eral relativity (Jaramillo and Gourgoulhon), there are chapters on post-Newtonian
(Blanchet, Schifer), effective one-body (Damour and Nagar) methods as well as on
the self-force approach to the analysis of motion (Wald with Gralla, Detweiler, Pois-
son, Barack, Gal’tsov). post-Newtonian and self-force methods converge in their
common domain of applicability (Blanchet, Detweiler, Le Tiec and Whiting). A
snapshot on the state of the art of the self-force (Burko) and the historic devel-
opment of the field including future perspectives for the classic free fall problem
(Spallicci) conclude this central part.

Auxiliary chapters set the context for these theoretical contributions within a
wider context. The space mission LISA (Jennrich) has been designed to detect the
gravitational waves from EMRI captures. Motion in modern gravitation demands
an account of the relation between vacuum fluctuations and inertia (Jaeckel and
Reynaud). A volume centred on the fundamental role of mass in physics should face
issues related to the basic laws of mechanics proposed by Newton (Limmerzahl)
and precision measurements (Davis).

The role of the Higgs boson within physics is to give a mass to elementary parti-
cles (Djouadi), by interacting with all particles required to have a mass and thereby
experiencing inertia.

Motion of stars and of galaxies are explicable according to most researchers
by only evoking yet undetected matter and energy constituting around 95% of our
universe. A proposed alternative to dark matter theories is due to the modified theo-
ries of gravity (Esposito-Farese) such as MOND (MOdified Newtonian Dynamics).
Even if general relativity does not explain gravity, there still remains the fundamen-
tal problem of reconciling any theory of gravity with the physics of quantum fields
(Noui), itself so well verified experimentally.

The book is based upon the lectures of the School on Mass held in Orléans,
France, in June 2008. The school was funded by CNRS Centre National de
la Recherche Scientifique, INSU Institut National des Sciences de 1’Univers,
UO Université d’Orléans, Région Centre, Conseil Régional du Loiret, Observa-
toire de Paris and was organised by OSUC Observatoire des Sciences de I’Univers
en région Centre and its associated laboratory LPC2E Laboratoire de Physique et
Chimie de I’Environnement et de I’Espace.

The editors wish to thank the OSUC director (Elisabeth Verges) for continuous
support and organisation of the school; the OSUC staff (S. Bouquet, T. Cantalupo,
L. Catherine, N. Rolland) who dealt with all issues related to the practical or-
ganisation and running of two international events (the School followed up by
the 11th Capra meeting on radiation reaction); the LPC2E director (M. Tagger)
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for suggestions and hosting the Capra workshop; the local CNRS delegation
(P. Letourneux) for assistance and support; M. Volkov (Univ. Tours) for suggestions
and all members of the scientific and organisation committees, especially S. Cordier
(MAPMO - Univ. Orléans).

Both events are shown on the OSUC web pages: http://www.cnrs-orleans.fr/osuc/
conf/

The contributions to this book have been anonymously refereed and revised by
the editors.

Luc Blanchet
Alessandro Spallicci
Bernard Whiting
Editors

.||||||:||$

UNIVERSITE D'ORLEANS
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The Higgs Mechanism and the Origin of Mass

Abdelhak Djouadi

Abstract The Higgs mechanism plays a key role in the physics of elementary
particles: in the context of the Standard Model, the theory which, describes in
a unified framework the electromagnetic, weak, and strong nuclear interactions,
it allows for the generation of particle masses while preserving the fundamen-
tal symmetries of the theory. This mechanism predicts the existence of a new
type of particle, the scalar Higgs boson, with unique characteristics. The detec-
tion of this particle and the study of its fundamental properties is a major goal of
high-energy particle colliders, such as the CERN Large Hadron Collider or LHC.

1 The Standard Model and the Generation
of Particle Masses

The end of the last millennium witnessed the triumph of the Standard Model
of elementary particles, the quantum and relativistic theory which describes in a
unified framework three of the four fundamental forces in Nature: the electromag-
netic, weak, and strong nuclear interactions. In particular, major progress has been
achieved in the last decade as, on the one hand, the discovery of the top quark has
finally allowed to fully reconstruct the puzzle formed by matter elementary particles
and, on the other hand, very high precision experiments have asserted the validity
of the model for describing the three particle interactions with an unprecedently
high degree of accuracy. Nevertheless, one cornerstone of the theory still remains to
be tested: the mechanism by which the particles acquire mass while preserving the
fundamental symmetries of the theory. This mechanism predicts the existence of a
new type of particle, the scalar Higgs boson, which is expected to be produced and
studied at the CERN Large Hadron Collider (LHC), which will soon start operation.

In this mini-review, I present a pedagogical introduction to the Standard Model
and the Higgs mechanism for mass generation. I then briefly describe the basic
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properties of the Higgs particle and discuss the prospects for producing it at the
LHC and for studying its basic properties. The Higgs sectors of some scenarios for
new physics beyond the Standard Model will be briefly commented upon.

1.1 The Elementary Particles and Their Interactions

Let us start by briefly summarizing the particle content of the Standard Model and
the basic interactions to which it is subject [1], also sketched in Figs. 1 and 2.

Particles of: matter (s=1) force (s=1) mass (s=0)
3 families of fermions gauge bosons Higgs
quark up quark charm | quark top gluon
u c t g
Q- +2/3 +2/3 +2/3 0
m—| ~5MeV 1.6 GeV 172 GeV 0
quark down |quark strange [quark bottom photon
d S b Y
1/3 1/3 1/3 0 Higgs
~5MeV 0.2 GeV 4.9 GeV 0 H
neutrino e neutrino m [ t neutrino boson Z 0
y 2 114 GeV
Ve Vm Vt 70 e
0 0 0 0
~0 ~0 ~0 91.2 GeV
electron muon tau bosons W
e m t wE
- -1 -1 +1
0.5 MeV 0.1 GeV 1.7 GeV 80.4 GeV

Fig. 1 The elementary particles of the Standard Model, their spin, electric charges, and their
masses in Giga-Electron Volts (GeV) and in units where the speed of light c is equal to unity

Fig. 2 Diagrams (called Feynman diagrams) illustrating the three fundamental interactions of the
Standard Model. (a) The electromagnetic interaction, where an electron emits a photon, continuing
with altered momentum; (b) the weak interaction responsible for the decay of a muon, via the
exchange of a W boson, into an electron and muonic and electronic antineutrinos; (c) the strong
interaction where the u,u,d quarks constituting the proton interact by exchanging or emitting gluons
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The particles that constitute the building blocks of matter have intrinsic magnetic
moment or spin equal to s = 1/2 and are called fermions as they obey to Fermi—
Dirac statistics.! They appear in three families; see Fig. 1. The first family forms
ordinary matter: it consists of the electron and it associated neutrino, which are
called leptons, as well as the up and down quarks with fractional electric charges,
and which form nuclear matter, that is, the protons and neutrons. The two other
families are perfect replica of the former: the leptons and quarks that constitute
them have exactly the same quantum numbers but larger masses. They decay into the
fermions e, v, and u of the first family which, in contrast, are absolutely stable. Note
that the top quark, discovered in 1995, is 330,000 times heavier than the electron,
observed by Thomson a century earlier. The latter is far heavier than the neutrinos,
which have very small masses that can be safely neglected in the present discussion.

To be complete, one should note that for each particle is associated an antiparticle
that has the same properties but opposite electric charge; these are usually noted with
a bar, T for the antifermion of the fermion f.

Besides, one has the force particles that mediate the fundamental interactions
between the various fermions. They have a spin equal to unity, s = 1, and are called
bosons as they obey to Bose—Einstein statistics.> The photon, denoted y, is the mes-
senger of the electromagnetic interaction to which are subject charged particles, that
is, all fermions except neutrinos. The W+, W™, and 70 bosons mediate the weak nu-
clear interaction responsible for the radioactive decay of heavy particles and which,
in principle, concerns all fermions. Finally, eight gluons are the messengers of the
strong nuclear force that binds the atomic nuclei, and which concerns only quarks.

Note that there is a fourth fundamental force in Nature, the gravitational
interaction for which the messenger is the hypothetical graviton of spin 2. It has a
magnitude that is far too weak to play a role at the energies that are being probed in
laboratory experiments. It is thus neglected, except in some cases discussed later.

1.2 The Standard Model of Particle Physics

The quantum and relativistic theory that describes in a unified framework the elec-
tromagnetic, weak, and strong forces of elementary particles is called the Standard
Model [2, 3]. It is based on a very powerful principle, local or gauge symmetry:
the fields corresponding to the particles,” as well as the particle interactions, are
invariant with respect to local transformations (i.e., for any space—time point)
of a given internal symmetry group. The model is a generalization of Quantum

! The exclusion principle, put forward by Wolfgang Pauli in 1925, forbids to two fermions to be in
the same quantum configuration.

2 In contrast to fermions, several bosons can occupy the same quantum configuration and, thus, can
aggregate.

3In a quantum theory, to each particle is associated a field that has a given number of degrees
of freedom. For instance, the fields associated to a fermion or to the (massless) photon have two
degrees of freedom, while a real scalar field has a single degree of freedom.
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Electro-Dynamics (QED) [4], the quantum and relativistic theory of electromag-
netism which describes the interaction of electrically charged particles through the
exchange of photons. The latter is invariant under local phase transformations* de-
scribed by a symmetry group noted U(1)q and conserves the quantum number that
is the electric charge Q.

The symmetry group of the Standard Model is slightly more complicated and is
denoted by SU(3)¢c x SU(2)L x U(1)y.

— For the strong interaction [3], based on the symmetry group SU(3)c, the quarks
appear in three different states differentiated by a quantum number called color
(which has nothing to do with the usual color) that they exchange via eight inter-
mediate massless gluons.’

— The electromagnetic and weak interactions are combined to form the electroweak
interaction [2], which is based on the symmetry group SU(2). x U(1)y. The
fermions appear in two quantum configurations called left- and right-handed
chiralities corresponding, for massless fermions, to the two possibilities for the
projection of spin onto the direction of motion (s = £ %). The fermions with left-
handed chiralities of each family are assembled in a doublet of weak isospin,
while the fermions with a right-handed chirality are in singlets of weak isospin.
In the case of first-family leptons, for instance, the left-handed electron and its
associated neutrino always appear in the form of a doublet (;*) of isospin (ver

has isospin +% while e, has isospin —%), while the right-handed electron ap-
pears in a singlet eg (with isospin equal to 0); there is no right-handed neutrino
ver. The same holds for quarks: the left-handed quarks form a doublet (gt) and
the right-handed ones ug, dg are singlets.

— For a given particle, the quantum number of hypercharge Y is given by the elec-
tric charge and the isospin, Y = 2Q — 2L

The electroweak interaction is mediated by the exchange of the gauge bosons®

W=*,Z° and the photon y. While the photon, the messenger of the long range

4 In QED, the Lagrangian density that describes the theory is invariant under phase transformations
on the charged fermionic fields collectively denoted by ¥, ¥ (x,,) — ¢’ 0y (x ), where x, = (X, 1)
is the space—time four-vector and Q the electric charge of the fermion. These transformations are
called gauge or local transformations since the parameter 8 depends on the space—time four-vector.
The photon field mediating the interaction and described by the four-vector A, = (A, Ao), trans-
forms as: A, (x,) = A,(x,) — 53}19()6”), where d,, is the derivative with respect to x,,. In fact,
the interaction of fermions via the exchange of photons can be induced in a minimal way in the
Lagrangian density of the free fermion and photon systems, by substituting the usual derivative d,,
by what is called the covariant derivative: D, = 9, — iQA,,. The gauge transformation group is
noted U(1)¢ for the group of unitary matrices of dimension one.

3 The transformations of the SU(3)¢ symmetry group of the strong interaction, called Quantum
Chromo-Dynamics or QCD, are generated by eight 3 X 3 unitary matrices with determinant equal
to unity. The quarks are triplets of the group (they appear in three colors) while the gluons cor-
respond to the eight generators of the group (there are n?> — 1 generators for SU(n)) and are
non-massive.

® The three generators of the SU(2);, group [n2—1=3 for n =2], which can be identified with the
three 2 X 2 Pauli matrices that generate spatial rotations, correspond to the three-vector bosons
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electromagnetic force, has zero-mass, the w=, 70 gauge bosons should be massive
since they mediate the weak force that has a short range.

The Standard Model combines esthetics, since gauge invariance provides a sym-
metry and is related to a geometrical principle, economy as the number of gauge
bosons is fixed and their interactions uniquely determined in a minimal way once
the symmetry group is chosen, mathematical coherence and, thus, the possibility of
predicting any phenomenon with infinite precision in principle. Last but not least, it
had a blatant experimental success as some of its predictions have been confirmed
at the permille level of accuracy [1, 5]. This makes the Standard Model one of the
most successful and most precisely verified theories in Physics.

1.3 The Higgs Mechanism for Mass Generation

A cornerstone of the Standard Model is the mechanism that generates the particle
masses while preserving the gauge invariance of the theory. Indeed, the direct in-
troduction of masses for the fermions and for the gauge bosons that mediate the
weak interaction violates the invariance with respect to the transformations of the
electroweak symmetry group. In principle, gauge bosons should remain massless to
preserve a local symmetry.’ This is for instance the case of the photon for which the
zero-mass ensures the invariance of electromagnetism with respect to phase trans-
formations. On the other hand, the fact that the left- and right-handed fermions do
not have the same isospin quantum numbers prevents them from acquiring a mass
in a gauge invariant way under isospin symmetry.®

It is the Higgs—Brout—Englert mechanism [6, 7], commonly called the Higgs
mechanism, which allows the generation of particle masses while preserving the
gauge symmetry of electroweak interactions.

The Higgs mechanism postulates the existence of a doublet (under isospin) of
complex scalar fields,

_ (Re®t +ilmot
?= (Re¢0+ilm¢0 ’ (D

WM', W/f, Wj, the messengers of the interaction. The gauge boson associated with the unique
generator of the U(1)y group is noted B,,. The four gauge bosons of the electroweak group,

WHl s Wi, W:, and B, are not the physical ones; the latter are linear combinations of the former:

Wj: = %(WM1 F iWMZ), Zﬂ = cos GWW;’ +sinOy By, A, = —sinGWW#3 + cos O B,
where 6y is the electroweak mixing angle.
7 A mass term for the photon and thus a term that is bilinear in the fields, M%AHA“ (with the
notation A, A* =3, A, A, = A2 — A - A), will violate the invariance with the transformations
under the group U(1)g since one would have: M34,A* — M3(A, — 53,&)(/1#— 58“0) #*
M3ZA, AN,
8 In the case of the first family of leptons for instance, since (¢¢+) forms an isospin doublet while

er forms an isospin singlet, one cannot form a mass term for the electron (which is bilinear in the
electron field), m,e; eg, as this term violates SU(2), symmetry.
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to which one associates a potential that is invariant under the transformations of the
SU@R)L x U(1)y electroweak symmetry group,

V(@) = p2oted + A(dTd)?. 2)

In this equation, 2 stands for the mass term of the field @ and A the (positive)
coupling constant of its self-interaction. For positive values of w2, the potential
V(@) has the usual form of an inverted bell in which the minimum of the field @,
corresponding to the state of vacuum which should be stable, has zero value. In this
case, we simply have four additional scalar fields corresponding to four new degrees
of freedom or scalar particles, which does not help much toward the solution of the
mass generation problem. The situation becomes much more interesting if the mass
squared term j? is negative. In this case, the potential V(&) has the shape of a
bottle of Champagne bottom as shown in Fig. 3. The minimum of the potential is
not reached for a zero value of the field @ (or, rather, for its neutral component @°)
as usual, but at the nonzero value v = /—u2/A that is called the nonzero vacuum
expectation value of the field @.

When interpreting the field content of the theory starting from this nonsymmetric
(the small ball of Fig. 3 having chosen a given minimum) but physical vacuum, one
realizes that three degrees of freedom, among the four degrees of freedom of the
complex doublet field @, have disappeared from the spectrum: they have been “ab-
sorbed” by three gauge bosons of the electroweak interaction. These spin-1 fields,
initially massless and with two components or degrees of freedom called transverse
components, will acquire an additional degree of freedom corresponding to their
longitudinal component, a characteristic signature of massive spin-1 fields.

The SU(2)L x U(1)y symmetry is then still present but, since the vacuum is not
symmetric, it is not apparent: it is said to be spontaneously broken. Thus, it is the
spontaneous breaking of the electroweak symmetry that generates the masses of the
vector bosons W* and Z° in a gauge invariant way. The photon remains massless as
it should be to explicitly preserve the gauge invariance of electromagnetism.’

Fig. 3 The potential of the
scalar field @ with its
minimum at the value v of the
field

9 Some technical details of this mechanism are as follows. One first imposes to the Lagrangian den-
sity of the field @ = (g: ) to be invariant under the local transformations of the SU(2), X U(1)y
symmetry group. The most general form of the Lagrangian is given by:
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Using the same scalar field @, the masses of the Standard Model fermions can
also be generated in a gauge invariant manner by introducing, for each fermionic
field with left- and right-handed chiralities (and thus, not for the neutrinos which
have only left-handed chiralities) interaction terms with the scalar field. After spon-
taneous symmetry breaking, one identifies the magnitude of the various interaction
terms with the experimentally measured values of the fermion masses.'?

Lo =(D'®) (D, @)=V (®), V(®)=u’d'®d + 1(d7P)?

where 2 is the mass term and A the self-coupling constant. The covariant derivative D,, induces
the interactions of the field ¢ with the gauge boson fields W, B,,:

Dy =08, —ig; W —ig, 5B,

with %r" and % the generators of the SU(2), and U(1)y groups with coupling constants g, and g;.

For u? < 0, the minimum of the potential is at the (vacuum expectation) value v = /—u2/A. To
obtain the physical fields, one must describe the Lagrangian % with the true and stable vacuum
and the various steps to follow are:

— Write the doublet field @ in terms of four real fields 6; » 3(x) and H(x) and use the expansion
series of an exponential, which to first order gives:

—( e+ ~ ieu(x)rﬂx)/vL( Vo)
P(x) (j(ﬁH)—zez) =¢ 2 VHE®

— Use the freedom to perform a gauge transformation on @ to eliminate the three fields 0 » 3

B(x) = e W B(x) = Lo ()

— Develop the kinetic term | D, @|? of .%, which, gives
2
3@ H)? +Z+H? WIHiW2P+5(v + H)? g W, —g1 Byl

After having defined the new fields Wf, Zﬁ, and A,, with sinfy = g/ gl + g2, one
identifies the terms that are bilinear in these fields with the masses of the associated particles. One
realizes then that the 6, , 3 degrees of freedom have been absorbed by the fields W= and Z° to
form their longitudinal components and thus their masses are given by:

My = tvgy, Mz =1v\/g3+g1. My =0.

With the value v given by the Fermi constant of weak interaction, v =1/ (W2Gp)'/? = 246
GeV, and the experimentally measured values of the coupling constant g, and g, one recovers the
correct masses for the W and Z° bosons. The photon, instead, remains massless, M4 =0, as it

should. For more details on the Higgs mechanism, see for instance the detailed review of Ref. [7].

10To generate the fermion masses, one introduces a Lagrangian density describing the fermion—

Higgs interactions in an SU(2), x U(1)y gauge invariant way. In the case of the electron and
the neutrino for instance, and taking into account that the leptons with left-handed chirality are in
SU(2), doublets while the electron with right-handed chirality is in a singlet, one would have:

ZLr=fe(e,v)Per = fo(ve, EL)JLi(8+H)eR~
One then identifies the masses of the electron and the neutrino with the bilinear terms in the fields:

me= fev/«/i and m, =0.
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Finally, among the four initial degrees of freedom of the field ¢ and after three
have been absorbed by the W* and Z° gauge bosons to acquire their masses, one
degree of freedom will be left over. This residual degree of freedom corresponds to
a physical particle,'! the Higgs boson H, the “Grail of particle physics.”

The Standard Model, despite all of its brilliant successes, will only be complete
and validated once this particle has been observed and its fundamental properties
determined. This is the major goal of high-energy colliders and, in particular, of the
CERN LHC which has recently started operation.

2 The Profile of the Higgs Particle

2.1 Characteristics of the Higgs Boson

The Higgs boson has remarkable characteristics, which means that it has a unique
status in the table of elementary particles given in Fig. 1.

First of all, in contrast to matter particles with spin 1/2 and to gauge particles
with spin 1, it has spin zero.!” It is therefore a boson, as it has integer spin, but it
does not mediate gauge interactions.

Another unique property of the Higgs particle is that it interacts with or couples to
elementary particles proportionally to their masses: the more massive is the particle,
the stronger is its interaction with the Higgs boson.'® Thus, the Higgs particle will
couple more strongly to the messengers of the weak interactions, the W* and Z°
bosons, the masses of which are of the order of hundred GeV. It couples also more
strongly to the top quark, the heaviest particle in the Standard Model, and, to a
lesser extent, the bottom quark and the 7 leptons, than to the fermions of the first
and second generations which have much smaller masses. Furthermore, it does not
couple to the neutrinos, which are considered as being massless.

The Higgs boson does not couple directly to photons and gluons as the lat-
ter have no mass (in the case of gluons, a direct coupling is also absent because

1 The mass of the Higgs boson can be simply deduced from the scalar Higgs potential by isolating
the terms that are bilinear in the H fields, %M ,%, H'H, and one obtains

MH=V2/XV2.

12 Scalar or spin-zero particles also exist in Nature, but not at the fundamental level: the = mesons,
for instance, are spin-zero particles but they are bound states of spin 1/2 quarks.

13 The interactions of the Higgs boson with the other particles, that is, the terms in the density
Lagrangian involving the fields H and two fermionic fields or gauge bosonic fields are described
by the same terms giving the masses, since H always appears in the combination H +v. The
interaction of the Higgs boson to the particles is thus proportional to their masses:

L Xmy /v, Lyw+w- X g2Mw, Lrzz X gaMz/ cos Oy .
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the Higgs boson does not carry color quantum numbers). However, couplings can
be induced in an indirect way through quantum fluctuations. Indeed, according to
Heisenberg’s uncertainty principle of Quantum Mechanics, the Higgs boson can
emit pairs of very heavy particles (such as top quarks for instance) and immediately
absorb them; but these virtual particles can, in the meantime, emit photons or gluons.
Higgs—photon—photon and Higgs—gluon—gluon couplings are then generated. How-
ever, they are expected to be rather small, as they imply intermediate interactions of
the virtual particles to photons and gluons, which have a small intensity.

Finally, the Higgs boson has also self-interactions, residual of those of the orig-
inal scalar field @ shown in the Higgs potential of Eq. 2; the magnitude of these
triple and quartic self-interactions are also proportional to the Higgs boson mass
(in fact, Higgs mass squared).'*

2.2 Constraints on the Higgs Boson Mass

The Higgs boson mass My is the only free and unknown parameter of the Stan-
dard Model, since the coupling constants of the three fundamental interactions that
it describes as well as the masses of the fermion and the gauge boson have been
experimentally determined. Once this parameter is fixed, the entire profile of the
Standard Model Higgs boson is uniquely determined. In particular, its couplings to
the other particles, its production and decay rates can be calculated.

Nonetheless, My is not a completely free parameter as it is subject to some
experimental and theoretical constraints [8] that we briefly summarize.

The experimental constraints come mainly from the ancestor of the LHC, the
Large Electron Positron collider LEP, an electron—positron collider that has operated
in the 1990s with an energy ranging approximately from 90 to 210 GeV. Important
constraints come also from the Tevatron, the proton—antiproton collider of Fermilab
near Chicago with an energy of 2 TeV. The LEP experiment has first allowed a
comprehensive direct search for the Higgs boson and the absence of any signal
at LEP led to the lower bound of 114 GeV on its mass. Current results from the
Tevatron indicate that a Higgs particle with a mass comprised between 160 and 170
GeV is probably excluded. In addition, the high-precision measurement of some
electroweak observables — of the order of one permille for some of them — led to
indirect constraints on My. Indeed, even if it is too heavy to be produced directly in
collider experiments, the Higgs boson appears in the small but measurable quantum
fluctuations of, for instance, the masses of the Z° and W* bosons, which have been

14 The self interactions between three or four Higgs bosons can be readily obtained from the scalar
Higgs potential after electroweak symmetry breaking and read:

fHHH X 3M1%1/V, gHHHH X 3MZI/V2

The triple and quartic Higgs couplings are thus proportional to the Higgs mass squared.
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July 2008 My = 154 GeV
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Fig. 4 Left: the preferred values of the Higgs boson mass in the Standard Model (the minima
of the curves) after a global fit of all electroweak precision data. The full curve in black repre-
sents the 68% confidence level result which leads to My = 84f§g GeV, the blue band includes
the theoretical uncertainties and the dotted curves are for the results when some experimental in-
puts are slightly changed. The domain in yellow represents the excluded region, My < 114 GeV,
from direct Higgs searches at LEP; from Ref. [5]. Right: the triviality bound from the finiteness
of the Higgs self-coupling (upper curved in red) and the vacuum stability bound from the require-
ment of the positivity of the self-coupling (lower curved in green) on the Higgs boson mass as a
function of the new physics or cut-off scale A; the allowed region lies between the bands and the
colored/shaded bands illustrate the impact of various uncertainties; from Ref. [9]

determined with high accuracy. A global analysis of all electroweak high-precision
data available today [5] allows the imposition of an upper bound, My < 180 GeV,
with a 95% confidence level or probability;'® see the left-hand side of Fig. 4.

Theoretical constraints on the Higgs boson mass can also be derived from consid-
erations on the energy scale for which the Standard Model is valid before some new
physics beyond the model manifests itself. A first constraint is obtained from the re-
quirement that the theory remains unitary, an important constraint that, in Quantum
Mechanics, is related to the conservation of probabilities. For a too heavy Higgs
particle, some processes such as the scattering of W= and Z° bosons (in which a
Higgs particle can be exchanged) would have amplitudes that increase with energy
and would eventually violate unitarity at energies above 1 TeV. To preserve unitarity
in the context of the Standard Model, a Higgs particle with a mass below approxi-
mately 1 TeV is required.

Another constraint emerges from the fact that the self-coupling of the Higgs
boson, which is proportional to M, evolves with energy by virtue of quantum fluc-
tuations (virtual fermions, gauge, and Higgs bosons are exchanged in the coupling

15 These constraints, being indirect, are however valid only in the context of the Standard Model
and could be less severe in some of its extensions in which new phenomena might also contribute
to the observables via quantum fluctuations; see later.
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among three or four Higgs particles). This evolution is rather strong and at some
stage, the coupling becomes extremely large and the theory completely looses its
predictability.'® If the energy scale up to which the coupling A o« M 121 remains small
enough, and the Standard Model effectively valid, is of the order of the Higgs mass
itself, My should be less than approximately 1 TeV.!7 On the other hand, for small
values of the self-coupling, and hence of the Higgs boson mass, the quantum fluctu-
ations tend to drive the coupling to negative values and, thus, completely destabilize
the scalar Higgs potential to the point where the minimum is not stable anymore (the
scalar potential of Fig. 3 is inverted and the minimum is reached when the field is at
—o00). Requiring that the self-coupling stays positive and the minimum stable up to
energies of about 1 TeV implies that the Higgs boson should have a mass above ap-
proximately 70 GeV. However, if the Standard Model is to be extended to ultimate
scales, such as for instance the Planck scale Mp ~ 10'8 GeV, these requirements
on the self-coupling from finiteness and positivity become much more constraining
and the Higgs mass should lie in the range 120 GeV < My < 180 GeV. This is a
rather narrow margin that is close to the one obtained from the direct and indirect
experimental constraints.

2.3 The Higgs Decay Modes and Their Rates

Since the Higgs boson couples to particles proportionally to their masses, it
will have the tendency to decay into the heaviest particle allowed by kinemat-
ics (of course, one needs that the sum of the masses of the final particles does not
exceed the mass of the decaying Higgs). For a mass of the order of 100 GeV, the
Higgs boson will prefer to decay into a pair of bottom quarks and, to a lesser extent,
a pair of charm quarks or t leptons, which have smaller masses. The hierarchy
of the decay rates is given by the mass squared of these particles. The probability
for these decays to occur, or the branching ratios, are shown in Fig. 5 (center) and
as can be seen, for Higgs masses below 130 GeV, the decays into bottom quark
final states are by far dominant with a probability of the order of 80%, while the
probability for decays into charm quarks and t lepton pairs is of the order of a few
percent.

19n the Standard Model, and in particle physics in general, we do not know how to solve exactly
the equations of motion of the fields. The procedure is then to deal with a free field (noninteracting)
theory and to treat the interactions as small perturbations; this is possible as the coupling constants
of the electromagnetic and weak interactions, as well as the strong coupling constant at high energy,
are small enough. The system is thus expanded in series of the coupling constant and solved order
by order in the (perturbative) series. This approach fails if a coupling constant is too strong so that
the series is not convergent.

17 The exact value is My < 650 GeV when only the first terms of the perturbation series are
included. This value is remarkably close to the one obtained from numerical simulations in lattice
gauge theory where the theory can be solved exactly.
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Fig.5 The dominant decay processes of the Higgs boson including the loop and three-body decays
(left) and the rates or branching ratios of these Higgs decays as a function of My (center), together
with the total Higgs decay width as a function of My (right); from Ref. [10]

Nevertheless, some decay channels that should normally not appear can be in-
duced by quantum fluctuations. This is for instance the case of Higgs decays into
two gluons, two photons, or a photon plus a Z° boson. In particular, the decay rate
into two gluons, induced by a loop involving a virtual top quark which couples
strongly to the Higgs boson, can be comparable to the decay rates into charm quarks
and 7 leptons. Instead, the decay mode into two photons and into a photon plus a Z°
boson (which are induced mainly by top quark and W boson loops) are very rare, a
consequence of the fact that the electromagnetic coupling is much smaller than the
strong interaction coupling. For Higgs masses below 130 GeV, the probability for
these two decay modes to occur is at the few permille level.

In addition, the Higgs boson can decay into two rather massive particles, with
the sum of their masses larger than My, but one of which is virtual and decays
into two real particles with smaller masses. This is the case, for example, of the
Higgs decay into two W (or Z°) bosons for masses below 2My (2Mz) and thus,
one of the W* (Z°) bosons must be virtual and decays into a pair of rather light
fermions. In fact, for values of the Higgs mass above 130 GeV (and below 2My),
the rate for the three-body Higgs decay into a real and a virtual W¥ boson becomes
comparable and even larger than the otherwise dominating two-body decay into a
pair of bottom—antibottom quarks. This is due to the fact that the virtuality of the
gauge boson is partially compensated by the stronger coupling of the Higgs boson
to the W* bosons compared to the Higgs coupling to bottom quarks.

For Higgs boson masses of the order of 180 GeV and beyond, the Higgs decays
into two pairs of real WHW~ and Z°Z° bosons largely dominate with branching
fractions of two to one in favor of the former channel. Even for a Higgs boson with
a mass larger than 350 GeV, for which the decay channel into pairs of top quarks
becomes kinematically open, these two channels remain dominant thanks to the lon-
gitudinal components of the W*, Z° bosons which significantly enhance the rates.
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Finally, one should note that the total decay width of the Higgs boson, the inverse
of its lifetime, is of the order of only a few MeV for Higgs masses close to 100
GeV but it considerably increases with the Higgs mass to reach the GeV range for
My o 180 GeV and becomes of the same order of My when the latter approaches
1 TeV; see the right-hand side of Fig. 5. Thus, the Higgs boson is a very narrow
resonance for small masses but the resonance becomes very wide for a very heavy
Higgs particle.

3 Higgs Production at the LHC

3.1 The Large Hadron Collider

The LHC, located at CERN near Geneva, forms a circular ring of length 27 km
buried 100 meters underground; see Fig. 6. It is the largest scientific instrument ever
built and its construction represented a major technological challenge. The LHC is a
proton—proton collider operating at an energy of 14 TeV in the center of mass. Since
the protons are formed by three quarks, the effective energy, that is, the energy in
the quark center of mass, is of the order of 5 TeV. This energy is largely sufficient
to probe in depth the TeV scale.

An important characteristic is the luminosity delivered by the machine, corre-
sponding to its ability to produce particle collisions. Integrated over time, it has the
inverse unit of a cross section, that is the probability of an interaction during the col-
lision; the product of the two quantities gives the expected number of events. The
usual unit of a cross section is cm2, but since the events are extremely rare the com-
monly used unit is the picobarn (pb), 1 pp=1073¢ cm?, or femtobarn, 1 pb = 10> fb.
The luminosity expected at the LHC is of the order of 10 fb™! per year in the early
operating stage and should increase to 100 fb™! per year in the following years.

o
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Fig. 6 The LHC tunnel and
the various associated
experiments including the
multipurpose experiments
ATLAS and CMS (courtesy
from CERN)
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The two multipurpose detectors ATLAS and CMS [11] (there are also other
detectors dedicated to, for instance, the physics of the bottom quark and that of
heavy ions) have been devised to deliver the maximal amount of information on the
interactions that occur in their inner part and to cover a large spectrum of possible
signatures from known and new physical phenomena. Their potential has particu-
larly been optimized to detect the Higgs particle for masses comprised between 100
GeV and 1 TeV, in the main production modes and in the most important decay
channels such as decays into charged or neutral leptons, photons, and heavy quarks.

3.2 The Production of the Higgs Boson

At the LHC, the Higgs particle could in principle be simply produced in the an-
nihilation of an up or down type quark that lies inside the initial protons and its
corresponding antiquark;'® however, since the masses of these first family quarks
are very small, the Higgs production rates turn out to be completely negligible. The
Higgs particle should therefore be produced via a radiation from a rather heavy
particle such as the massive gauge bosons W+, Z? or the top quark, exploiting the
large Higgs couplings to these particles. Four production processes are then at our
disposal for Higgs production at the LHC [7]; see the left-hand side of Fig. 7.
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Fig.7 Left: Feynman diagrams for the dominant Higgs production mechanisms at the LHC. Right:
the Higgs production cross sections of these processes at the LHC (in pb) as a function of the Higgs
mass (the higher order corrections have been included); from Ref. [7]

18 While the quarks naturally appear inside the protons, antiquarks as well as gluons appear via
quantum fluctuations with a rather high probability.
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There is first Higgs production in association with a massive V.= W* or Z°
boson, a quark and its antiquark partner from the initial protons annihilate to produce
a virtual gauge boson, which then immediately decays into a real gauge boson and
a Higgs particle. There is also the process in which the quarks inside the protons
radiate (virtual) massive gauge bosons which then annihilate to produce a Higgs
particle; the final state would then consist of a Higgs boson and two quarks with
a very characteristic kinematics. A third production process exploits the very large
Higgs coupling to top quarks: a pair of top and antitop quarks is created in the
annihilation of the quarks and antiquarks (as well as the gluons) of the initial protons
and a Higgs boson is then emitted from one of the heavy final state particles.

Finally, there is the process in which two gluons from the protons (which again
appear through the quantum fluctuations of the u and d quarks forming the protons)
annihilate and, via a loop of virtual heavy top quarks, produce a Higgs particle.
This process is the inverse of the one that allows to the Higgs boson to decay into
two gluons discussed above. It turns out that this gluon fusion process is by far the
dominant Higgs production mechanism at the LHC. Indeed, the smallness of the
Higgs coupling to gluons, that is generated through tiny quantum fluctuations, is
compensated by the large Higgs coupling to the top quark, the favorable kinematics
since only one heavy particle is produced in the final state and, also, by the high
probability of finding a gluon in the proton at the very high energies that come into
play at the LHC.

The cross sections or production rates for these various Higgs production pro-
cesses are shown in the right-hand side of Fig. 7, with a unit that is the pb, which
would correspond to 10, 000 events for the standard luminosity expected at the LHC.
For relatively small Higgs masses, say below 200 GeV, the gluon fusion mechanism
has a cross section of the order of several tens of pb while the other processes have
cross sections that are one or several order of magnitude below. More than one mil-
lion events involving a Higgs particle can be thus expected after several years of
collider running. The production rates rapidly decrease with the Higgs mass and
when My approaches 1 TeV, the cross sections of the gluon fusion and W+, Z0 vec-
tor boson fusion processes become comparable, of the order of a fraction of a pb,
corresponding to a thousand events containing a Higgs particle.

One should note that in the previous Higgs production processes, it is very impor-
tant to take into account the quantum corrections of (at least) the strong interaction,
that is, when additional gluons are exchanged in loops or emitted in the final states.
For instance, in the case of the gluon fusion process, these higher order correc-
tions lead to an increase of the Higgs production cross section by approximately a
factor two.

3.3 Detection of the Higgs Boson

Producing the Standard Model Higgs particle at the LHC is thus relatively easy,
thanks to the high energy of the collider and its expected luminosity. However,
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detecting the Higgs particle in a very complex environment is another story. Indeed,
as the protons are not elementary objects and since the colliding beams contain a
very large number of protons, in general, there is not one single collision in any
event, but several. This is shown in the left-hand side of Fig. 8 where a Higgs event,
as seen by one of the LHC detectors, has been simulated and where one can ob-
serve that several tracks (corresponding to particles) appear with only a few of them
corresponding to the decay products of the Higgs boson.

In addition, the production rates of all other known Standard Model particles,
which are viewed as uninteresting background events that one should get rid of, are
simply gigantic. This is also illustrated in the left-hand side of Fig. 8, where the
cross sections for several Standard Model processes are compared to that of Higgs
production in the gluon—gluon fusion process for My = 150 GeV. For instance,
the total cross section for the production of hadrons, that is, light quarks and gluons
which are subject to strong interactions, is ten orders of magnitude larger than that of
a Higgs boson with a relatively low mass. Even the cross sections for the production
of W* and Z° bosons are three to four orders of magnitude larger. Detecting the
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Fig. 8 Left: simulation of a Higgs event in a proton—proton collision at the LHC and the cross sec-
tions for various production mechanisms (including a Higgs production mechanism for My = 150
GeV) as a function of the center of mass energy [12]. Right: the statistical significance of a signal
for a Higgs particle at the ATLAS experiment for various final state Higgs decays [11]
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Higgs particle in this hostile environment resembles finding a needle in a haystack;
the challenges to be met are simply enormous.

To be able to detect a Higgs particle, one should take advantage in an optimal
manner of the kinematical characteristics of the signal events that are, in general,
quite different from those of the background events. In addition, one should focus on
the decay modes of the Higgs particles (and those of the particles that are produced
in association with it such as W+, Z° bosons or top quarks) that are easier to extract
from the background events. Pure hadronic modes such as Higgs decays into quarks
or gluons have to be discarded although much more frequent in most cases.

For a Higgs boson with a mass close to 100 GeV, an interesting signature would
be the decay into two very energetic photons, a configuration that is rarely mimicked
by the background events. Although this Higgs decay mode has a very small prob-
ability to occur, at most a few permille for a light Higgs boson as shown in Fig. 5,
the production rates are large enough to compensate and to allow for a significant
number of signal events which can be disentangled from the backgrounds.'’

Another interesting signal configuration, valid for Higgs bosons with masses
larger than approximately 180 GeV, would be the decay into two Z° bosons which
then decay into electron—positron or muon—antimuon pairs. This final state with four
charged leptons is a rather clean signature (often called the Higgs golden mode) with
little background,”” allowing for a relatively easy detection of the Higgs particle up
to rather large masses. At higher Higgs masses, when the production cross sections
become smaller, this four-charged lepton signature can be supplemented by final
states in which one of the Z° bosons decays either into neutrinos or quark—antiquark
pairs, which occur more frequently and increase the statistics. In addition, the sig-
nature involving Higgs decays into W W™ pairs with the W* bosons decaying into
charged lepton and neutrino pairs (and, for higher Higgs mass, the more frequent
one with one of the W* bosons decaying into two quarks) could be used.?!

A gigantic effort has been made by the experimental collaborations [11], with the
precious help of theorists in particle phenomenology, to determine with the highest
accuracy the Higgs discovery potential at the LHC in the most important production
channels and the experimentally interesting decay modes. Taken into account were
all the backgrounds from Standard Model processes and the expected experimental

19 A characteristic of the signal is that the square of the sum of the two photon four-momenta
(called invariant mass) should correspond (as a result of energy—momentum conservation) to the
four-momentum squared of the Higgs boson, which is equal to Mlz_,. Therefore, the Higgs signal
events “peak at an invariant mass My,” while the background events should have a continuous
invariant mass spectrum with no particular peak.

20 Here again, one expects the two Z° bosons (reconstructed from their leptonic decays) from the
Higgs decays to, “peak at an invariant mass My,” while the background, from direct Z° boson pair
production, for instance, should have a continuous invariant mass spectrum.

21 Here, there is no invariant mass peak as the neutrinos from W= boson decays escape detection
and only appear indirectly as missing energy momentum (however, some kinematical distributions
have a striking behavior that can be observed). In this case, the signal is a significant excess of
events compared to the background; both should therefore be determined with a high confidence.
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environment; the performance of the machine and the characteristics of the ATLAS
and CMS detectors have been simulated in the most precise way.

The end result is that with the integrated total luminosity expected at the LHC
and adding all the production and decay channels, the Higgs particle cannot escape
detection in the entire mass range that is allowed theoretically. The right-hand side
of Fig. 8 shows the result obtained from a simulation of the ATLAS experiment>’
with a luminosity of 100 pb™! for various Higgs decay signatures. As one can see,
the statistical significance of the Higgs signal events with respect to the sum of all
(irreducible) background events, 0 = Nignal/ \/Nbackground, 18 for all values of My,
much larger than 0 = 5, the value beyond which one can claim discovery with a
very high degree of confidence. The most difficult regions are the low Higgs mass
region My ~ 120 GeV, where the main detection channel is the rare Higgs decays
into two photons, and the very high mass region, My & 1 TeV, where the production
cross sections are small; the significance is, however, large enough for discovery.

3.4 Determination of the Higgs Boson Properties

Another goal of the LHC, which is as important as the Higgs discovery itself, would
be to determine the fundamental properties of the Higgs particle once it is observed.
This would allow a check that the Higgs mechanism is indeed responsible for the
spontaneous breaking of the electroweak symmetry and, hence, of the generation of
the weak gauge boson and fermion masses.

At the LHC, the Higgs boson mass could be measured in a very accurate way
(below the percent level) by exploiting the two very clean decay channels discussed
above: the two photon decay in the low mass range and the decay into four charged
leptons via Z° bosons in the intermediate and high Higgs mass ranges. The latter
channel would also allow measurement of the total Higgs decay width for My > 200
GeV when it starts to be experimentally resolvable (for smaller Higgs masses, the
total Higgs decay width is too small to be resolved experimentally).

An indication on the spin of the Higgs boson would be provided by the observa-
tion of the decay into two photons: because of angular momentum conservation, a
spin-1 particle cannot decay into two spin-1 particles. However, this leaves the pos-
sibility for a higher (even and integer) spin such as, for instance, a spin-2 particle
as is the case for the graviton, the hypothetic messenger of the gravitational inter-
action. A more unambiguous way to determine the Higgs spin would be to take
advantage of the four charged lepton Higgs decay mode and to observe some corre-
lations between the angles formed by two of the final state leptons, which exhibit a
characteristic signature of an initially decaying spin-zero particle.

22 Similar results are obtained by the CMS experiment and in practice, one should combine the
results of the two experiments to increase the statistics and thus the significance of the signal.
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The determination of the Higgs couplings to gauge bosons and fermions is
possible at the LHC through the measurement of the cross sections times the branch-
ing ratios, given by the event rate in the various search channels. However, the
accuracy in this determination is rather limited because of the small statistics that
one obtains after applying the cuts that suppress the large backgrounds which are
often plagued with uncertainties, and the various systematical errors such as the
common uncertainty in the absolute luminosity. In addition, when one attempts
to interpret the measurements, theoretical uncertainties from the limited precision
on the quark/gluon densities in the proton and from the higher-order corrections
should be taken into account. Furthermore, the couplings that can be measured will
critically depend on the Higgs boson mass. For instance, in the mass range above
My ~ 2My, only the couplings to gauge bosons can be accessed directly and the
Htt coupling can be probed indirectly in the gluon fusion mechanism.

Nevertheless, and as shown in the left-hand side of Fig. 9, a statistical precision
of the order of 10 to 30% can be achieved for some ratios of partial widths, which
are proportional to the Higgs couplings squared. Under some theoretical assump-
tions, these measurements can be translated into absolute Higgs partial widths in
the various decay channels and hence, into the square of the Higgs couplings to
gauge bosons and fermions (in fact, mainly top quarks), as shown in the right-hand
side of Fig. 9. The accuracies deteriorate when the systematical errors are added.

A precise measurement of the trilinear Higgs self-coupling, which is the first
nontrivial probe of the Higgs potential and, probably, the most decisive test of the
Higgs mechanism, is unfortunately not possible at the LHC. Indeed, to probe this
coupling, one needs to consider processes in which two Higgs particles are pro-
duced, the leading one being double Higgs production in the gluon—gluon fusion
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Fig. 9 Left: relative accuracy expected at the LHC with a luminosity of 200 fb~! for the mea-
surement of various ratios of Higgs boson partial widths that are proportional to the square of the
Higgs couplings to the particles. Right: the relative accuracy expected in the indirect determination
of the partial and total widths I; and I" with some theoretical assumptions. Only the statistical
errors have been included and no detector simulation has been made. From Ref. [13]
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mechanism: a virtual Higgs particle is produced in the usual gluon—gluon to Higgs
mechanism and then splits into two real Higgs particles. The cross sections for such
a process are rather tiny even for low values of My and the corresponding back-
grounds are very large. Furthermore, the contribution of the diagram with the Higgs
self-coupling is diluted by another possibility for the same final state: the radiation
of both Higgs particles from the internal heavy top quarks.

Thus, the measurement of some Higgs couplings (such as the couplings to
W+, 70 and eventually top quarks) can be performed at the LHC only at the ten
percent level at most, while some couplings are not accessible (such as the cou-
plings to bottom and charm quarks, 7 leptons and muons, photons, as well as the
Higgs self-coupling that is essential to reconstruct the scalar potential responsible
for the breaking of electroweak symmetry) and will have to await for the successor
of the LHC. The latter will be, ideally, an electron—positron collider with a center of
mass energy ranging from 300 GeV to 1 TeV, a very high integrated luminosity and
a clear environment which would allow for high precision tests of the Higgs proper-
ties. An international project for such a machine, the International Linear Collider,
is under way and involves the major laboratories in high-energy physics [14].

4 The Higgs Beyond the Standard Model

Despite of its success in describing all data available today, the Standard Model is
far from being considered to be perfect in many respects. Indeed, it does not explain
the proliferation of fermions (why three fermion families?) and the large hierarchy
in their mass spectra (in particular, it does not say much about the observed small
masses for the neutrinos which are assumed to be massless) and does not unify in a
satisfactory way the electromagnetic, weak, and strong forces (as one has three dif-
ferent symmetry groups with three different coupling constants which, in addition,
almost fail to meet at a common value during their evolution with the energy scale)
and ignores the fourth force, the gravitational interaction. Furthermore, it does not
contain a massive, electrically neutral, weakly interacting, and absolutely stable par-
ticle that would account for dark matter which is expected to represent 25% of the
energy content of the Universe and fails to explain the baryon asymmetry in the
Universe: why there are (by far) more particles than antiparticles.

However, the main problem that makes particle physicists believe that the Stan-
dard Model is simply an effective theory, valid only at the energy scales that have
been explored so far, that is, much below 1 TeV, and should be replaced by a more
fundamental theory at the TeV scale, is related to the particular status of the Higgs
boson. Indeed, contrary to fermions and gauge bosons, the Higgs particle has a mass
that cannot be protected against quantum corrections (i.e., when the Higgs boson
emits and reabsorbs virtual particles). These corrections tend to drive the Higgs
mass to very large values, of the order of the scale of the underlying new physics
(which serves as a cutoff ) or the Planck scale (the ultimate scale), while we need it
to be close to the 100 GeV range. Thus, the Standard Model cannot be extrapolated
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up to energies higher than the TeV scale where some new physics should emerge.
This is the main reason which makes that particle physicists expect that something
new, in addition to the Higgs particle, should manifest itself at the LHC.

Among the many possibilities for this new physics beyond the Standard Model,
the option that emerges in the most natural way is Supersymmetry. Supersymme-
try combines internal gauge symmetries with space—time symmetries and relates
fermions and bosons: to each particle, it predicts the existence of a super-partner
(and thus, at least doubles the Standard Model particle spectrum) which should have
the same properties but with a spin different by a unit 1/2 and also a different mass
as Supersymmetry must be broken in Nature. The lightest of these new particles
is the ideal candidate for dark matter in the Universe. Supersymmetry protects the
Higgs mass from acquiring large values as the dominant quantum corrections from
standard particles are exactly compensated by the contributions of their supersym-
metric partners.”® These new particles should not be heavier than 1 TeV so as not to
spoil this compensation and, thus, they should be produced at the LHC.

In the minimal supersymmetric extension of the Standard Model, two doublets
of complex scalar fields are necessary to break the electroweak symmetry and to
give masses to gauge bosons and (separately) to isospin up and down fermions.
This leads to an extended Higgs sector compared to the Standard Model: rather than
one, one would have five Higgs particles, three neutral ones (noted h’, H, and A%),
and two charged ones (noted Hi); for a detailed review, see Ref. [15]. The lightest
neutral Higgs particle h” has, in general, the same properties as the standard Higgs
boson but, by virtue of Supersymmetry, a mass that is below 140 GeV. At least
this particle should be produced at the LHC; the other Higgs bosons, could also be
detected if they are not too heavy and their couplings to fermions not too tiny. This
is illustrated in Fig. 10, in which is shown the number of Higgs particles of this
minimal supersymmetric model, which can be observed by the ATLAS experiment
at the LHC (with a luminosity of 300 fb~!) in the plane formed by the two free
parameters (to first approximation) of the model: M4, the mass of one of the neutral
Higgs bosons and tanf, the ratio of the nonzero vacuum expectation values of the
two Higgs fields.

Other extensions of the Standard Model, such as non-minimal supersymmetric
theories for instance, predict an even richer Higgs spectrum.’® In contrast, some

23 In addition, the contribution of the supersymmetric particles to the energy evolution of the gauge
coupling constants means that the latter can indeed meet at a single point at a scale slightly below
the Planck scale; thus, the three interactions can be unified into one single interaction with one
coupling constant and hence, one symmetry group. Note also that Supersymmetry has many other
theoretical virtues: it is the first nontrivial extension of the Poincaré group in quantum field theory,
which, when made local, necessarily includes Einstein’s theory of gravity, and it appears naturally
in Superstring theories in which the elementary particles we observe are the excitation modes of
elementary strings with Planck length, &~ 10733 cm. These features may help to reach the ultimate
goal of particle physics: the unification of all fundamental forces including gravity.

24 For consistency reasons and to cope with experimental data, only singlets and (an even number
of) Higgs doublets can be added. In the most general supersymmetric extension with an arbitrary
Higgs content, the lightest Higgs should have a mass below 200 GeV and be observed at the LHC.
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new physics models such as theories with extra space—time dimensions® or models

inspired from the strong interactions but at the TeV scale, do not incorporate any
Higgs particle in their spectrum. However, to preserve the unitarity of the theory, a
new ingredient should appear in the scattering of the massive W* and Z° bosons,
and its effects should be measurable at the LHC. Thus, even if no Higgs particle is
detected at the LHC some new phenomenon should be observed.

5 Conclusions

Thus, several scenarios for the generation of the elementary particle masses are
possible. In addition to the one of the Standard Model with only one Higgs particle
(and which has been discussed in some detail), there are scenarios with an extended
and richer Higgs sector as in supersymmetric theories and scenarios with no Higgs
boson at all as in some versions of extra space—time dimensional models. To the
question: which option Nature has chosen? the LHC will soon provide an answer.

25 For instance, if there is an extra-dimensional space where only gravitons can propagate, the
weakness of the gravity interaction can be attributed to the existence of large extra space di-
mensions. In this scenario, the four-dimensional Planck mass is a fictitious mass scale, and the
fundamental gravity mass scale in the higher dimension could be close to the TeV scale which then
technically solves the hierarchy problem of the Standard Model and brings gravity into the game.
In some models, the symmetry breaking is triggered by specific boundary conditions for the gauge
fields in the compactification of the extra space dimensions, giving rise to Higgsless models.
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Testing Basic Laws of Gravitation — Are Our
Postulates on Dynamics and Gravitation
Supported by Experimental Evidence?

Claus Lammerzahl

Abstract Gravity is the most fundamental interaction; it not only describes a
particular interaction between matter, but also encompasses issues such as the notion
of space and time, the role of the observer, and the relativistic measurement pro-
cess. Gravity is geometry and, in consequence, allows the existence of horizons and
black holes, nontrivial topologies, a cosmological big bang, time-travel, warp drive,
and other phenomena unknown in nonrelativistic physics. Here we present the ex-
perimental basis of General Relativity, addressing its foundations encoded in the
Einstein Equivalence Principle and its predictions in the weak and strong gravity
regimes. We discuss several approaches in the search to reveal an influence of the
much sought-after quantum theory of gravity. We emphasize assumptions underly-
ing the dynamics — for example, Newton’s axioms and conservation laws — and the
current extent to which they are supported by experiment. We discuss conditions un-
der which gravity can be transformed away locally, and examine higher order time
derivatives in the equations of motion.

1 Introduction — Why Gravity Is So Exceptional

Gravity is the most fundamental interaction in physics: it is not only a very particular
interaction between particles, but also it is related to the notion of space and time,
the description of the observer, and the relativistic measurement process. Thus,
any issue related to gravity is also of concern for the description of all other
interactions.

Even by itself, General Relativity (GR), the relativistic theory of gravity, is highly
interesting. Since GR is related to the space—time geometry, the gravitational inter-
action modifies the structure of space—time and leads to surprising phenomena, such
as black holes. It is remarkable that we have a theory capable of predicting that a
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region of space—time can “disappear” and no longer be accessible to the observer.
Other unexpected effects, like lensing or cosmological implications such as the big
bang, have had a big impact on science, and even on the philosophy of science; in
particular, they have attracted very much the attention of the general public.

It is fascinating to follow the present observational exploration of black holes, for
example, in the center of our Milky Way [146]. In parallel, there are mathematical
studies of known black hole solutions of GR, and the search for new solutions of the
Einstein field equations, such as the solution for a disk of dust [127]. There are also
numerical studies of the merging of binary black holes which, when spinning, may
exhibit an unexpected acceleration [56].

GR in general, and solutions with black holes in particular, have lead to very
beautiful, highly interesting, and exceedingly stimulating mathematics studies. In
particular, these studies include questions about the geometry and the topology of
black holes and our universe. These issues have stimulated a veritable laboratory for
gedanken experiments, which have lead to consideration of the information paradox
[68], time travel [123] (for a recent discussion see, e.g., [88]), warp drive [5] (for a
more recent discussion see, e.g., [89]), etc.

In recent years, increasing effort has been spent on developing a quantum theory
of gravity. A large number of people have attempted to develop a unification
of quantum theory along the lines of string theory [111], loop quantum gravity
[81, 140] or noncommutative geometry [126] (see also references therein). While
string theory lays emphasis on the particle content of our physical world and ne-
glects somewhat the geometrical nature of gravity, loop quantum gravity starts
from gravity as space—time geometry and neglects the particle content. Within
string theory, higher dimensional theories are experiencing a renaissance and, for
example, black holes display even more unusual features than are known from four
dimensions [51, 82].

Gravity is one area in physics where something new is expected, which will un-
doubtedly lead to another revolution in the physics paradigm. Very unusual effects
are expected to arise in quantum gravity and there are both theoretical and exper-
imental efforts under way in the search for the new phenomena it should entail.
Until now all experiments are in agreement with standard GR. However, substan-
tial efforts are being made to find experimental signatures of quantum gravity. Any
experimental result in this direction will guide the development of the theory itself.
New experiments have been designed and new technologies have been developed to
improve available accuracy in the search for possible quantum gravity effects. It is
speculated that perhaps the LHC has the potential to see related phenomena.

Since gravity is such a fundamental interaction — it covers the notion of space—
time, the space—time geometry, the observer, the measurement process, etc. — it is
clear that thinking about gravity and questioning its underlying principles can open
up many unusual possibilities that should be tested by experiment. These range from
questioning Newton’s axioms, conservation laws, the time dependence of constants,
etc. One may also speculate whether under extreme situations, like extremely weak
gravity, small accelerations, large accelerations, highest energies, ultralow tempera-
tures etc., some of the principles underlying today’s physics lose their meaning.
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Similarly exciting is quantum theory. The experimental realization of the strange
behavior of quantum systems is always truly astonishing, as Bohr said: “If quantum
mechanics hasn’t profoundly shocked you, you haven’t understood it yet.” However,
since quantum theory is based on a scheme that is not directly related to experiments,
that is, there is no real operational approach to quantum theory, it is much more
difficult to systematically question various assumptions underlying quantum theory.
For a survey of experiments testing quantum theory see [102].

In this chapter, we first describe the remarkable features of GR and then present
its experimental basis. This basis consists in the principles underlying the fact that
today gravity is described by a metric tensor representing the space—time geometry.
This metric theory then predicts certain effects which, for Einstein’s GR, acquire
particular values. Then we give reasons why it is important to improve these exper-
iments and to perform new ones, and we also present a strategy for such new tests,
where emphasis is placed on tests of gravity and relativity in extreme situations.
Finally we focus on unusual questions related to possible effects rarely discussed in
the literature, like tests of Newton’s axioms and of conservation laws, etc. In fact, all
tests of gravity can be regarded as searches for “new physics”. This is a considerably
enlarged version of an earlier article [92].

2 Key Features of Gravity

Gravity is singled out and characterized by a set of universality principles that are
shared by no other interaction.

1. Universal presence of gravity

o Gravity is everywhere
o Gravity always can be transformed away locally

2. Universal action on masses

o Gravity acts on all bodies
e Gravity acts on all bodies in the same way

3. Universal action on clocks

e Gravity acts on all clocks
e Gravity acts on all clocks in the same way

4. Universal creation of gravitational field

o FEach mass creates a gravitational field
e Each mass creates a gravitational field in the same way

The last of these features means that all, say, spherically symmetric masses of the
same weight create the same gravitational field. That means that a measurement
of a gravitational field of a spherically symmetric body only gives the mass of the
gravitating body and not its composition.
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3 Standard Tests of the Foundations of Special
and General Relativity

The basic structure of GR, and of all other physics, is encoded in the Einstein
Equivalence Principle (EEP). This principle states that (i) if all nongravitational
interactions are switched off, all pointlike particles move in a gravitational field in
the same way, (ii) all nongravitational clocks' are influenced by the gravitational
field in the same way, and (iii) locally, Special Relativity is valid, in that all physical
laws are Lorentz covariant.

These principles are so important because they imply the following:

e The gravitational interaction is described by means of a metrical tensor. The
mathematical frame for that is a Riemannian geometry.

e The equations of motion for a point particle, for a spin-%-particle, of the elec-
tromagnetic field, etc. have to be the geodesic equation, the Dirac equation, the
Maxwell equations in Riemannian space—times with a certain space—time metric.

o All these Riemannian metrics have to be the same.

Owing to their importance it is clear that these principles have to be confirmed with
the highest possible accuracy. We describe appropriate experiments below.

3.1 Tests of Special Relativity

Lorentz invariance, the symmetry of SR which also holds locally in GR, is based on
the constancy of the speed of light and the relativity principle. For recent reviews
see, e.g., [9,116].

3.1.1 The Constancy of the Speed of Light

The constancy of the speed of light has many aspects:

1. The speed of light should not depend on the velocity of the source. Otherwise,
it would be possible to measure in one space—time event in one direction two
light rays with different velocities. This independence from the velocity of the
source has been confirmed in various experiments in the laboratory as well as
by astrophysical observations. If the velocity of light depends on the velocity of
the source, then this can be written as ¢/ = ¢ + kv, where v is the velocity of
the source (in some frame) and « some parameter. Within this model, it is possi-
ble that the light of a star in a binary system may overtake light that was emitted
earlier. Such a reversal of the chronological order has never been observed, allow-
ing the estimate k < 107!! [27]. Laboratory experiments performed at CERN
used protons hitting a Beryllium target to create 7° mesons with a velocity of

! Pendula and hourglasses are not allowed.
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v = 0.99975 c¢. These moving mesons decay into photons whose velocity has
been measured and compared with the velocity of photons emitted from a source
at rest. No difference in the speed of the photons was found giving [7] k < 107°
though, from a nonrelativistic point of view, one would expect almost 2¢. The
constancy of ¢ for photons appears to hold for all velocities of the source.

2. The speed of light does not depend on frequency or polarization. The best results
for this are from astrophysics. From radiation at frequencies 7.1 - 10'® Hz and
4.8-10'° Hz of Gamma Ray Burst GRB930229 one obtains Ac/c < 6.3-1072!
[143]. In a theoretical model of a hypothetical photon rest mass the best re-
striction is m, < 107%7 kg from radiation from GRB980703 [143]. Anal-
ysis of the polarization of light from distant galaxies yields an estimate of
Ac/e < 10732 [84].

3. The speed of light is universal. This means that the velocity of all other massless
particles, as well as the limiting maximum velocity of all massive particles, coin-
cides with ¢. The maximum speed of electrons, neutrinos, and muons in vacuum
has been shown in various laboratory experiments to coincide with the velocity
of light at a level |c —cpariicte| /¢ < 1079 [6,29,58,80]. Astrophysical observations
of radiation from the supernova SN1987A yield an estimate for the comparison
of photons and neutrinos, which is two orders of magnitude better [109, 157].

4. The speed of light does not depend on the velocity of the laboratory. This can
be tested, for example, by comparing the frequency of an optical resonator that
depends on the speed of light and the frequencies of an atomic clock, in a modern
version of the corresponding Kennedy—Thorndike experiment. The best estimate
today yields Ac/c < 10716 [71].

5. The speed of light does not depend on the direction of propagation. This isotropy
of the speed of light has been confirmed, by modern Michelson—Morley exper-
iments using optical resonators, to a relative accuracy of Ac/c < 10717 [71].

These results mean that the speed of light is universal, so it can be interpreted as part
of the space—time geometry. The implied causal structure is an essential part of the
operational description of space—time proposed by Ehlers, Pirani, and Schild [50].

3.1.2 The Relativity Principle

The relativity principle states that the outcome of all experiments when performed
identically within a laboratory, that is, without reference to the external world, is
independent of the orientation and the velocity of the laboratory. This applies to
the photon sector as well as to the matter sector. For the photon sector this can
be tested with the Michelson—-Morley and Kennedy—Thorndike type experiments
already discussed above.

Regarding the matter sector, the corresponding tests are Hughes—Drever type
experiments. In general, these are nuclear or electronic spectroscopy experi-
ments. Such effects can be modeled by an anomalous inertial mass tensor [67]
of the corresponding particle. For nuclei, one then gets estimates of the order
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§m/m < 1073% [35,103, 135]. Modeling with an anisotropic speed of light, as in
the TH eu-formalism [168], yields Ac/c < 10721, In addition to the possibility of
an anisotropic mass tensor, there is also the possibility of an anomalous coupling of
the spin to some given cosmological vector or tensor fields, which would destroy
Lorentz invariance. Recent tests have given no evidence for any anomalous spin
coupling either to the neutron [19,20], to the proton [74], or to the electron [69,72].
All anomalous spin couplings are absent to the order of 1073! GeV (see also [165]
for areview). Similarly, higher order derivatives in the Dirac and Maxwell equations
generally lead to anisotropy effects [110].

A further consideration is that there could be intrinsic anisotropies in the
Coulomb or Newtonian potentials [83, 84]. Anisotropies in the Coulomb potential
should affect the lengths of optical cavities which, in turn, might influence the fre-
quency of light in the cavity, It has been shown that the influence of the anisotropies
of the Coulomb potential are smaller than the corresponding anisotropies in the
velocity of light [124]. Anisotropies in the Newtonian potential of the Earth have
recently been searched for using atomic interferometry [125], which has constrained
the anisotropies at the 1078 level.

Future spectroscopy of anti-hydrogen may yield further information about the
validity of the PCT symmetry.

3.1.3 The Consequence

The consequence of the above experiments is that within the accuracy given by
these experiments, vectors transform with the Lorentz—transformations. The best
adapted mathematical framework thus introduces a four-dimensional space—time,
which, locally, is equipped with a Minkowski metric 1,5, = diag(+1,—1,—1,—1).
More can be found in standard textbooks; for example, see [139, 149].

3.2 Tests of the Universality of Free Fall

The Universality of Free Fall (UFF) states that all neutral point-like particles move
in a gravitational field in the same way, that is, that the path of these bodies is
independent of the composition of the body. The corresponding tests are described
in terms of the acceleration of these particles in the reference frame of the gravitating
body: the Eotvos factor compares the normalized accelerations of two bodies n =
(az —ay)/ [%(az + a1)] in the same gravitational field. In the frame of Newton’s
theory this can be expressed as n = (12 — 1) /[5 (2 + p1)], where u = my/m; is
the ratio of the gravitational to inertial mass. Though there are no point particles, it
is possible experimentally to manufacture macroscopic bodies such that their higher
gravitational multipoles are either very small or very well controlled. In other cases,
a numerical integration yields the effective gravitational force on the extended body.
Both these methods are used in the various tests of the UFF.
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There are two principal schemes in which to perform tests of the UFF. The first
scheme uses the free fall of bodies. In this case the full gravitational attraction
toward the Earth can be exploited. However, these experiments suffer from the fact
that the time-of-flight is limited to roughly 1 s and that a repetition needs new ad-
justment. The other scheme uses a restricted motion confined to one dimension only,
namely a pendulum or a torsion balance. The big advantage is the periodicity of the
motion, which by far beats the disadvantage that only a fraction of the gravitational
attraction is used. In fact, the best test today of the UFF uses a torsion pendulum
and confirms it at the level of 2 - 10713 [145]. Newly proposed tests in space, the
approved mission MICROSCOPE [160], and the proposal STEP [108] will combine
the full advantages of free fall and periodicity.

Quantum gravity inspired scenarios hint that the UFF might be violated below
the 10713 level [39, 40]. From cosmology with a dynamical vacuum energy
(quintessence), a violation at the 10~14 level can also be derived [167]. If the validity
of the UFF holds, we can impose bounds on the time variability of various constants,
such as the fine structure constant and the electron-to-proton mass ratio [42].

According to GR, spinning particles couple to the space—time curvature [15, 70]
and, thus, violate the UFF. However, the effect is far beyond any current experimen-
tal reach. Testing the UFF for spinning matter amounts to a search for an anomalous
coupling of spin to gravity. Motivation for anomalous spin couplings came from the
search for the axion, a candidate for the dark matter in the universe initially intro-
duced to resolve the strong PC puzzle in QCD [122]. In these models, spin may
couple to the gradient of the gravitational potential or to gravitational fields gener-
ated by the spin of the gravitating body. Tests of the first case by weighing polarized
bodies show that, for polarized matter, the UFF is valid at a level of order 1078 [73].

Charged particles, too, must couple to space—time curvature [44], again at a level
that is too small to be detectable. It is possible to introduce a charge-dependent
violation of the UFF by proposing a charge-dependent anomalous inertial and/or
gravitational mass. It is also possible to choose the model such that, for a neutral
atom, the UFF is fulfilled exactly while it is violated for isolated charges [45]. It has
been suggested that a corresponding experiment be carried out in space [45].

3.3 Tests of the Universality of the Gravitational Redshift

A test of the universal influence of the gravitational field on clocks based on dif-
ferent physical principles requires clock comparison during their common transport
through different gravitational potentials. There is a large variety of clocks that can
be compared:

1. Light clocks (optical resonators)
2. Atomic clocks based on

(a) Hyperfine transitions
(b) Fine structure transitions
(c) Principal transitions
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3. Molecular clocks based on

(a) Rotational transitions
(b) Vibrational transitions

. Gravitational clocks based on revolution of planets or binary systems
. The rotation of the Earth

. Pulsar clocks based on the spin of stars

. Clocks based on particle decay

U Y N

At a phenomenological level, the comparison of two collocated clocks is given by

Velock 1 (X]) _ U(xl) - U(X()) ) Velock 1 (XO)
Velock2 (X1) c? Velock2 (X0)

where oock; are phenomenologically given clock-dependent parameters, U is the
Newtonian potential, and x¢ and x; are two positions. If this frequency ratio does not
depend on the gravitational potential then the gravitational redshift is universal. This
is a null-test of the quantity ccjock2 — Qclock 1- It 1S obviously preferable to employ
a large difference in the gravitational potential, which clearly shows the need for
space experiments. In experiments today, the variation of the gravitational field is
induced by the motion of the Earth around the Sun and thus requires that the clocks
used have very good long-term stability.

The best test to date has been performed by comparing the frequency ratio of
the 282 nm °Hg™ optical clock transition to the ground state hyperfine splitting
in 133Cs over 6 years. The result is |apg, — acs| < 5107 [14, 54]. Other tests
compare Cs clocks with the hydrogen maser, and Cs or electronic transitions in I,
with optical resonators. We are looking forward to ultrastable clocks on the ISS
and on satellites in Earth orbit, or even in deep space as proposed by SPACETIME,
OPTIS, and SAGAS [94, 113, 169], which should considerably improve the quality
of the scientific results.

So far there are no tests using anti-clocks, that is, clocks made of antimatter.
However, since the production of anti-hydrogen is a well established technique
today, attempts to perform high-precision spectroscopy of anti-hydrogen have been
proposed. These measurements should first test special relativistic CPT invariance
but, as a long-term measurement, could also be used to test the Universality of the
Gravitational Redshift for a clock based on anti-hydrogen.

(1 - (aclock 2 — Oclock l) (l)

3.4 The Consequence

A consequence of the validity of the EEP is that gravity can be described by a
Riemannian metric, g,,, a symmetric second rank tensor defined on a differen-
tiable manifold that is identified as the collection of all possible physical events.
The purpose of this metric is twofold: First, it governs the rate of clocks, that is,
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s = /ds, ds = \/gudxtdxV 2)

is the time shown by clocks where the integration is along the world-line of those
clocks. Second, the metric gives the equation of motion for massive point particles
as well as for light rays,

d?xH dxP dx°
v ds? oo} ds ds )
where D, is the covariant derivative along v and
3 Lo
{po} = Eg (8pgv0 + 008vp — avgpa)
is the Christoffel symbol. Here x = x(s) is the world-line of the particle
parametrized by its proper time and v = dx/ds the tangent vector along this

world-line. While g (v, v) = 1 for particles, we have g(v, v) = 0 for light, so that we
must use some affine parameter to parametrize the world-line of a light ray. More
on that can be found in many textbooks on gravity; see, for example, [66, 121, 166].
It can be shown that this notion also describes the propagation of, for example, the
spin vector, D, S = 0, where S is a particle spin. (This is valid at first order in the
spin vector; in the case of spin—spin interactions as they appear for spinning binary
systems, terms of O(S?) have to be added, see, e.g., [53].) In generalized theories
of gravity there might be additional terms in the equations of motion for v and for S

For a general, static, spherically symmetric space—time metric, which we take to
have the form:

ds? = gy dt* — grrdr? — r2(d0? + sin® 9de?), 4)

we obtain an effective equation of motion

1(dr\> _1( E? L, L )
2\ds) 2 8tt&rr  8rr r? ,

where E and L are the conserved (specific) energy and angular momentum, respec-
tively. In the case of asymptotic flatness it is possible to uniquely define an effective

potential [79]

1 5 E? 1 L?

Uit == | E-—1— +—\1+=)) (6)
2 8tt8rr 8rr r

which completely governs the motion of the particle.
In order to solve the equations of motion one has to know the metric. The metric
is given by independent field equations

G;w = KT;w s @)

where G is a prescribed differential operator acting on the metric and 7 is the
energy—momentum tensor of the matter creating the gravitational field.
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4 Tests of Predictions

Gravity can be explored only through its action on test particles (or test fields).
Accordingly, the gravitational interaction has been studied through the motion of
stars, planets, satellites, and light. There are only very few experiments that demon-
strate the effects of gravity on quantum fields.

Any metric theory of gravity leads to effects like the gravitational redshift, the
deflection of light, the perihelion precession, the Lense-Thirring effect, the Schiff
effect, etc. GR is singled out through certain values for these effects. In the case
of weak gravitational fields, such as occur in the Solar system, and of asymptotic
flatness, any deviation of a gravitational theory from GR can be parametrized by a
few constants, namely the PPN parameters [168]. Many astrophysical observations
and space experiments that probe fundamental physics are designed to make precise
measurement of these effects and, thus, to better ascertain the PPN parameters.

For Einsteins GR we have, in the left hand side of the field Eq. 7,

1
Gu,v = R;w - ERgum (8)

where R, and R are the Ricci tensor and Ricci scalar, respectively. For a spheri-
cally symmetric gravitating body we obtain the Schwarzschild metric

dr? —r?d9? — r?sin® 9de>.

2M
ds* = guvdx"dx’ = (1 - —) dt* — 1
r

_2M
-
©)
Use of this metric in the equation of motion yields an ordinary differential equation
dr\*> r* B2y oM L? +2ML2 a0
— ) == —et+e—— — — .
do L? r r2 r3

(¢ = 1 for massive particle, ¢ = 0 for light), which can be solved in terms of the
Weierstrass g-function [65]

oM
p(oigrg3) + 3

r(p) = (11)

where the Weierstrass invariants given by
4 ! 2M \* (12)
= —_—— 8 —
82 3 2
_a(2 2 2M\? e 2M 2 1)
S T L

depend on M, E, and L. This solution can be used to calculate most of the Solar
system effects.
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The Kerr metric is a vacuum solution of Einstein’s field equation that describes a
rotating black hole. This metric contains the product of d¢ dt, which appears also in
the metric of a rotating observer in Minkowski space—time. The gravitational field of
a rotating star is not given by the Kerr solution but, for weak fields, the Kerr solution
is a very good approximation to the solution for a rotating star (for which no exact
solution exists) so one can, in practice, use the Kerr solution when describing effects
related to the addition of rotation. In a weak field limit, the rotation of a star adds
to the Schwarzschild metric (9) a term proportional to J; dt dx', where J; is the
angular momentum of the rotating star. The solutions of the geodesic equation in
the Kerr solution are quite complicated but are still given by elliptic integrals [34].

The situation in space—times with cosmological constant is much more compli-
cated. A spherically symmetric mass in a universe with a cosmological constant
is described by the Schwarzschild-de Sitter solution (see, e.g., [139]), and the
corresponding geodesic equation can be solved by means of hyperelliptic inte-
grals [62,63]. Also in Kerr—de Sitter space—times the geodesic equation can now be
solved analytically [61] (see also [64]), and even more generally in all Plebariski—
Demiarniski space—times without acceleration [60].

4.1 The Gravitational Redshift

The gravitational redshift compares the frequencies of a light ray measured by two
different observers. The general situation is shown in Fig. 1. A light ray intersects
the world-lines O; and O, of two observers at the space—time events x; and x.
The measured frequency is given by o = k(u) = k,u", where k is the 4-wave

Fig.1 The geometry of the
gravitational redshift: a light
ray crosses the world-lines of
two observers that both
measure the frequency of the
light ray observer 1  observer 2
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vector of the light ray and u the 4-velocity of an observer. Accordingly, the gravita-
tional redshift is given by the ratio

V2 _ k(usz)
vi o k()

(14)

(w = 2mv). This relation gives the total redshift, consisting of the gravitational
redshift and the Doppler effect.

In a stationary gravitational field this ratio can be presented in a very simple
form. For a stationary gravitational field there exists a timelike Killing vector £, so
that k(§) = wo = const along the light ray. It then follows that

GM (1 1
o febn S (L), as)
V1 g1t (x2) c r 2

where r; and r, are the radial positions of the two observers. The right part of the
equation follows if we assume the validity of the Einstein theory of gravity.

This effect was observed first by Pound and Rebka [134] who confirmed the
predictions to within 1%. Later, in a space experiment where the time of a hydrogen
maser in a rocket was compared with the time of an identical hydrogen maser on
Earth, the confirmation has been improved to 1 part in 10* [164]. The gravitational
redshift also plays an important role in satellite navigation and positioning systems.
In the passage of one day the redshift will account for a distance of several km on
Earth.

A further aspect of the gravitational redshift is the coupling of gravity to the
Maxwell field. Assuming a stationary situation, that is, assuming a Killing vector
field £ and an electromagnetic field strength F that is stationary, £ F = 0, it can
be shown [78] that there exists a generalized scalar electrostatic potential ¢ so that
ig F = d¢ (i being the inner product). With the observer’s 4-velocity given by u =
e~ %&£, where ¢ is a gravitational potential (in a Newtonian approximation it is mgz),
we then have d¢p = e%i, F = e?E where E is the electric field measured by the
observer u. Since ¢ is constant along the paths of charged particles, we have const.
=A¢ ~ E(1 + ¢). As a consequence, the voltage between two identical batteries
depends on their position in the gravitational field. This has been experimentally
verified at the percent level [77]. This also confirms the universality of the coupling
of gravity to all forms of matter.

4.2 Light Deflection

The deflection of light was the first prediction of Einstein’s GR to be confirmed by
observation, which occurred only four years after the complete formulation of the
theory. With the exact solution of the geodesic equation for light given in Eq. 11,
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the deflection angle is defined as the difference between the angles ¢, and ¢, for
which p(: g2, g3) + 1 = 0. Explicitly,

4 . €3+l ey, —e3
8¢ = ————F(a, k), sinag =, ——=, k2=—""2"""(16)
¥ /€1 — €2 ( ) €y — €3 €1 —e3
where o J
X
F(a, k) = _ 17
(k) /0 1 — k2 sin® x (7

is the elliptic integral of the first kind [2] and e; > e, > e3 are the three real zeros

of the polynomial 4x3 — g>x — g3 (in our light deflection scenario e3 < —%). Here,
e = % - % where 7, is the radial coordinate of closest approach of the deflected
light ray. In an approximation for weak gravitational fields or small mass M this is
8¢ = M/b, where b is the impact parameter. In the frame of the PPN formalism we
obtain Ap = 1(1 4+ y)M/b.

Today’s observations use Very Long Baseline Interferometry (VLBI); this has

lead to a confirmation of Einstein’s theory at the 10~* level [151].

4.3 Perihelion/Periastron Shift

The exact value of the perihelion shift is

2 b4
0¢p = ———=F (-.k) —2nm, 18
¢ Je1r—e3 (2 ) d (s

where again k2 = ©2=% and e; > e, > ej3 are the real zeros of the corresponding

polynomial (the values of k, e1, 2, and e; are here different from the corresponding
2M 1

values in the previous subsection). Here e, = T3 and ez = % — % so that
we can relate e, and e3 to the minimum and maximum radial distances, r, and r3,
of the orbit. In a post-Newtonian approximation one obtains §¢ = affiﬂ;lz) , where a
is the semimajor axis and e the eccentricity of the orbit. In the PPN framework this
has to be multiplied with (2 4+ 2y — 8)/3.

It was first observed by Le Verrier in the nineteenth century that the perihe-
lion shift of Mercury was larger than that calculated on a Newtonian basis from
the influence of other planets. Today this post-Newtonian perihelion shift has been
determined as 42”98 per century, with an error of the order 1073 [133].

Recently, a huge periastron shift of a candidate binary black hole system in
the quasar OJ287 has been observed, where one black hole is small compared to
the other [161]. The observed perihelion shift is approximately 39° per revolution,

which takes 12 years.
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4.4 Gravitational Time Delay

In the vicinity of masses, electromagnetic signals move slower than in empty space.
This effect is referred to as the gravitational time delay, see Fig. 2, which has been
confirmed by observations and experiments. There are two ways to detect this effect:
(i) direct observation, that is, by comparing the time of flight of light signals in two
situations for fixed sender and receiver, and (ii) by observing the change in the
frequency induced by this gravitational time delay.

4.4.1 Direct Measurement

The gravitational time delay for signals that pass in the vicinity of a body of mass
M is given by [168]

4 X5atXEarth
b2 ’

M
§t=2(1+ )/)G3 In (19)
C

where Xxs, and Xgaq are the distances of the satellite and the Earth, respectively,
from the gravitating mass and b is the closest distance of the signal to the gravitat-
ing mass. If the gravitating body is the Sun and if we the take b to be the radius
of the Sun, then the effect would be of the order 10~ s, which is clearly mea-
surable. Reflection of radar signals from the surface of Venus has confirmed this
effect [150]. An improved result is obtained by using Mars ranging data from the
Viking Mars mission [136]. GR, characterized by y = 1, has thus been confirmed
by [y —1] < 107*.

4.4.2 Measurement of Frequency Change

Though the time delay is comparatively small, the induced modification of the
received frequency can indeed be measured with higher precision, the reason be-
ing that clocks are very precise and can thus resolve frequencies very precisely.
The corresponding change in the frequency is easily derived. The emission
time of the first wave crest is f;. This first wave crest will be received at

a b
At At > At
) ) ) )
sender receiver sender O receiver
Signal moving in empty free space Signal moving in free space in the

vicinity of the Sun

Fig. 2 Gravitational time delay. A signal from the sender to the receiver passing the Sun (b) needs
a longer time than a signal in empty free space (a)
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tr1 = tg + At(ts1). Now, the second wave crest will be emitted at ¢, = £ + %
and received at f,, = f5; + At(fs). The measured frequency then is given by

1

= 20
Y lo — 1y ( )

With the result (19) one can easily derive the relative frequency shift

Vv — Vo GM 1

db
Y0 =1 =2t y) ©

3 b(r) dr

2D

where vy is the emitted frequency. It should be noted that, in this formula, it is the
time dependence of the impact parameter that is responsible for the effect, which
has been measured by the Cassini mission. The associated mission scenario is shown
in Fig. 3. The calculated time dilation and frequency shifts are shown in Fig. 4. One

Cassini

TEarth

Fig. 3 Cassini mission scenario: (a) top view, (b) sight-of-line view form Earth
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Fig. 4 (a) Calculated time delay, (b) relative frequency shift




40 C. Lammerzahl

important feature of the actual measurement was that three different wavelengths for
the signals were used, which made it possible to eliminate dispersion effects near
the Sun and to verify this time delay with an accuracy of 107> [23].

4.4.3 Remarks

The theoretical description of the gravitational time delay requires some additional
remarks. In the above treatment — and this is the standard description of this effect —
we compared a measurement in the presence of a gravitational field with a mea-
surement without a gravitational field. However, within an exact framework for
gravitational effects there is no definition for the unique identification of points with
and without a gravitational field. Therefore, there is no definition of a gravitational
time delay; there is no situation that can be taken as reference with respect to which
the signal can be delayed.

Within an exact treatment there is only a combined effect due to the gravitational
time delay, redshift, kinematical time delay (Doppler effect), and light bending.
There is no way to isolate a gravitational time delay; this is only possible asymptot-
ically, in the weak field approximation.

4.5 Lense-Thirring Effect

The metric component J; dt dx' that reflects the rotation of a gravitating body can
be regarded as representing a gravitomagnetic vector potential, the curl of which
gives a Lorentz type gravitational force acting on bodies. The influence of this field
on the trajectory of satellites results in a motion of the nodes (mathematically this
is related to a period of the analytical solution of the geodesic equation), which has
been measured by observing the LAGEOS satellites via laser ranging. Together with
new data of the Earth’s gravitational field obtained from the CHAMP and GRACE
satellites, the confirmation recently reached the 10% level [36].

The gravitomagnetic field also influences the rate of clocks. It is easily shown
that the geodesic equation for circular orbits in the equatorial plane reduces to

d
d_‘f — :I:QO —+ QLense—Thirring’ (22)

where £21 ense—Thirring 15 the frame-dragging angular velocity that is proportional to
the angular momentum of the gravitating source. The = is related to the two differ-

ent directions of the circular orbit. From this we obtain the difference of the proper
time of two counterpropagating clocks, see Fig. 5,

J
S —8_ = 4JTM. (23)
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Fig. 5 Clocks tick differently
when orbiting a rotating mass
in opposite directions along
the same orbit

It should be remarked that this quantity does not depend on G and r. In principle,
this effect can be calculated for arbitrary orbits. It decreases with increasing incli-
nation and vanishes for polar orbits. For clocks in satellites orbiting the Earth, this
effect can be as large as 10™7 s [115].

4.6 Schiff Effect

The gravitational field of a rotating gravitating body also influences the rotation of
gyroscopes. This effect is currently being considered by the data analysis group of
the GP-B mission that flew in 2004. Analysis is expected to be complete in 2010.
Though the mission met all design requirements, a huge technological success, it
turned out after the mission that contrary to all expectations and requirements the
gyroscopes lost more energy than anticipated [57]. For updates of the data analysis
one may contact GP-B’s Web site [57]. Full analysis of the experiment requires the
determination of further constants characterizing this spinning down effect, which
affects the overall accuracy of the measurement of the Schiff effect that was ex-
pected to be of the order of 0.5%. Nevertheless, recent reports of the GP-B data
analysis group give at the moment an error of about 10% [52,57].

It should be noted that although both effects within GR are related to the gravit-
omagnetic field of a rotating gravitational source, the Lense-Thirring effect and the
Schiff effect differ conceptually, even measuring different quantities, so they may
be regarded as independent tests of GR. In a generalized theory of gravity, spinning
objects may couple to different gravitational fields (like torsion) than the trajectory
of orbiting satellites. Moreover, the Lense-Thirring effect is a global effect related
to the whole orbit while the Schiff effect observes the Fermi-propagation of the spin
of a gyroscope.

4.7 The Strong Equivalence Principle

The gravitational field of a body contains energy that adds to the rest mass of the
gravitating body. The strong equivalence principle now states that EEP is also valid
for self gravitating systems, that is, that the UFF is valid for the gravitational energy,
too. This has been confirmed by Lunar Laser Ranging with an accuracy of 103



42 C. Lammerzahl

[168] where the validity of the UFF had to be assumed. However, the latter has been
tested separately for bodies of the same composition as the Earth and Moon and
confirmed with an accuracy of 1.4 - 10713 [16].

S5 Why New Tests?

It is evident that the number of high precision tests relating to gravity has increased
considerably in the last decade. This is certainly not due to some impact from the
official Einstein year 2005, but is the consequence of (i) improved technology, (ii)
the quest for a quantum theory of gravity, and (iii) problems in the understanding of
observational data within standard GR.

5.1 Dark Clouds — Problems with GR

Despite all the confirmation catalogued above, some serious problems with GR may
exist. In most cases there is no doubt concerning the data. The main problem is the
interpretation of the observations and measurements. Each phenomenon that cannot
be explained within standard GR is, inevitably, motivation to propose new theories.
One should, nevertheless, spend considerable effort in searching for conventional
explanations. Below, besides the “standard” interpretation of the phenomena we
also mention activities regarding more conventional explanations.

5.1.1 Dark Matter

It was first observed by Zwicky in 1933 that in the Coma cluster of about 1,000
galaxies, the galaxies move with a velocity that is much higher than what is ex-
pected from the standard laws of gravity. This feature has since been confirmed for
many other galaxy clusters, and even for stars within galaxies; it has also been con-
firmed with gravitational lensing. The apparent gravitational field is too strong. In
order to keep the Einstein equations one introduces dark matter that accounts for
the observed strength of gravity [158]. Structure formation also appears to need this
dark matter. However, so far there is no single observational hint at which particles
might constitute this dark matter. Consequently, there are alternative attempts to de-
scribe the same effects by a modification [141] of the gravitational field equations,
for example, by a term of Yukawa form, or by a modification of the dynamics of
particles, as in the MOND ansatz [120, 142], which has recently been formulated
in a relativistic framework [21]. With the current lack of direct detection of Dark
Matter particles, all these attempts remain on an equal footing.
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Another attempt to solve the dark matter problem involves taking into account
the full nonlinear Einstein equation. There are suggestions that many of the obser-
vations that are usually “explained” by dark matter could be explained by a stronger
gravitational field which emerges from more fully taking the Einstein equations into
account [17,37].

5.1.2 Dark Energy

Observations of type la supernovae indicate an accelerating expansion of the
universe and that 75% of the total energy density consists of a dark energy compo-
nent with negative pressure [131, 137]. Furthermore, WMAP measurements of the
cosmic microwave background [152], the galaxy power spectrum, and the Lyman-
alpha forest data lines [129,159,162] all support the existence of Dark Energy, rather
than a modification of the basic laws of gravitation [130]. However, in this case too,
there are attempts to give an explanation in terms of modified field equations; see,
for example, [128]. Recently it has been claimed that dark energy or, equivalently,
the observed acceleration of the universe can be explained by inhomogeneous
cosmological models, such as the spherically-symmetric Lemaitre-Tolman—Bondi
model, see, for example, [13,33, 163].

Buchert and Ehlers [31] have shown, first in a Newtonian framework, that with a
spatial averaging of matter and the gravitational field, rotation, and shear of matter
can influence the properties of the averaged gravitational field as would be described
in effective Friedman equations. Their observation also holds in the relativistic case
[30]. Therefore, it is still an open question whether or not the need for dark energy
is just the result of an incorrect averaging procedure. An influence of the averaging
has certainly been found in the interpretation of existing data [106, 107].

5.1.3 Pioneer Anomaly

The Pioneer anomaly is an anomalous, unexplained acceleration of the Pioneer 10
and 11 spacecraft of

APioneer = (874 + 133) . 1()_10 m/SZ (24)

toward the Sun [11,12]. This acceleration seems to have been turned on after the last
flyby of Jupiter and Saturn, and has stayed constant within a 3% range. Until now,
no convincing explanation has been found. An anisotropy of the thermal radiation
might explain the acceleration. In particular, while the power provided by the pluto-
nium decays exponentially with a half life of 8§7.5 y (which would mean a decrease
of more than 10% during 10 years), the acceleration has stayed constant within
a margin of 3%. Presently, much further work is being done on a good thermal
modeling of the spacecraft [138], and a reanalysis of the early tracking data is still
underway. Improvements in ephemerides are also helping to eliminate various pro-
posed explanations and theories [154].
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5.1.4 Flyby Anomaly

It has been observed on several occasions that satellites after an Earth swing-by
possess a significant unexplained velocity increase of a few mm/s. This unexpected
and unexplained velocity increase is called the flyby anomaly. For a summary of
recent analyses, see [ 100]. In arecent article [ 10] a heuristic formula has been found,
which describes all flybys

R
Av = vw—2 (cos 8in — cOS Sour) (25)
c

where R and w are the radius and the angular velocity, respectively, of the Earth,
and d;, and S,y are the inclinations of the incoming and outgoing trajectory.

Although no explanation has been found so far, it is expected that the effect is
either (i) a mismodeling of the thermal influence of the Earth’s and the Sun’s radi-
ation on the satellite, (ii) a mismodeling of reference systems (this is supported by
the fact that all the flybys can be modeled by Eq. 25 containing geometrical terms
only), or (iii) a mismodeling of the satellite’s body by a point mass. There are also
more hypothetical considerations: in [118, 119] a model was introduced in which
the inertial mass experiences a modification that depends on the Hubble scale and
the acceleration of a body. Within this model, the additional term accounts for the
Pioneer anomaly and also gives a modification of the velocities of spacecraft during
a flyby. Another proposal [32] relates the flyby anomaly to an anisotropic speed of
light, which, however, only resorts to a non-understood early measurement reported
by D.C. Miller 75 years ago and neglects all new confirmations of the isotropy of
light at the level of 10717 In [3], S. Adler discusses the possibility that the flyby
anomaly may be related to dark matter around the Earth. This proposal would lead
to severe restrictions on the dark matter model (e.g., a two component dark matter
model around the Earth is needed), which are unlikely to be consistent with other
observations. In [132] a modification of Special Relativity, based again on a viola-
tion of the relativity principle, has been used in a scheme for obtaining a modified
velocity. Within a certain five-dimensional theory of gravity [55] an additional accel-
eration occurs, which may be account for the flyby as well as the Pioneer anomaly.
An attempt to understand the flyby anomaly on a conventional level has been car-
ried forward by J.P. Mbelek [117], who claims that the observation was due to a
mismodeling of Special Relativity in the orbit determination.

5.1.5 Increase of Astronomical Unit

The analysis of radiometric distances measured between the Earth and the major
planets, and observations from Martian orbiters and landers from 1961 to 2003,
both lead to reports of a secular increase of the Astronomical Unit of approximately
10 m/cy [87] (see also the article [153] and the discussion therein). This increase
cannot be explained by a time-dependent gravitational constant G because the G /G
needed is larger than the restrictions obtained from LLR. Such an increase might be
mimicked, though, by a long-term increase in the density of the solar plasma.
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5.1.6 Quadrupole and Octupole Anomaly

Recently, an anomalous behavior of the low-/ contributions to the cosmic
microwave background has been reported. It has been shown that (i) there ex-
ists an alignment between the quadrupole and octupole with >99.87% C.L. [43],
and (ii) that the quadrupole and octupole are aligned to the Solar system ecliptic to
>99% C.L. [148]. No correlation with the galactic plane has been found.

The reason for this anomaly is totally unclear. One may speculate that an un-
known gravitational field within the Solar system slightly redirects the incoming
cosmic microwave radiation (in a similar way that motion with a certain velocity
with respect to the rest frame of the cosmological background redirects the cos-
mic background radiation and leads to modifications of the dipole and quadrupole
parts). Such a redirection should be more pronounced for low-/ components of the
radiation. It should be possible to calculate the gravitational field needed for such a
redirection and then to compare that with the observational data of the Solar system
and the other observed anomalies.

5.2 The Search for Quantum Gravity

There are many experiments proving that matter must be quantized and, indeed,
all experiments in the quantum domain are in full agreement with quantum the-
ory, with all its seemingly strange postulates and consequences. Consistency of the
theory also requires that the fields to which quantized matter couples also have to be
quantized. Therefore, the gravitational interaction has to be quantized too. However,
though gravity is an interaction between particles, it also deforms the underlying ge-
ometry. This double role of gravity seems to prevent all quantization schemes from
being successful in the gravitational domain.

The incompatibility of quantum mechanics and GR is not only due to the fact that
it is not possible to quantize gravity according to known schemes, but also because
time plays a different role in quantum mechanics and in GR. Moreover, it is expected
that a quantum theory of gravity will solve the problem of the singularities appearing
within GR. It is also hoped that such a theory would lead to a true unification of all
interactions and, thus, to a better understanding of the physical world.

Any theory is characterized by its own set of constants. It is believed that the
Planck energy Ep ~ 10%% eV sets the scale for quantum gravity effects. All ex-
pected effects scale with this energy or the corresponding Planck length, Planck
time, etc.

5.3 Possible New Effects

The low energy limit of string theory, as well as some semiclassical limit of loop
quantum gravity and results from noncommutative geometry, suggest that many
of the standard laws of physics will suffer some modifications. At a basic level
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these modifications show up in the equations of the standard model (Dirac equation,
Maxwell equations, etc.) and in Einstein’s field equations. These modifications then
result in the following (see, e.g., [9,38, 116]):

e Violation of Lorentz invariance

— Different limiting velocities of different particles

— Modified dispersion relations leading to birefringence in vacuum

— Modified dispersion relations leading to frequency-dependent velocity of light
in vacuum

— Orientation- and velocity-dependent effects

Time and position dependence of constants (varying «, G, etc.)
Modified Newtonian law at short and large distances

In recent years there have been increased efforts to search for these possible effects,
so far without success.

Besides these effects expected to result from quantum gravity, there are some
more “exotic” issues that are usually taken for granted but are also worth testing
experimentally. Such issues include:

Violations of Newton’s inertial law F = mX.

Violation of actio = reactio.

Violation of charge conservation.

Violation of mass or energy conservation.

Questioning that gravity can be transformed away even if UFF is fulfilled.

In most cases there is no basic theory from which these effects can be derived, due
in part to the fact that equations of motions cannot normally be derived without an
action principle. Nevertheless, since these issues are at the very basis of our descrip-
tion of physical dynamics, they should be tested to the highest accuracy possible.

6 How to Search for “New Physics”

If one looks for “new physics” then one has to measure effects that have never
previously been measured. Strategies by which it might be possible to find new
things include (i) using more precise devices, (ii) exploring new parameter regions,
and (iii) testing “exotic” ideas.

6.1 Better Accuracy and Sensitivity

It is clear that in searching for tiny effects, better accuracy is always a good strategy.
It is amazing how the accuracy for testing Lorentz invariance, for example, has
increased over the years. It took more than 20 years to improve the results of the



Testing Basic Laws of Gravitation 47

Brillet and Hall experiment of 1979 [28]; within another few years the accuracy
improved by two orders of magnitude and it is still improving further.

It would be of interest to find examples where present-day technologies have, at
least in principle, sensitivity to quantum gravity effects. One such example arises
with gravitational wave interferometers [8], which currently have a strain sensitiv-
ity of 10721, With Advanced LIGO the sensitivity will become 10~24. Thus, for a
continuous gravitational wave with a frequency in the maximum sensitivity range
between 10 and 1,000 Hz a continuous observation over one year would reach a
sensitivity of slightly less than 10728, This is the sensitivity needed for observing
Planck scale effects (1028 eV) by optical laboratory devices (which have an energy
scale of ~1 eV). It is, thus, the level of sensitivity required to detect Planck-scale
modifications in the dispersion relation for photons [8].

6.2 Extreme Situations

Often, “new physics” is discovered when new situations are explored. We discuss
various scenarios of this kind.

6.2.1 Extreme High Energy

One possibility for exploring new physics is to probe physical processes at very high
energies. With the LHC, where energies of the order 1013 eV should be achievable,
it is hoped that signals of the Higgs particle and of supersymmetry will be found.
This energy range is still far away from the quantum gravity scale. The best that one
can do is to observe high energy cosmic rays that have energies of up to 102! eV.
It has, in fact, been speculated that the observations of high energy cosmic rays —
which according to standard theories are forbidden owing to the GZK-cutoff — could
indicate a modified dispersion relation [9, 116].

6.2.2 Extreme Low Energy

The other extreme, very low temperatures, might also provide a tool for investigat-
ing possible signals of quantum gravity. One may speculate that the influence of
expected space—time fluctuations on the dynamics of quantum systems is more pro-
nounced at very low temperatures. One may even speculate that such space—time
fluctuations may give rise to a temperature threshold above absolute zero.

Very low temperatures may be achievable in BECs for which a long period of
free evolution is possible. Recently a free evolution time of more than 1 s has been
sustained at the Bremen drop tower where a BEC has been created during a period of
4.7 s of free fall [171]. These BECs may be used for novel investigations, including
a search for deviations from standard physics predictions.
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6.2.3 Large Distances

The unexplained phenomena, dark matter, dark energy, and the Pioneer anomaly
are related to large distances. It is questionable whether the ordinary laws of gravity
should be modified at large distances. Recently, some suggestions have been made:

e It has been examined whether a Yukawa modification of the Newtonian potential
may account for galactic rotation curves [141].

e In the context of higher dimensional braneworld theories, deviations from
Newton’s potential arise [48]. At large distances the potential behaves like
1/r2, as one would expect from the Poisson equation in five dimensions. A com-
parison with cosmological and astrophysical observations has been reviewed in
[112].

e From considering a running coupling constant, it has been suggested that the
spatial parts of the space—time metric possess a part that grows linearly with
distance [75]. This approach is in agreement with present solar system tests and
also describes the Pioneer anomaly [76].

6.2.4 Small Accelerations

An acceleration, a, being of physical dimension m s~ can be related to a length
scale [y = c?/a. Now, the largest length scale in our universe is the Hubble
length Ly = c¢/H, where H is the Hubble constant. The corresponding acceler-
ation is cH, at an order of magnitude that remarkably coincides with the Pioneer
acceleration and the MOND acceleration scales. As a consequence, it really seems
mandatory to perform experiments that explore physics for such small accelerations
(see below).

6.2.5 Large Accelerations

Analogously, since the smallest length scale is the Planck length [lp;, the
corresponding acceleration is a = 2 - 10°! ms~2, which, however, is far out-
side any experimental reach. For the smaller accelerations that might be reached by
electrons in the fields of strong lasers, one might be able to detect Unruh radiation
or to probe the physics near black holes [144, 147].

6.2.6 Strong Gravitational Fields

Most observations and tests of gravity are being performed in weak fields: the solar
system, galaxies, galaxy clusters. Recently, it became possible to observe phenom-
ena in strong gravitational fields: in binary systems and in the vicinity of black
holes.
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The observation of stars in the vicinity of black holes [146] may, in one or two
decades, give improved measurements of the perihelion shift and of the Lense—
Thirring effect. Binary systems present an even better laboratory for observing
strong field effects.

The inspiral of binary systems, which has been observed with very high preci-
sion, can be completely explained by the loss of energy through the radiation of
gravitational waves as calculated within GR [24]. The various data from such sys-
tems can be used to constrain hypothetical deviations from GR. As an example, such
data can be used for a test of the strong equivalence principle [41] and of preferred
frame effects and conservation laws [22] in the strong field regime.

Double pulsars have recently been detected and studied. These binary systems of-
fer possibilities for analyzing spin effects, thus, opening up an entirely new domain
for exploration of gravity in the strong field regime [85, 86]. Accordingly, the dy-
namics of spinning binary objects has been intensively analyzed [25, 53, 156].

6.3 Investigation of “Exotic” Issues

We describe several “unusual” questions which are rarely posed but that are worth
investigating both experimentally and theoretically. A class of these peculiarities
addresses Newton’s axioms, particularly their dynamical part related to forces:

1. Test of actio = reactio. Tests of this axiom can be encoded in a difference be-
tween active and passive charges (electric charge, masses, magnetic moments,
etc., generally, any quantity that creates a corresponding field).

2. Test of the inertial law mX = F where F is the force acting on a body. What
is being measured here? The measured acceleration together with the knowledge
of the mass (which can be determined, e.g., through elastic scattering) leads to
the exploration of the force. This can be illustrated with the Lorentz force. If one
sends charged particles through a condenser, their trajectory will be deflected in
response to the voltage applied to the condenser. The deflection gives the force
and the force defines the electric field E.

Therefore, the question of testing the inertial law may have at least two meanings:

(a) Why are there no higher time derivatives in the inertial law? (In fact, owing
to back reaction all equations of motion are of higher than second order. For
charged particles, for example, we have the third order Abraham—Lorentz
equation. This back reaction force can be calculated from the basic equations
of motion which are of second order only. Therefore, the question is why the
underlying basic equations of motion are of second order.)

(b) Does the inertial law hold for all forces, no matter how large or small? (in
our example, do we have mX = gE even if E becomes extremely large or
small?)

3. Test of the superposition of forces.
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7 Testing “Exotic” but Fundamental Issues

7.1 Active and Passive Mass

The notion of active and passive masses and their possible non-equality was first
introduced and discussed by Bondi [26]. The active mass m, is the source of the
gravitational field (here we restrict to the Newtonian case with the gravitational
potential U) AU = 4wm,8(x), whereas the passive mass m,, reacts to it

mix = m,VU(x). (26)

Here, m; is the inertial mass and x the position of the particle. The equations of

motion for a gravitationally bound two-body system then are
X2 — X1 X1 — X2

miiX1 = Gmpma, mayiXo = Gmopmi, 27

lx2 —x1[3’ lx1 — x2[3

where 1, 2 refer to the two particles and G is the gravitational constant.
For the equation of motion of the center of mass, X = (m;x; + maix3)/ M;, we

find

o nmipniy X . no; ny;

X =—""2Cn— with Gy = — — —= (28)
M, [x] My My

where M; = my; + my; and x is the relative coordinate. Thus, if C1 # 0 then active
and passive masses are different and the center of mass shows a self-acceleration
along the direction of x. This is a violation of Newton’s actio equals reactio. A limit
has been derived by Lunar Laser Ranging (LLR): no self-acceleration of the moon
has been observed yielding a limit of |Caj—ge| < 7- 10713 [18].

The dynamics of the relative coordinate

. mipMap mia M2, X
X=-G——=my + moi— 3 29)
M 1Mo Mip map ) |x|

have been probed in a laboratory experiment by Kreuzer [90] with the result |C3;| <
5.107°.

The issue of the equality of active and passive gravitational mass is of the same
quality as the issue of the equality of inertial and passive gravitational mass. While
the UFF is an equivalence of all bodies reacting to the gravitational field, here we
have an equivalence of all masses creating a gravitional field: all (spherically sym-
metric) masses of the same weight create the same gravitational field, independent
of their internal composition. The equality of active and passive masses constitutes
a universality principle that we may call the Universality of the Gravitational Field.

It is interesting to note that there is no Lagrange function from which the
equations of motion (27) can be directly derived. As a consequence there is no
Hamiltonian, which means that there is no quantum version of this system. Only the
equation of motion for the relative distance can be quantized.
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7.2 Active and Passive Charge

Similarly, one can think of active and passive charges, which have been discussed
recently [98]. Though electric charges have no direct link to gravity, a discussion of
the similarities and differences to the gravitational case will underline the universal-
ity of this question and can lead to a better understanding of the gravitational case.
As an example, we will see that on the one hand the weakness of the gravitational in-
teraction helps in a search for a difference of active and passive masses, while on the
other hand the fact that negative charges are possible may help in circumventing the
short timescales present in the electromagnetic interaction, which at first sight are a
big obstacle in searching for a difference in active and passive electric charges. Fur-
thermore, since in the weak field approximation there are many similarities between
gravity and electromagnetism, a different active and passive charge would give a
strong indication of a possible difference of active and passive masses. Moreover, as
charged bodies also gravitate, a difference in active and passive charges would prob-
ably lead to a modified behavior for interacting charged black holes. This realization
has not yet been fully developed.

The resulting equations of an electrically bound system with different active and
passive charges are similar to the equations for a gravitationally bound system with
different active and passive masses. The only difficulty that arises here is that the
self acceleration of the center of mass cannot be observed, since within atoms the
timescale is too short so that, as a result, this effect averages out.

Howeyver, there is one substantial difference between this and the massive case:
there are positive and negative charges. This opens up the possibility of defining
active as well as passive neutrality. In order to exploit this possibility one has to
consider a bound system in an external electric field £

. X .
mix, = C]po2a2—|3 +qipE(x1), mai¥a = qpqia

X1 —x
1—23+q2pE(x2),
|x2 — X2]

|x1
(30)

where g1, q1a, g2p, and g, are the passive and active charges. The equations of
motion of the center of mass and the relative coordinate are

v q1p492p 1 . 1
X = C21— + —(q1p +4q2) E, X = 611 qopD21—, (31)
1‘4l | |3 M ( p P) p1sp | |
where
Cr = 92 @, Dy = mii 41a + =2 mai 42a (32)
q2p q1p Ml q1p M q2p

Thus, if active and passive charges are different, the center of mass shows a self-
acceleration along the direction of x, in addition to the acceleration caused by the
external field E. Due to fast internal motion the self-acceleration of the center of
mass is not observable.

However, it is now possible to define active neutrality through O = g,; + ga» as
well as passive neutrality 0 = g1 + ¢p>. We may now prepare an actively neutral
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system by the condition that it creates no electric field (which may be explored by
other test charges). This actively neutral system might be passively non-neutral and
may react on an external electric field. Also, a passively neutral field may actively
create an electric field. If actively neutral systems are also passively neutral, then the
active and passive charge are proportional. These procedures can be carried out with
high precision resulting in Ci1p < 10721 [98]. Atomic spectra represent a cleaner test
but yield only an estimate of the order Cy» < 1072 [98].

7.3 Active and Passive Magnetic Moment

A similar analysis can be carried out for magnetic fields created by magnetic mo-
ments. If active and passive magnetic moments are different, then again we would
observe a self-acceleration of the center of mass. In this case atomic spectroscopy
is more useful and yields an (unsurpassed) estimate C 1, < 107> [98].

7.4 Charge Conservation

Charge conservation is a very important feature of the ordinary Maxwell theory:

e It is basic for an interpretation of Maxwell-theory as a U(1) gauge theory.
e It is necessary for the compatibility with standard quantum theory insofar as it
relates to the conservation of probability.

Recently, some models that allow for a violation of charge conservation have
been discussed. Within higher dimensional brane theories it has been argued that
charge may escape into other dimensions [46,47], leading to charge nonconservation
in four-dimensional space—time. Charge nonconservation may also occur in connec-
tion with variable-speed-of-light theories [104]. A very important aspect of charge
nonconservation is its relation to the EEP, which is at the basis of GR [105]. Charge
nonconservation necessarily appears if, phenomenologically, one introduces into the
Maxwell equations, in a gauge-independent way, a mass for the photon [95,97].

The more important a particular feature of physics is, the more firmly this fea-
ture should be based on experimental facts. There seem to be only three classes of
experiments related to charge conservation:

1. Electron disappearing: Charge is not conserved if electrons spontaneously disap-
pear through e — v, + y or, more generally, through e — any neutral particles.
Decays of this kind have been searched for using high-energy storage rings but
they have not been observed [4, 155]. For the general process, the probability for
such a process has been estimated to be 2 - 10722 year™! [155]; for two spe-
cific processes the probability is as low as 3 - 10726 year™! [4]. Even for a strict
non-disappearance of electrons, the charge of an electron may vary in time and
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thus may give rise to charge nonconservation. Thus, while charge-conservation
implies the non-disappearance of electrons, electron non-disappearance does not
imply charge conservation.

2. Equality of electron and proton charge: Another aspect of charge conservation
is the equality of the absolute value of the charge of elementary particles like
electrons and protons. Tests of the equality of g, and g, through the neutrality of
atoms [49] yield very precise estimates because a macroscopic number of atoms
can be observed. The result is |(ge — qp)/qe| < 10717,

3. Time-variation of a: The most direct test of charge conservation is implied by
the search for a time-dependence of the fine structure constant @ = g.qp/hc.
Since different hyperfine transitions depend in a different way on the fine struc-
ture constant, a comparison of various transitions is sensitive to a variation of
a. Recent comparisons of different hyperfine transitions [114] lead to |&/«| <
7.2-10716 s=1 This may be translated into an estimate for charge conservation
Ide/qe| < 3.6-1071€ 571 provided # and ¢ are constant and ¢, = ¢.. However,
this direct translation does not hold within the framework of varying ¢ theories.
An estimate that is more than one order of magnitude better comes from an analy-
sis of the natural OKLO reactor [38], but it requires some additional assumptions
on the a-dependence of various nuclear quantities.

Apparently, we have no dedicated direct experiment to test charge conservation.

7.5 Small Accelerations

Since the effect of gravity is observed by its influence on orbits of satellites and stars,
a modification of Newton’s first law, F = ma, will dramatically change the inter-
pretation of the orbits and, therefore, the relation between the observation and the
deduced gravitational field. This is, for example, the basis of the MOND (MOdified
Newtonian Dynamics) ansatz proposed by Milgrom [120] and put into a relativistic
formulation by Bekenstein [21].

The MOND ansatz replaces mx = F by

mip(|X|/ao) = F, (33)
where @ (x) is a function that behaves as

1 for |x|>1

(34)
x for |x|] < 1.

p(x) =
For Newtonian gravity this means that from the equation F' = mVU we obtain the

special cases

e For large accelerations: X = VU.
o For small accelerations: ¥|X| = agVU — |¥| = y/ao|VU|.
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This result for small accelerations, such as are present in the outer regions of
galaxies, describes many galactic rotation curves very well, and may also reproduce
dynamics of galactic clusters. The acceleration scale ay is of the order 10710 ms™2.

A recent laboratory experiment using a torsion balance tests the relation between
the force acting on a body and the resulting acceleration [59]. No deviation from
Newton’s inertial law has been found for accelerations down to 5 - 107!% ms™2.
However, this does not mean that the MOND hypothesis is ruled out. Within
MOND it is required that the full acceleration should be smaller than approximately
10719 ms™2, while in the above experiment only two components of the accelera-
tion were small while the acceleration due to the Earth’s attraction was still present.
This means that better tests must be performed in space. An earlier test [1] went
down to accelerations of 3 - 10~!! ms™2, though the applied force was nongravita-
tional. It might be questioned whether the MOND ansatz applies to all forces or to
the gravitational force only. There exists a short time and space window (of the order
1 s and 10 cm) for performing tests capable of such a distinction on Earth [170].

It has also been questioned whether the MOND ansatz can describe the Pioneer
anomaly [12, 120] but positive confirmation has not been convincingly demon-
strated. In any case, it is a very remarkable coincidence that the Pioneer acceleration,
the MOND characteristic acceleration, and the cosmological acceleration are all of
the same order of magnitude, apjoneer &~ a9 & cH, where H is the Hubble constant.

What is the principal meaning of such tests? When we are testing mx = F
for small F, this at first sight means nothing. The only measured quantity in this
equation is x as function of time from which we can derive X. Such measurements of
X are used to define the force F and to explore the charge-to-mass ratio. Therefore,
this kind of measurement does not provide any kind of test.

The only way to give these experiments a meaning is if one has a model for the
force. If the force is given by, for example, a gravitating mass, F' = mVU withU =
G [ p(x")/|x—x'|dV’, then one may ask whether the acceleration decreases linearly
with decreasing gravitating mass. If the gravitating mass is spherically symmetric,
U = GM/r, then the question is whether ¥ — aX for M — aM, particularly in
the case of small M. This is an operationally well-defined question.

Since all components of the acceleration should be extremely small, it is neces-
sary to perform such tests in space. It has been suggested that such a test should be
carried out in a satellite located at a Lagrange point of the Earth—Sun system.

7.6 Test of the Inertial Law

The question we ask here is how one can test experimentally whether equations of
motion possess second or higher order time derivatives. If the equation of motion is
of nth order, then the solution for the path depends on # initial conditions. To enable
a theoretical description of such tests we set up equations of motion of higher order
where the higher order terms are characterized by some parameters which vanish
in the standard equations of motion. This means that, besides their mass, particles
are characterized by further parameters related to the additional higher order time
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derivatives. We solve these equations of motion and try to exploit already completed
experiments, or propose new ones in order to obtain estimates on the extra param-
eters. So as not to be too general, we use the Lagrange formalism, which, for our
purposes, is of higher order with a Lagrangian depending on higher derivatives.
A complete description of a particle’s dynamics requires the introduction of an in-
teraction with, for example, the electromagnetic field. The structure of this coupling
may differ from what we know in a more familiar, first order Lagrangian.

7.6.1 Higher Order Equation of Motion for Classical Particles

In order to get a feeling of what might happen we take for simplicity a (nonrela-
tivistic) second order Lagrangian L. = L(z, x, X, X), see [101] for more details. The
Euler-Lagrange equations read

0 dL d oL n d? oL (35)
CoOxt drdxt o dr? ki’

It can be shown that these equations of motion remain the same if we add to the
Lagrangian a total time derivative of a function f(z, x, X),

if(t,x,x) =9 f(t,x,%) + x"i.f(z,x,x) + xfif(z,x,x). (36)
dt dx! ax!

According to the gauge principle, one should replace the derivatives d; (¢, x, X),
Vf(t,x,x), and V; f(t,x, %) by gauge fields, which then yield gauge field
strengths. However, it makes no sense to have velocity-dependent gauge fields.
Therefore we assume that f is a polynomial in the velocities, f(t, x,x) = Z/?:o
fil,---ik (x)xil oo xlk
In the simplest case, N = O and L = %85&2 + %fcz. In this case the gauged
Lagrange functionreads L = 1e¥? + 22 +g¢ + ¢x' 4; that yields as an equation
of motion
e X +m¥ = qE(x) + ¢gx x B(x) = F(x), 37)

where E and B are the electric and magnetic field derived as usual from the scalar
and vector potentials ¢ and A. More general cases are discussed in [101].

This equation of motion may be solved in a first approximation by using, to begin
with, the substitution x = ex + xo where x¢ is assumed to solve the equation of
motion without the fourth order term. If we assume that the force is very smooth
and that the deviation eXx is very small, that is, if X - VF (xg) < mX and can be
neglected, then we obtain

Xo +& X +mX = 0. (38)

This equation can be integrated twice

Xo +&x +mx = at + b, (39)
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where a and b are two integration constants. Inserting the equation for X yields

. m
X+ —
e

1 1 1
¥ =——F(x0) + —at + —b. (40)
me & &

With a new variable X = x — —at + %b we have

1
m

i+

o |3

g=_L F(x0). 41)
me

If & is small (and m large),” then m /& becomes large. Then the term %% is dominant
compared with the term on the right-hand side. If, furthermore, we take € to be
positive, then X is a fast oscillating term (for negative ¢ we have runaway solutions).
The total solution then is

x() = xo(t) + ¢ ()%(t) + lat — lb) . (42)
m m

This solution consists of the standard solution x¢(¢), which is the main motion, a
small displacement, a small linearly growing term, and a small fast oscillating term,
a kind of zitterbewegung. From ordinary observations, a and b should be very small.
Neglecting these particular contributions, the standard solution of the standard sec-
ond order equation of motion seems to be rather robust against the addition of a
higher order term.

The question now is how to search for the deviations from the standard solution.
One way might be to look for the linearly growing term, which, however, requires a
long observation time. Another way might be to search for a fundamental variation
in the final position resulting from well-defined initial conditions. Some correspond-
ing proposals have been worked out in [101].

7.6.2 Higher Order Equation of Motion for Quantum Particles

It is easier to consider the question of the order of the time derivative at the quantum
level. If one adds, for example, a second time derivative to the Schrédinger equation,
then this will change the spacing between the energy levels. A comparison with
measurements yields an estimate on the strength of such a term [93]. A higher order
time derivative in the Maxwell equations would, for example, modify the dispersion
relation by adding cubic or higher order energy terms. Such additional terms could,
in principle, be observed in high energy cosmic radiation or in experiments with
gravitational wave interferometers, as described above in Section 6.1.

2 We assume that ¢ is independent of .
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7.7 Can Gravity Be Transformed Away?

It might be thought that, with the validity of the UFF, it would be possible to elimi-
nate gravity from the equations of motion of a neutral point particle. This is not the
case. The UFF merely implies that the equation of motion should have the general
form ¥* 4+ I'*(x, X) = 0, where it is essential that no particle parameters enter this
equation. If gravity can be transformed away (Einstein elevator), then the second
term has to be bilinear in the velocity I'*(x, x) = I'pox”x°. This is not the case,
for example, in Finsler geometries or in the model presented in [100]. These are
examples where the UFF is valid but Einstein’s elevator fails to hold; they constitute
a gravity-induced violation of Lorentz invariance.

7.7.1 Finsler Geometry
An indefinite Finslerian geometry is given by

ds* = F(x,dx)  with  F(x,Adx) = A*>F(x, dx), (43)
so that

102F(x,y)

ds® = guv(x,dx)dx"dx" with guv(x,y) = 3 Bydy”

N C

where g, (x, dx) is a kind of metric, which, however, depends on the vector it is
acting on. The motion of light rays and point particles is to be described by the
action principle 0 = § [ ds?.

There are two main consequences of such a Finslerian framework. (i) Since the
Christoffel connection depends on the 4-velocity, it cannot be transformed away,
so the equation of motion will not reduce to X* = 0 for all possible particle
4-velocities. Therefore, gravity cannot be transformed away in the whole tangent
space as it can be in GR. (ii) There is no coordinate transformation by which the
Finslerian metric could acquire a Minkowskian form. Therefore, a Finslerian metric
violates Lorentz invariance.

A very simple example of a Finslerian metric is given by

ds* = F(dx*) = dt* — D(dx"), D(Adx") = A2D(dx"), (45)

with
(D(dx"))" = Diy _ip, dx"t -+ +dx'>r = (§;dx'dx!)" + @i, i, dx" - dx"2r,
(46)
where i, j,... = 1,2,3. The anisotropy is encoded in the tensor field ¢;,. ;,,,

which, by comparison with many experiments, can be assumed to be very small:
Piy iy L 1.
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7.7.2 Testing Finslerian Anisotropy in Tangent Space

In [96] this ansatz was used for describing tests of Finslerian models, in the photon
sector given by ds? = 0, using Michelson-Morley experiments. From a comparison
with the best available optical data, see page 29 in Section 3.1.1, one deduces that
¢i1...i2r = 10_16-

In the matter sector, within the nonrelativistic realm, one may start with a Hamil-
tonian of the form

H=H(p) with H(p)=A*H(p), (47)
where p; = —ih0;. For a “power-law” ansatz we have
1 L 1
= % (gllmlzrpil "'pizr)r : (48)

The deviation from the standard case may again be parametrized as

1 - )l 1 » 1 ¢i""i2’pi1 .. 'pin
HZ%(AP‘F(}S” i Pil"'aizr) %%p (]+; p2r .
(49)

The second term is a nonlocal operator that has influence on, for example,

e The degeneracy of Zeeman levels given by Hi,« = H + o - B. If Hy deviates
from p? then the Zeeman levels split, as can be explored in Hughes—Drever type
experiments, which lead to estimates ¢i 1i2r < 10730, see Section 3.1.2.

e On the phase shift in atomic interferometry. The atom—photon interaction leads
to a phase shift

k2 1 ) 1 iliz.ingr 5. ... 5.
86 ~ H(p+k)—H(p) ~ ~—t— (g1 4 L& 22 Pia 2 Py
2m m r p2r—1

) piky, (50)

where we have used k < p. This is a modified Doppler term: while rotating the
whole apparatus we get different Doppler terms.

7.7.3 Finslerian Geodesic Equation

In Finslerian space—time gravity cannot, in general, be transformed away. In [99]
we discuss a Finslerian model of gravity by appropriately modifying the ansatz (45)
for a Finslerian metric function

. 1
ds® = hoodt® — ((hiyis*+ hiny_yiny + Piy..in )X -+ - dx'2r) 7, (51

which reduces to a Riemannian space-time for ¢;,. ;,, = 0. For the case of a
spherically symmetric Finsler space—time, it is possible to calculate the geodesic
equation to first order in the Finslerian deviation ¢, ..;,,. We assumed for /1, the
Schwarzschild form and found, for circular orbits, a modified Kepler law
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r3 (1 B A(r)) GM

r4 ) 4n?’°

(52)

where A(r) is an arbitrary function, related to one component of the spherically
Symmetric tensor ¢, i,
For a radial free fall we obtain

2 2
d—r=—<1—B(r)(1—2GTM) )G—M (53)

dt? r2

where 7 is the proper time and B(r) another function related to another component
of the spherically symmetric tensor ¢;, . i,,. In the Newtonian approximation this
gives
d?r
dr?
Comparison of (52) with (54) reveals that radial motion and circular motion “feel”

different gravitational constants, which, in general, may depend on the radial dis-
tance [99],

— (- B() Cj—lf (54)

3 GiMm d? G-M
r _o , er_ _mi (55)
T2 4JT2 dtz r2

The geodesic equation in Finsler space—time thus implies that the gravitational
attraction of a body falling vertically towards the center of the Earth is different
from the gravitational attraction that keeps a satellite on its bound orbit, see Fig. 6.
From the orbit of the Earth around the Sun one can determine GM of the Sun with
a relative accuracy of approximately 10~°. This mass can be taken to determine the
gravitational field of the Sun and the acceleration that bodies experience within stan-
dard theory. The acceleration of a satellite on a radial escape orbit can be measured
with an accuracy of the order 107!° m/s?, which would allow a determination of
GM of the Sun with an accuracy of the order 10~% (at a distance of approximately
1 AU). As for the Earth, the gravitational acceleration of a body falling on Earth can
be measured with an accuracy of 10~% m/s? [91] leading to a relative accuracy
of the determination of GM of the Earth of the order 10~°. So, if all observa-
tions and measurements are compatible within standard theory, then the equality of
the acceleration of horizontally moving satellites and planets and vertically falling

ai

a

Fig. 6 A body falling toward the center of the Earth may feel a gravitation acceleration toward the
center of the Earth different from that of a body moving horizontally



60 C. Lammerzahl

bodies is confirmed to within the order of 1078, As a consequence, the functions G
and G, or A/ r* and B, should differ by less than 1078,

It is clear from the given formulae that Finsler geometry offers the possibility
of having different properties for escape and bound orbits (the gravitational attrac-
tion depends on the orbit) and, thus, is in the position to describe effects like the
Pioneer anomaly; for example, a very simple choice in this case mightbe A = 0 and
B = Byr? (assuming that the observed anomalous acceleration is of gravitational
origin and not a systematic error). Further studies on experimental and observational
consequences of Finsler gravity are in progress [99].

8 Summary

In this chapter, we have described the underlying principles of GR encoded in the
EEP, and their corresponding experimental verification. We have also described
observations relating to the predictions of GR, ranging from the weak field Solar
system to strong field effects in compact binary systems. Besides the standard prin-
ciples, we also focussed some attention on assumptions that are usually taken for
granted, even though their experimental basis is sometimes not strong, or the inter-
pretation of related experiments is not unique. These assumptions include charge
conservation, equality of active and passive mass, charge, and magnetic moment,
the order of the time derivative in classical and quantum equations of motion, and
the issue of whether gravity can be transformed away locally.
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Mass Metrology and the International System
of Units (SI)

Richard S. Davis

Abstract The International System of Units (SI) is widely used in science,
industry, and commerce because it caters simultaneously to the needs of all. In
the early twenty-first century, this means defining the units of time, length, mass,
and electricity in terms of the fundamental constants of physics, and then “real-
izing” these definitions to sufficient accuracy on the human scale of the second,
meter, kilogram, and ampere. This program has already been successful except for
the kilogram, which is still defined in terms of an artifact constructed in the late
nineteenth century. Although quantum-based electrical standards are widely used,
the SI voltages or resistances produced by these standards depend on the values of
constants that are at present based on experimental values derived from the artifact
kilogram. This chapter presents the current state of affairs, which is unsatisfactory,
and proceeds to describe work that will lead to a redefinition of the kilogram,
probably in terms of a fixed value for the Planck constant.

1 Introduction

What does it mean to measure a mass? In this chapter we present two possibilities
that will be discussed in detail. The first has been used since antiquity: choose one
object as the standard, S, and then measure the ratio of the mass, m(X), to m(S)
for any X. The mass of X is then said to be m(X)/m(S) in units of m(S). An
object known as the international prototype of the kilogram serves to define the
unit “kilogram” in the SI. Secondary mass standards used throughout the world are
ultimately traceable to the international prototype, which is conserved and used at
the International Bureau of Weights and Measures (BIPM). This system works to
a few parts in 10® at the 1kg level. Experimental uncertainties generally increase if
mass determinations very different from 1 kg are required. It would be preferable if
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m(S) were an invariant, or “fundamental,” quantity such as the mass of the electron,
m.. However, there is a mismatch of 30 orders of magnitude between 1 kg and m.
and this presents practical challenges.

A second way to measure the mass of X is through its energy equivalent: m(X) =
E/c2. We might then make use of the relation E = hf to devise a nondestructive
measurement of the mass of X in terms of its Compton frequency:

m(X) = (h/c}) f. M

A variant of 1 has been tested experimentally to about 500 parts in 10° [37],
where m (X) was the mass equivalent of a nuclear binding energy. However, if X is of
the order of 1 kg then f ~ 10°° Hz, which seems to be experimentally inaccessible.

The following describes how the world of metrology is meeting the challenge to
redefine the kilogram in terms of fundamental constants.

2 The SI

2.1 Base Units/Base Quantities

The SI has seven base units, each of which associated with a base quantity [3].
These are the second, s (time); the meter, m (length); the kilogram, kg (mass); the
ampere, A (electrical current); the kelvin, K (temperature); the mole, mol (amount
of substance); and the candela, cd (luminous intensity). The kelvin and the candela
will not be discussed further in this chapter. The SI has evolved from the meter,
kilogram, second, ampere (MKSA) system [3], and has a formal mechanism for
evolving as our knowledge grows. This has important practical consequences as
will be discussed below in Section 5.

It is obviously not the goal of the SI to define a minimal set of base units, for
clearly this has not been achieved [15]. Rather the SI attempts to be useful to the
greatest number of communities so that, for instance, merchants can measure bolts
of cloth and industries can source precision parts in the same units used by physicists
to measure the Bohr radius, and all can achieve an accuracy that is not limited by the
definition of the meter. Let us now look briefly at the current definitions of the five
base units of interest here. Each definition fixes the value of some physical property
or constant.

The present definition of the second, which dates from 1968, specifies an exact
frequency, vus(Cs), for the hyperfine splitting in the ground state of a caesium-133
atom (it is understood that the atom is at rest at a temperature of 0 K). The definition
anticipates that the second will be “realized” using an atomic clock. The value of
the hyperfine splitting is indeed a constant of nature, although the theoretical model
for alkali atoms and ions is less well developed than for atomic hydrogen [33, 35].
Note that this definition is now more than 40 years old and technology has advanced
greatly. The hfs of Cs-133 is perhaps no longer the most judicious choice on which
to base the second, but such speculation is beyond the scope of this article.
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The present definition of the meter essentially defines a fixed value for cy,
the speed of light in vacuum. The definition states that the meter is the distance
traveled by light in a vacuum during a duration of (1/{co})[s]. Here we use the
curly brackets of quantity calculus to indicate the numerical value of co, devoid
of units; the unit itself is given in square brackets [12]. The definition anticipates
that high-accuracy length measurements will be performed using masers or lasers.
The present meter definition dates from 1983 and it is instructive to understand
why 15 years elapsed from the redefinition of the second to the redefinition of the
meter. It was necessary to demonstrate a practical way to “realize” the new def-
inition and to show that this realization leads to improved length measurements.
Essentially this meant measuring a laser frequency in units provided by an atomic
clock. Results from the key experiment, which reported an improved measurement
of co, were published about 35 years ago [17]. The authors stated that “The main
limitation [to the determination of c¢p] is asymmetry of the krypton...line defin-
ing the meter.” The meter had been defined in 1960 to be a certain multiple of a
particular krypton emission line. Even though this definition relied on the prop-
erty of an atom, there was a technical limitation to the experimental determination
of a much more fundamental physical quantity. This was the principal motiva-
tion for the redefinition, which, for administrative reasons of the type outlined in
Section 6.1, came some years later. The long history of ever-improving measure-
ments of ¢ was effectively brought to an end in 1983 by the present definition of the
meter.

The definition of the kilogram has not changed since the foundations of the SI
were laid in 1889. Since the SI unit “kilogram” and its related quantity “mass” are
the main subject of this chapter, the kilogram definition will be given in full [3]:

The kilogram is the unit of mass. It is equal to the mass of the international prototype of the
kilogram.

This is a quintessential artifact definition. In the 1880s a number of similar objects
were fashioned from a particular binary alloy (Pt90%/Ir10%) and one of these ob-
jects was selected to represent 1 kg, while maintaining historical continuity with the
previous artifact representation of the kilogram [10]. Whereas the definitions of the
second and the meter rely on fixed values for physical constants, an artifact defini-
tion cannot do this. All the definition of the kilogram can accomplish is to assign a
mass of exactly 1 kg to the mass of a particular object. If the mass of that artifact
changes (e.g., relative to the electron rest mass), its SI value nevertheless remains
exactly 1 kg. The mass of any object X is the ratio of its mass to the mass, mg, of
the international kilogram artifact:

mx

my = {—} kel @)

mo

The latter is assigned a value of exactly 1 kg in the SI.
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Two more SI base units, the ampere and the mole, also depend on the kilogram.
All definitions are quoted from [3]:

The ampere is that constant current which, if maintained in two straight parallel conductors
of infinite length, of negligible circular cross-section, and placed 1 m apart in vacuum,
would produce between these conductors a force equal to 2 X 107 newton per metre of
length.

The newton is the SI unit of force, derived from the kilogram, meter and second.
One may note that the ampere definition implicitly fixes the value of the magnetic
constant, j19, to be exactly 47 x 1077N/A2. Recall that

cgeopo = 1, (3

where g is the electric constant that, by inspection, also has a fixed value in the
SI. The ampere definition essentially describes a Gedanken experiment, impossible
to realize in practice. Nevertheless, laboratory experiments can exploit well-known
physical principles to realize the ampere definition with a practical geometry. The
ampere definition ensures coherence between electrical and mechanical units by
assigning a fixed value to a unit with dimensions N/AZ2.

Finally the mole also relies on the kilogram:

The mole is the amount of substance of a system which contains as many elementary entities
as there are atoms in 0.012 kg of carbon 12.

It is understood that the definition refers to an atom that is free and at rest in its
ground state. The mole is principally of interest to chemists but it is indeed a base
unit of the SI and its present definition depends on the kilogram. The number of
elementary entities per mole referred to in the definition is of course the Avogadro
constant, Na:

0.012 kg/mol

AT T m(20)
Thus the SI value of the Avogadro constant has the same relative uncertainty as the
mass of an atom of 12C. We will present much more on this issue in Section 2.
A useful history of the mole and its utility to chemistry can be found in [26].

“)

2.2 Gaussian Units

The SI defines units only. Their associated quantities are defined through standard
physics. Nevertheless, the equations of physics — especially those of electro-
dynamics — take different forms in different unit systems. An analysis of the
differences between the SI and other commonly used systems of units, most no-
tably the cgs-Gaussian units, is given by J.D. Jackson in his deservedly well-known
textbook [20]. Jackson has chosen to use SI in all but the final chapters of his latest
edition, and his reasons for this choice are instructive. He concludes that “the reality
is that scientists must be conversant in many languages....”
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2.3 Planck Units, Natural Units, and Atomic Units

The Planck units are perhaps the best known of the natural unit systems, and for
this reason provide a useful contrast to the SI. In usual formulations, the Planck
units correspond to the quantities mass, length, time, and temperature. The sizes of
the Planck units, relative to their respective SI counterparts, are thought by some
to be insightful. Best values of the Planck units are periodically tabulated by the
CODATA Task Group on Fundamental Constants [31,32]. In addition, Planck units
provide a useful context for viewing proposals to update the SI. We recall that Planck
units are constructed from the following physical constants: Newtonian constant of
gravitation (G), Planck constant (k) divided by 27, the Boltzmann constant (k),
and co. If po is added to this list, one can also derive a Planck unit of electrical
charge. We will see that the proposals for a new SI go a long way to defining units
in terms of fixed values for certain fundamental constants, some of them already in
the Planck set. This will be discussed further in Section 6.2.

Other unit systems based on fundamental constants are also used, in particular
the so-called natural units and the atomic units [31]. In both of these systems, the
electron mass, m., serves to define the unit of mass.

3 Practical Reasons for Redefining the Kilogram

As discussed above, there are excellent reasons in principle for basing a unit system
on physical constants rather than artifacts. In this section we discuss practical rea-
sons for redefining the kilogram as soon as possible. Such motivation comes from
three major areas: internal evidence from mass comparisons among 1 kg standards,
possible confusion in the analysis and use of fundamental constants, and adoption
of conventional units for electrical metrology (which is now based on quantum stan-
dards) and chemistry (which relies heavily on the 2C atom as a unit of mass). We
now examine each of these in detail.

3.1 Internal Evidence Among 1 kg Artifact Mass Standards

When the international prototype was put into service in 1889, some 40 additional
copies had also been manufactured, each of the same material, shape, surface finish,
and mass (to within a manufacturing tolerance of =1 mg). Later, additional copies
were manufactured and the number is now approaching 100. Six of these are offi-
cial copies that are stored at the BIPM along with the international prototype itself.
Most of the others have become national 1-kg prototypes of the Member States of
the BIPM. In the SI, all mass values are traceable to the international prototype.
In practice, the set of the oldest prototypes has been calibrated just three times:
the first during the years just prior to adoption of the kilogram definition in 1889,
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the second over several years roughly centered around 1950, and the third from 1989
to 1991. The latter two campaigns are known as the second and third verifications.
The history of this work is reviewed in [10]. Additional prototypes maintained at
the BIPM are used to maintain traceability to the international prototype between
verifications.

Comparisons to the international prototype can be made directly or indirectly
by means of sensitive balances known as mass comparators. These already existed
in the 1880s although their standard deviations and convenience of use are now
much improved. Nevertheless, 100 years ago metrologists were prepared to make
hundreds of painstaking measurements in order to reduce the random uncertainty
of the final result to about 5ug, or 5 parts in 10° (5 ppb) of 1 kg. Essentially, a
comparator can be used to determine mass ratios. The smallest uncertainties are
obtained when the physical properties of the artifacts being compared are as close
to identical as possible. Rather than using Eq. 2, traceability to the international
prototype is obtained through a chain that is more or less long depending on the
requirements of the end user:

R e P RO e B Y ) )

my Mpy—1 m

Simply put, mass metrology consists of minimizing the uncertainty of the ratio
measurements shown on the right-hand side of Eq. 5 and ensuring that the masses of
the artifacts that appear in both numerator and denominator (known as transfer stan-
dards) are stable. The uncertainties to which national metrology institutes adhering
to the CIPM Mutual Recognition Arrangement can disseminate the unit of mass can
be found on the BIPM Web site [4]. Secondary laboratories can be traceable to the
SI through these laboratories. A system of laboratory accreditation is available, for
example, through the International Laboratory Accreditation Cooperation [21].

Although myq is by definition 1 kg, we know that its mass could change with
respect to a fundamental constant such as the electron mass. However, we have as yet
no experimental evidence for a change in mass of m( with respect to a fundamental
constant [11], which is another way of saying that it is difficult to determine with
sufficient accuracy the ratio of m to the mass of a fundamental constant.

Nevertheless, we have ample internal evidence that the masses of the set of pro-
totypes are slightly unstable among themselves. This was suspected from the results
of the second verification and confirmed by the third verification. Results for the
oldest national prototypes having a complete calibration history over 100 years are
shown in Fig. 1. The x-axis represents the mass of the international prototype and
the straight lines represent the changes in calibration of each prototype from the time
of its initial calibration through the third verification. The three experimental points
are connected by straight lines to help visibility. Thus each of the three calibrations
of a prototype X is plotted in Fig. | as

(o). -().)/ ©

where ¢ is the number of years since 1889. All prototypes were cleaned and
washed prior to calibration. One sees a general trend for the masses of the national
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Fig. 1 Changes in mass since their initial calibration of the oldest national prototypes with respect
to the international prototype. The y-axis is in ppb (jLg/kg)

prototypes to increase by about 0.5 ppb/year with respect to the international
prototype. Does this mean that the international prototype is losing mass (as one
can read in the mass media)? Perhaps the national prototypes are generally gain-
ing mass; or perhaps none of these objects are stable with respect to a fundamental
constant of mass. By 1991, after the results of the third verification were known,
it was suggested that experiments to link the mass of the international prototype to
an atomic mass or a physical constant should be pursued with a goal of achieving
an uncertainty of 20 ppb in order to monitor the stability of the international proto-
type [36]. This suggestion was then endorsed by the relevant international bodies,
see Section 5. However, advances in quantum physics have more recently led to a
call from other areas of metrology for a major overhaul of the SI, including — and
especially — a redefinition of the kilogram.

3.2 Fundamental Constants

In presenting the Planck units, natural units, and atomic units, it has been assumed
that there are certain physical quantities that are fundamental and, therefore, ideal
standards from which to create a SI. An often-quoted statement by James Clerk
Maxwell makes a prescient and eloquent argument for basing units on the physical
constants:

The dimensions of our earth and its time of rotation, though relative to our present means of
comparison very permanent, are not so by physical necessity. The earth might contract by
cooling, or it might be enlarged by a layer of meteorites falling on it, or its rate of revolution
might slowly slacken, and yet it would continue to be as much a planet as before.
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But a molecule, say of hydrogen, if either its mass or its time of vibration were to be altered
in the least, would no longer be a molecule of hydrogen.

If, then, we wish to obtain standards of length, time and mass which shall be absolutely per-
manent, we must seek them not in the dimensions, or the motion, or the mass of our planet,
but in the wavelength, the period of vibration, and the absolute mass of these imperishable
and unalterable and perfectly similar molecules [25].

Maxwell was, of course, criticizing the original metric system, which based
the meter on a specified fraction of the earth’s circumference and the kilogram on
the mass of a cubic decimeter of water at its temperature of maximum density. The
ghost of this system is seen in our present kilogram, which agrees with this earlier
definition to within about 3 parts in 10°. However, “water” is not a well-defined
substance and the original definition was replaced by one based on a single, solid
artifact: first the kilogramme des Archives, and then the present international pro-
totype [10]. In some sense the density maximum of a well-characterized sample
of water is a physical constant but we no longer consider it to be “fundamental.”
This is because its properties are influenced by a number of effects that are diffi-
cult to model to arbitrarily high accuracy: isotopic abundances, dissolved gases and
other impurities, thermal expansion, compressibility, etc. The maximum density of
a particular isotopic mix of water has been determined to a relative uncertainty of
about 107 and this limit is not due to shortcomings of the present definition of the
kilogram.

Our understanding of which quantities in nature are fundamental constants
evolves with our knowledge. For instance, the fine-structure constant, o, which
today is determined by an experiment whose results are analyzed using QED per-
turbation theory [18], may one day be calculable from first principles. A possible
analogy to the value of 7, which in antiquity was determined by measurement,
is sometimes cited. We may one day find that ¢, or other constants, are time -
dependent (and thus not really constant) [24,35]. It may be that string theories will
lead us to revise our notions of “fundamental” constants. This paper will not enter
the debate over which constants are the most fundamental. In the following, we will
assume that the fundamental constants at our disposal are those that are listed in the
CODATA 2006 recommendation [31].

In any case, the values of all fundamental constants containing the kilogram in
their dimension must be traceable to the international prototype. How this situa-
tion is best remedied will be the subject of this chapter. Of course at some level of
precision the mass of the international prototype must be less stable than the val-
ues of the constants that are traceable to it. However, this phenomenon has not
yet been observed. A more practical concern is the experimental uncertainty in
determining such constants with respect to the present definition of the kilogram.
Thus, for instance, every time there is an improved experimental determination of
the Planck constant, its SI value changes (within the previously accepted uncer-
tainty, one hopes) and the uncertainty of the new value is improved. We will see
below that the recommended relative uncertainty of 4 is approximately 5 x 1078,
The relative uncertainty of the electron rest mass, m., is also about 5 x 108 but the
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Table 1 The variances, covariances, and correlation coefficients of the values of a selected
group of constants based on the 2006 CODATA adjustment. The numbers in bold above the
main diagonal are 10'° times the numerical values of the relative covariances; the numbers in
bold on the main diagonal are 10'° times the numerical values of the relative variances; and the
numbers in italics below the main diagonal are the correlation coefficients® (Table L of [31],
used with permission)

o h e Me Na me/m,, F
o 0.0047 0.0002 0.0024 —0.0092 0.0092 —0.0092 0.0116
h 0.0005 248614 12.4308 24.8611 —24.8610 —0.0003 —12.4302
e 0.0142 0.9999 6.2166 124259 —12.4259 —0.0048 —6.2093
me —0.0269 0.9996 0.9992 24.8795 —24.8794 0.0180 —12.4535
Na 0.0269 —0.9996 —0.9991 —1.0000 248811 —0.0180 12.4552
me/m,  —0.0528 0.0000 —0.0008 0.0014  —0.0014 6.4296  —0.0227
F 0.0679 —0.9975 —0.9965 —0.9990 0.9991 —0.0036 6.2459

*The relative covariance is u,(x;, x;) = u(x;, x;)/(x;x;), where u(x;, x;) is the covariance
of x; and x;; the relative variance is urz(xi) = u,(x;, x;); and the correlation coefficient is
r(xi,x;) = u(x;, x;)/[u(x;)u(x;)].

relative uncertainty of &1/ m. is orders of magnitude lower than either of these. Why?
Dimensionally, #/m. is independent of the unit of mass and thus the definition of
the kilogram is irrelevant to this ratio.

In addition to a list of fundamental constants with recommended values and
uncertainties, the authors of CODATA 2006 also provide a covariance matrix to
handle the uncertainties of combinations of constants whose values are correlated —
chiefly by their traceability to a macroscopic kilogram artifact. The relevant table
in CODATA 2006 is reproduced below as Table 1. The correlation coefficients that
are nearly +1 or —1 are due to traceability to the artifact kilogram. Mills et al.
[28] point out that redefining the kilogram in terms of fixed values for 4, co, and
Vhes (Cs) would help create a quantum SI, in accord with currently accepted physics
and would thus lead to dramatic changes in Table 1. The same authors also propose
defining the ampere in terms of fixed values for e and vy(Cs), the mole in terms
of a fixed number of entities with no reference to the kilogram, and the kelvin in
terms of a fixed value of the Boltzmann constant. Mohr et al. [31] conclude that
such redefinitions would represent “a significant advance in our knowledge of the
values of the constants.” Although the meaning of knowledge in this context might
be debated by epistemologists, the ideas of Mills et al. have undoubtedly been a
motor for change.

3.3 Electrical Metrology

In the second half of the last century, the precise measurement of electrical quan-
tities was revolutionized by two quantum mechanical effects. The first of these
was discovered by Brian Josephson, who in due course received the Nobel Prize.
Voltage standards based on the Josephson effect are known as Josephson junc-
tions or Josephson arrays [19]. In essence, such devices are frequency-to-voltage
transducers:
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nf
Vin) = —, 7
=" Q)
where f is a microwave frequency and K is the “Josephson constant.” The voltage
characteristic of the device is quantized in discrete steps. In Eq. 7 n is the integer
value of the nth step. A remarkable feature of these devices is that Kj depends only

on fundamental constants: 5
e
Ky = e (3)

Over the years since Josephson’s theoretical prediction, there has been neither
theory nor experiment to suggest that Eq. 8 is an approximation or that there is
some missing, device-dependent correction. On the contrary, the relative difference
in voltage between two Josephson devices illuminated by the same frequency and
biased to the same step has been measured to be less than 107!® and this consti-
tutes an excellent experimental test of the strong equivalence principle as applied to
charged particles in a gravitational field [22].

In a second development, Klaus von Klitzing discovered the quantized Hall effect
(QHE) in semiconductors at very low cryogenic temperature and very high mag-
netic induction. In the conventional Hall effect, an electric current, /, passes along
a sample in the presence of an external magnetic induction perpendicular to the cur-
rent. A voltage, Vi (the Hall voltage), appears perpendicular to both the current and
the induction.

The classical Hall probe is used as a transducer that converts magnetic induction
to resistance Vi /I, with a proportionality constant that is material dependent.

The QHE is quite different [19,41]. Without going into detail, it is sufficient to
state that the quantum Hall (QH) resistance, Ry, for any QH device is given by

R
Ru(i) = I—K )

where i is a small integer and Rk is known as the von Klitzing constant:
h

Rk = =k (10)

There are two remarkable points to be made about Eq. 10 and von Klitzing made
them both in his Nobel lecture. The first is that Rk is device independent: “...one
may come to the conclusion that such a complicated system like a semiconductor
is not useful for very fundamental discoveries. Indeed, most of the experimental
data in solid state physics are analyzed on the basis of simplified theories...” [40].
In subsequent years, different QH devices made of different semiconductors have
been found to agree within relative uncertainties of some parts in 10° [13].

A second remarkable point, which is a manifestation of the fundamental nature

of the QHE, is the relation of Rk to a:

MoCo
= 11
o 2Ry (11)
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The quantity poco is sometimes referred to as the impedance of vacuum, Zj,
which in the present SI has a fixed value of approximately 377 2. Therefore an in-
dependent measurement of Rk provides a value for the fine-structure constant. Such
a measurement is possible by comparing the quantized Hall resistance of a device
to the impedance of a “calculable capacitor,” which is determined by measuring a
single length. Within the uncertainty of these measurements, the resulting value of
o is consistent with much more precise QED determinations [31]. As an exercise,
one can use Table 1 to show that the variance of Rk as defined in Eq. 10 equals the
variance of .

Electrical metrology has thus been in a situation where the most precise mea-
surements of voltage and resistance are derived from quantum standards based on
fundamental constants but SI values of these constants are currently traceable to the
artifact definition of the kilogram.

Quantum standards for voltage and resistance can, of course, be combined using
Ohm’s law to produce a quantum standard for electrical current. However, an in-
dependent quantum standard based on single-electron tunnelling (SET) would close
the so-called quantum metrology triangle and thus provide robustness to the existing
system [19]. Keller has reviewed progress in this area [23].

In 1990, electrical metrologists adopted “conventional” values for Ky and Ry,
known as Kj_g9 and Rg—g¢. The conventional values have, by definition, no uncer-
tainty. Thus they are not SI values although they are based on the CODATA 1989
recommended SI values.

The community of electrical metrologists, represented by the Consultative Com-
mittee for Electricity and Magnetism (CCEM) of the International Committee for
Weights and Measures (CIPM), recommend that SI values of both / and e be fixed
as soon as possible and these values should be based on the best available SI values
of h and e (and not on the conventional values adopted in 1990) [6]. Consequences
of this recommendation are:

e Fixing a value for either 4 or e redefines the kilogram, see Table 1 and [11].

e Supposing that fixing a value for / is used to redefine the kilogram, then fixing a
value for e redefines the ampere.

e Fixing values for both & and e overdetermines the new unit system, one man-
ifestation of which would be a value of o defined by a committee. In order
for o to remain an experimentally determined quantity that is independent of
unit systems, the proposal is that the value of pp would no longer be exactly
47 x 107'N/A?, see Eqgs. 10 and 11. Instead the magnetic constant would ac-
quire the same relative uncertainty as . Within that uncertainty, the value of wo
could change with improved measures of «.

3.4 Relative Atomic Masses

The field of chemistry has long ago solved its kilogram problem by listing atomic
masses relative to m(12C), the mass of an atom of carbon-12. This is accomplished
by defining the atomic mass unit, u (also referred to as the dalton, Da), as
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M,
Na’

L 12

u= 12m( C) = (12)
where M, is the molar mass constant, currently defined as exactly 10~3kg/mol.
Except for the notation given to the molar mass constant, we have already seen this
relation in Eq. 4. The mass in kilogram of any atomic or subatomic particle X is
given by

m(X) = A(X)u, (13)
and, obviously, 4,(12C) = 12 (exactly).

A(X) is known as the relative atomic mass of X. Returning to Table 1, we see
that the correlation coefficient between m. and N is —1.0000; but it is not exactly
—1 (the correlation coefficient between m (12C) and Ny is exactly —1). In fact, else-
where in CODATA 2006 we learn that the uncertainty of A,(electron) is two orders
of magnitude smaller than the uncertainty of m..

One might think that the chemical community, as represented by the Consulta-
tive Committee for Amount of Substance: Metrology in Chemistry (CCQM), would
wish to fix a value for N5 — yet another way to redefine the kilogram. However, their
current thinking is more nuanced: redefine the mole based on a fixed value for the
Avogadro constant, with no reference to the kilogram [8] (in broad agreement with
[28], but with additional details attended to). See [29] for further discussion.

4 Routes to a New Kilogram

There are several relations among the fundamental constants that are needed to dis-
cuss the redefinition of the kilogram in sufficient detail. The first is the Compton

frequency, f,, of a mass, m: )
mcg

fm = A

This is a well-known relationship in particle physics. Thus the kilogram could

formally be redefined by fixing a value for & and then specifying the defining fre-
quency fm,, which would, however, be enormous — of order 10°°Hz:

(14)

mo 3

h

In the present SI, m is the mass of the international prototype (1 kg exactly), co
has a fixed value, and so an experimental determination of f,,, assuming this were
possible, yields the SI value of 4. We leave to the next section a description of how
Jmg is determined using devices known as watt balances. Obviously, if & were to
have a fixed value in a new SI, the same measurement of fy,, would determine
the mass of the artifact kilogram. The experimental uncertainty could no longer be
assigned to & and would instead be associated with m,.

Smo (15)
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In this new SI, a practical realization of 1 kg could also be made via the electron
mass, m.. We can rewrite the SI definition of the Rydberg constant, R, [31], as
follows:

Me Cg 2Roo Co
R a2

The value of Ro is known to a relative uncertainty of about 7 x 10712 from
measurements of the atomic spectra of hydrogen and deuterium. The relative un-
certainty of «? is about 1.4 x 1072, according to CODATA, but the recommended
value of @ may change by about seven times this uncertainty due to the correction of
previously published QED calculations of the anomalous magnetic moment of the
electron [1]. With this caveat in mind, the dominant uncertainty in m. still comes
from the experimental determination of 4. This can be verified from Eq. 16 and
the correlations shown in Table 1. Conversely, an experimental value for 4 would
be available through an accurate determination of m.. The relative atomic mass of
the electron, A.(e), is known from experiment to a relative uncertainty of about
5x 10710,

By definition, the mass in kg of a '2C atom is the ratio of its mass to the interna-
tional prototype, as shown in Eq. 2. Therefore, making use of Eqgs. 12, 13, and 16:

_ mo i 12Roo Co _ NAmoi ROOC()
Jmo = %m(nC)} o2 ( Ar(e) ) M, o2 (A,(e) ) (7

Thus an accurate measurement of the mass of an atom of carbon-12 or, equivalently,
a determination of the Avogadro constant, will serve as a check on measurements of
Jm, obtained directly from Eq. 15.

(16)

5 Realizing a New Kilogram Definition in Practice

If the kilogram is redefined as a consequence of fixing a value for %, then the present
uncertainty assigned to the Planck constant, currently about 50 x 10~°, would in-
evitably be attached to the value of the international prototype of the kilogram. The
community of mass metrologists, represented by the Consultative Committee for
Mass and Related Quantities (CCM) of the CIPM have recommended that a number
of conditions be met [7] prior to redefinition. These involve reducing the present
uncertainty of experimental determinations of the Planck constant, maintaining ap-
paratus and expertise that will allow measurements of 1-kg artifacts in terms of A
into the future, and accounting for present discrepancies among experimental deter-
minations of & (e.g., [11]).

Below, we examine how the Planck constant is currently determined with respect
to the kilogram using devices known as watt balances. The experiment is usually
analyzed as a variant of Eq. 14. This interpretation is made especially well in [5].
We also discuss below how the Planck constant may be determined through a mea-
surement of the Avogadro constant by means of the method of silicon X-ray crystal
density (XRCD).
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5.1 Watt Balances

Watt balances designed to operate at an accuracy level of parts in 108 are
complicated devices and several detailed papers discuss their design features in
much greater detail than can be done here; see, for example [16,39]. This type of
measurement was first proposed in 1975 by Bryan Kibble of the National Physical
Laboratory (UK), prior to the discovery of the QHE. Now that voltage and resis-
tance measurements can both be made traceable to quantum standards, the watt
balance is generally presented as a determination of / in SI units. The experiment
consists of two parts. In the first part, the gravitational force, mg, on a test mass,
m, is balanced by an equal and opposite force produced by a linear electromagnetic
motor. The required force, F', developed by the motor is proportional to an electrical
current, /, such that

F = IK = mg, (18)

where K is an instrumental constant that depends on the induction of the stator
magnet as well as on complicated geometrical terms.

In the second part of the experiment, the same motor is configured as voltage
generator. The moving element of the motor, the “coil,” is forced to travel vertically
at a velocity, v. This induces a voltage U across the ends of the coil. Under ideal
conditions,

U =K. (19)

The constant, K, is common to both modes and can therefore be eliminated:
mgv = IU, (20)

hence the name “watt balance.” It was Kibble’s insight that although Eq. 20 equates
mechanical and electrical power, there is no parasitic loss due to power dissipated in
the experiment. Equation 20 equates virtual power. Assuming that current is mea-
sured as U’/ R and that voltages and resistance are measured using Josephson and
quantized Hall devices, Eqs. 7-9, 10, then the final equation (somewhat simplified)
becomes:

meg _ nff'c. o

h 4igv

where v and g are ultimately measured in terms of Doppler shifts, clock times,
and phase changes [5]. The Josephson effect is used in both the determination of
the voltage and current (the latter via Ohm’s law) and this accounts for the primed
quantities in Eq. 21. Formally, the right-hand side of Eq. 21 is the experimental
determination of the de Broglie-Compton frequency of a macroscopic body of mass
m, where the value of m is traceable to the mass of the international prototype shown
schematically in Eq. 5. As a practical matter, results of watt balance experiments are
reported as measured SI values of 4.
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5.2 Silicon X-Ray Crystal Density (XRCD)

Based on Eq. 17, it will be sufficient to show how the ratio mo/m('2C) is
determined experimentally. The experiment is a worldwide collaborative effort,
which is described in several excellent review papers; see, for example [2]. Here we
will describe the experiment schematically.

The XRCD is fundamentally a counting experiment, designed to link the atomic
and macroscopic domains. Note, for instance, that the ratio mq/m(12C), which ap-
pears in Eq. 17, is the number of '2C atoms in 1 kg — a very large number.

The “trick” behind silicon XRCD is the following: a 1 kg perfect crystal of 28Si
is manufactured in the shape of a sphere. Silicon is chosen to take advantage of the
prodigious amount of research and development already available from the semi-
conductor industry. The volume V' of the sphere can be measured to high accuracy
by means of optical interferometry. Since the sphere is subject to thermal expansion
and compressibility, V' is determined at a specified reference temperature (22.5°C)
and pressure (0 Pa). The interatomic spacing of crystal samples that were adjacent
to the sphere prior to its fabrication is determined by X-ray interferometry, under
the same reference conditions. One may then deduce the volume a3 of a unit cell
of the crystal. A perfect silicon crystal has eight atoms per unit cell, and thus the
number of atoms, n, within the sphere is known:

Vv

n=8—. (22)
a

The same number can also be determined as the ratio of the mass of the sphere,
m(sph), to the mass of a single atom of 28Si:
m(sph
n = 2o, 23)
m(28Si)
which we now rewrite to express experimental operations in terms of dimensionless
ratios:

12
4 = misph) m( C} mo (24)
mo  m(?8Si) m(12C)

The first ratio on the right-hand side of Eq. 24 represents a determination of the
mass of the sphere (nominally 1 kg) with respect to the mass of the international
prototype [34]. The second ratio represents a comparison of atomic masses, which
has already been determined to very high accuracy [14]. The last ratio, the one
actually needed for Eq. 17, can now be found by eliminating n from Eqs. 22 and 24:

mo  mg m(ZSSi)g 25)
m(12C) — m(sph) m(12C) a3

Equation 25 shows the explicit role of mg in this determination. However, the
relation is more frequently written in terms of the Avogadro constant (thought to be
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more fundamental than the mass of a carbon-12 atom) and the density, p(?8Si), of a
macroscopic sample of silicon-28 at the reference conditions (a quantity which will
be the same for all perfect crystals):

_ ACS)M, 8

N — T A ec~ 2> 26
AT TS a3 20

where the relation m(sph)
o) = | B2 g @

is implicit.

In concluding this section, we emphasize that corrections to the simple view of
XRCD presented here should not be overlooked. For example, crystal dislocations
must be controlled, chemical purity must be known, and relative abundances of the
three naturally occurring silicon isotopes must be known. (In [2], plans are described
to produce crystals of highly enriched 28Si. This has already been accomplished and
measurements with the enriched material are progressing well.) Many corrections
to Egs. 25 and 26 are thus required in order to describe real materials of the highest
quality. A more fundamental correction, for the mass equivalent of the crystal bind-
ing energy, is still negligible compared to present experimental uncertainties.

5.3 Experimental Results

CODATA 2006 has collected all relevant experimental results up to publication and
has discussed them as determinations of /. As always, the CODATA Task Group on
Fundamental Constants has been scrupulous in taking correlations among the inputs
into account. At the time of publication, the recommended value for / had a relative
uncertainty of about 50 x 107, based on a weighted mean of all available input
data. The value of /4 is largely determined by the experimental result from NIST
(USA) watt balance, which has by far the lowest uncertainty (all uncertainties are
first calculated a priori). Even with its larger uncertainty, the XRCD result is incon-
sistent with the NIST result, and so the CODATA Task Group decided to enlarge the
a priori uncertainties of these input data a posteriori by a factor of 1.5, which does
not change the value of the weighted mean but does improve statistical consistency
based on a y-squared test [31].

Subsequent to the cutoff date for data considered for the CODATA 2006, a new
value of i became available from researchers at the NPL [38]. This result, referred
to as “preliminary” by the authors, is statistically different from the CODATA 2006
recommendation. The recent data are summarized in Table 2, which also shows
previously published results from both the NIST and the NPL. Except for the last
line, all information in Table 2 can be found in Tables XXXV and XLVII of [31].

Thus the most recent watt balance result is 300(83) ppb above the CODATA 2006
recommended value for . One must always search carefully to make sure that, for
example, differences between results from watt balances and XRCD are not due to
new physics. This point is examined in [31].
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Table 2 Results in chronological order since 1990. The NPL-07 result [38] was
published after the deadline for CODATA 2006. All other results are discussed in [31]

Type Relative

of experiment Identification h/(s) standard uncertainty
Watt Balance NPL-90 6.6260682(13) x 1073 200 x 10~°

Watt Balance NIST-98 6.62606891(58) x 103+ 87 x 10~°

Silicon XRCD 2005 6.6260745(19) x 1073 290 x 10~°

Watt Balance NIST-07 6.62606891(24) x 1073 36 x 107°
CODATA 2006 Combined 6.62606896(33) x 10734 50 x 10~°

Watt Balance NPL-07 6.62607095(44) x 10734 66 x 10~°

Recall from Fig. 1 that the set of prototype kilograms seems to be diverging in
mass from the international prototype by only about 0.5 ppb/year and one can under-
stand why some mass metrologists view the immediate redefinition of the kilogram
in terms of the Planck constant as premature. The chosen value of & will, of course,
ensure that the mass of m and all mass values derived from m will be unchanged
on the day the redefinition takes effect. Thus challenges for the mass community will
be: (1) to deal with the significant additional uncertainty, which will be common to
all macroscopic mass standards (and thus will not affect current uncertainties for
differences between mass standards); and (2) to keep the ensemble of artifact mass
standards and macroscopic quantities such as force and pressure, which are derived
from such mass standards, closely linked to the SI.

6 Proposals for a New SI

6.1 Consensus Building and Formal Approval

The Consultative Committee for Units (CCU) of the CIPM is responsible for editing
the SI brochure [3], the definitive SI documentation. The CCU also serves as a forum
for proposals to redefine SI units. It receives such proposals principally from other
Consultative Committees (CCs) and from scientific unions. The CIPM may place a
formal resolution before the General Conference of Weights and Measures (CGPM),
which takes place every four years. Ultimately the CGPM must approve significant
changes to the SI on behalf of the 54 member states of the BIPM. The 23rd meeting
of the CGPM took place in November 2007, and the next meeting, the 24th, will be
held in October 2011.

At the 2007 CGPM meeting, the President of the CCU presented a progress
report that summarized a broad consensus of all interested parties. This presenta-
tion is publicly available on the Internet [27].

For its part, the 2007 meeting of the CGPM passed Resolution 12, On the possible
redefinition of certain base units of the SI [9]. Resolution 12 notes the desirability
that new definitions of the base units “should be easily understood” and requests the
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CIPM *“to take whatever preparations are necessary so that, if the results of experi-
ments are found to be satisfactory and the needs of users met, formal proposals for
changes in the definitions of the kilogram, ampere, kelvin and mole can be put to
the 24th General Conference.”

Given the pace of research, it is possible that the 2011 deadline may be met.
The chief obstacle is a satisfactory realization of 1 kg by means of the experiments
represented schematically by Eqgs. 21 and 25.

A final concern is how to word a definition of the kilogram based on a fixed
value for 4 in a way that is “easily understood.” A definition that specifies the de
Broglie—~Compton frequency, fi,,. of 1 kg is problematic for two reasons: relatively
few members of the public will understand this definition and those who do may be
concerned that 1/ f,,, is seven orders of magnitude smaller than the Planck time,
(hG/cg)l/ 2. Regarding the issue of public comprehension, we may note that the
definition of the second already refers to “hyperfine levels of the ground state of
the caesium 133 atom” [3], and this illustrates that public comprehension, although
important, is not an overriding issue.

6.2 An SI Based on Defined Values of a Set of Constants

Mohr [30] has recently demonstrated how a new SI could be defined by choosing a
basis set of constants (above we have been concerned with vy, co, £, €) the values
of which would then be chosen to adjust the sizes of the base units seamlessly to
their traditional values. There is no need to specify which of the constants defines
the unit of mass, just as there is no necessity to say which of the Planck set defines
the Planck mass. The choice is unique. Mohr’s publication and its references should
be consulted by anyone with a serious interest in unit systems.

7 Conclusion

The SI is moving to a system entirely based on fixed values for a selected set of
physical constants that appear in QED. The present artifact definition of the kilo-
gram will be replaced as part of this program. The remaining issues are how to
determine the masses of macroscopic artifacts, which will still be used in conven-
tional mass metrology, in terms of the new definition. At present, the most promising
experimental methods are based on watt balance and silicon XRCD technologies.
Unfortunately, the results of such measurements are not yet as consistent as one
would wish. However, work is progressing relatively quickly and technical prob-
lems may be resolved (and some expectations may be reassessed) in time for formal
approval of a new kilogram definition by the next meeting of the CGPM in late
2011, or the following in 2015.
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Mass and Angular Momentum in General
Relativity
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Abstract We present an introduction to mass and angular momentum in General
Relativity. After briefly reviewing energy—momentum for matter fields, first in the
flat Minkowski case (Special Relativity) and then in curved spacetimes with or
without symmetries, we focus on the discussion of energy—momentum for the grav-
itational field. We illustrate the difficulties rooted in the Equivalence Principle for
defining a local energy—momentum density for the gravitational field. This leads to
the understanding of gravitational energy—momentum and angular momentum as
nonlocal observables that make sense, at best, for extended domains of spacetime.
After introducing Komar quantities associated with spacetime symmetries, it is
shown how total energy—momentum can be unambiguously defined for isolated sys-
tems, providing fundamental tests for the internal consistency of General Relativity
as well as setting the conceptual basis for the understanding of energy loss by gravi-
tational radiation. Finally, several attempts to formulate quasi-local notions of mass
and angular momentum associated with extended but finite spacetime domains are
presented, together with some illustrations of the relations between total and quasi-
local quantities in the particular context of black hole spacetimes. This article is
not intended to be a rigorous and exhaustive review of the subject, but rather an
invitation to the topic for nonexperts.

J.L. Jaramillo ()

Instituto de Astrofisica de Andalucia, CSIC, Apartado Postal 3004, Granada 18080, Spain
and

Laboratoire Univers et Théories, Observatoire de Paris, CNRS, Université Paris Diderot,
5 place Jules Janssen, F-92190 Meudon, France

e-mail: jarama@iaa.es

E. Gourgoulhon (=)

Laboratoire Univers et Théories, Observatoire de Paris, CNRS, Université Paris Diderot,
5 place Jules Janssen, F-92190 Meudon, France

e-mail: eric.gourgoulhon @obspm.fr

L. Blanchet, A. Spallicci, and B. Whiting (eds.), Mass and Motion in General Relativity, 87
Fundamental Theories of Physics 162, DOI 10.1007/978-90-481-3015-3_4,
© Springer Science+Business Media B.V. 2011



88 J.L. Jaramillo and E. Gourgoulhon

1 Issues Around the Notion of Gravitational Energy
in General Relativity

1.1 Energy—Momentum Density for Matter Fields

Let us first consider mass and angular momentum associated with matter in the ab-
sence of gravity, in a flat Minkowski spacetime. The density of energy and linear
momentum associated with a distribution of matter are encoded in the energy—
momentum tensor Ty,, corresponding to the Noether current conserved under
infinitesimal spacetime translations in a Lagrangian framework. This general con-
servation property, namely 9, 7" = 0 in inertial Minkowski coordinates, plays
a key role in our discussion. Indeed, together with the presence of symmetries, it
permits the introduction of conserved quantities or charges. Given a space-like hy-
persurface X and considering the unit time-like vector n* normal to it, we can
define the conserved quantity associated with the symmetry k# and the domain D
(Cc X)as

Oplk*] = /Dk"’Tvpn”ﬁ d3x, )

where /y d3x denotes the induced volume element in D. The conservation of
T, and the characterisation of k* as a symmetry imply the conservation of the
vector T#,k”, that is, d,, (T*,k") = 0. Applying then the Stokes theorem, it fol-
lows the equality between the change in time of O p[k*] and the flux of y* , T*"k,
through the boundary of D (where y#, is the projector on D). Minkowski space-
time symmetries are given by Poincaré transformations. Therefore, we can associate
conserved quantities with the infinitesimal generators corresponding to translations
T}, rotations Jﬁ‘ , and boosts Kf‘ (here the label a for translation generators runs
in {0, 1,2, 3}, whereas i is a space-like index in {1,2,3}). In this manner, a 4-
momentum P,[D] and an angular momentum J; [ D] associated with the distribution
of matter in D C X can be defined as

Pa[D]szTwT;nMﬁd%, Ji[D]=/l)TMvan“ﬁd3x. )

More generally, we can combine together the rotation and boost generators J f‘ and

. . . . ik
K into a vector-field-valued antisymmetric matrix Mf’; p) (Where =37 Mf’}. Xl

and K" = Mﬁ)i]) and write the conserved quantities

Jiap)[D] = /D TywMp ' 7 dx. 3)
The mass and (Pauli-Lubanski) spin are constructed as
1
m*[D]:= =" Pa[DIPy[D]. S°[D]:= S Py[DlearlD). (4)

in terms of which Poincaré Casimirs (invariant under Poincaré transformations) can
be expressed.
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In the non-flat case, (matter) energy—momentum tensor acts as the source of
gravity through the Einstein equation and, consistently with Bianchi identities, sat-
isfies the divergence-free condition analogous to the flat conservation law:

1
Guv := Ry — §4R guv = 87Ty, VoT"* = 0. 5)

The same strategy employed in the flat case for defining physical quantities associ-
ated with matter, that is, using conserved currents corresponding to some symmetry,
can be followed in non-flat spacetimes (M, g,,») presenting Killing vectors k*.
The vector T#,k" is conserved, that is, V,, (T*,k"”) = 0, and provides a current
density for the conserved quantity Q p [k*] defined by expression (1). The physical
interpretation of Q p[k*] depends of course on the nature of the Killing vector k*.
Actually, Q p[k*] does not actually depend on the slice X in the sense that its value
is the same in the domain of dependence of D (this precisely corresponds to the
conserved nature of this charge).

In a general spacetime with no symmetries the previous strategy ceases to work,
and ambiguities in the definition of mass and angular momentum enter into scene.
One can still calculate the flux of 7#,&" for a given vector £¥, and define the as-
sociated quantity Q p[£#]. However, the latter will now depend on the slice X' and,
in addition, its explicit dependence on £ introduces some degree of arbitrariness
in the discussion. In this context, given a space-like 3 + 1 foliation {X;} of the
spacetime with time-like normal vector n®, the current P* := —T*"n,, can be in-
terpreted as the energy—momentum density associated with (Eulerian) observers at
rest with respect to X;. Thatis, E := T""n,n, stands as the matter energy density
and pt 1= —y* T*"n, as the momentum density, where y,,, is the induced metric
on X (see Eq. 12 below for the complete 3+1 decomposition of T},,,). In particular,
we can calculate the (matter) energy associated with observers n# over the spatial
region D by direct integration

E[D]:/ Eﬁd%:[ T*n,n, Jy d>x. (6)
D D

By imposing the dominant energy condition on the matter energy—momentum ten-
sor (see Section 3.3), the vector —7#"n,, is future directed and non-space-like. Its
Lorentzian norm is therefore non-positive and an associated (matter) mass density
m canbe givenasm? := —P* P, = —(=T"Pnp)(—=T""ne)guy = E>—p' p; > 0.
The corresponding mass M[D] in the extended region D would be

M[D] := /D VE2—pipi Jy d’x. @)

Note the difference between the construction of M[D] and that of m[D] in the
Minkowskian case: for the latter one first integrates to obtain the charges and then
calculates a Minkowskian norm, whereas for constructing M[D] that order is re-
versed; in addition, different metrics are employed in each case (cf. Section 2.2
in [85]).
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1.2 Problems when Defining a Gravitational Energy—Momentum

In the characterization of the physical properties of the gravitational field, in partic-
ular its energy—momentum and angular momentum, we could try to follow a similar
strategy to that employed for the matter fields. This would amount to identify ap-
propriate local densities that would then be integrated over finite spacetime regions.
However, such an approach rapidly meets important conceptual difficulties.

A local (point-like) density of energy associated with the gravitational field
cannot be defined in General Relativity. Reasons for this can be tracked to the Equiv-
alence Principle. Illustrated in a heuristic manner, this principle can be used to get
rid of the gravitational field on a given point of spacetime. Namely, a free falling
point-like particle does not feel any gravitational field so that, in particular, no grav-
itational energy density can be identified at spacetime points.

In a Lagrangian setting, these basic conceptual difficulties are reflected in the
attempts to construct a gravitational energy—momentum tensor, when mimicking
the methodological steps followed in the matter field case. We can write generically
the gravitational-matter action as

1

S =S+ Sn=— | *Ry=gd*x +/ L(guv, ®i, V,u®i,...)/—g d*x.
16w M M

(®)

where Sgy denotes the Einstein—Hilbert action and @; in the matter Lagrangian
Ly, account for the matter fields. The symmetric energy—momentum for matter is
obtained from the variation of the matter action Sy, with respect to the metric

T -2 68
dd '_\/T_gggp«v’

whereas the field equations for the matter fields follow from the variation with re-
spect to the matter fields @;. On the contrary, the gravitational action Sgy only
depends on the gravitational field, since any further background structure would
be precluded by diffeomorphism invariance (a feature closely tied to the physical
Equivalence Principle). Einstein equation for the gravitational field follows from
the variation of the total action with respect to the metric field g,,, with no gravi-
tational analogue of the symmetric matter energy—momentum tensor 7, . Attempts
to construct a symmetric energy—momentum tensor for the gravitational field either
recover the Einstein tensor G, or can only be related to higher-order gravitational
energy—momentum objects, such as the Bel-Robinson tensor (see, e.g., [84]). Again,
the absence of a tensorial (i.e., point-like geometric) quantity representing energy—
momentum for the gravitational field is consistent with, and actually a consequence
of, the Equivalence Principle.

The natural interpretation of the symmetric matter energy—momentum tensor
T, as introduced in Eq. 9 is that of the current source for the gravitational field,
obtained as a conserved current associated with spacetime translations. Alternative,
in terms of the Noether theorem [75] it is natural to introduce a (nonsymmetric)

©)
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canonical energy—momentum tensor for matter from which a symmetric one can be
constructed through the Belinfante—Rosenfeld procedure [15, 16,47]. The applica-
tion of this construction to the gravitational field naturally leads to the discussion of
gravitational energy—momentum pseudo-tensors [85]. The underlying idea consists
in decomposing the Einstein tensor G, into a part that can be identified with the
energy—momentum and a second piece that can be expressed in terms of a pseudo-
potential. That is [25]

1
Gu' = =871 1" + ——— 0, (H, M), (10)
M | 2\/—_g W

where 7, is the gravitational energy—momentum pseudo-tensor and H ,w’\ is the
superpotential. Einstein’s equation is then written as

0 (H"Y) = 1670 y=g (1" + T,.") =: 1677T,". (11)

Objects ,” and H,,"* are not tensorial quantities. This means that their value at a
given spacetime point is not a well-defined notion. Moreover, their very definition
needs the introduction of some additional background structure and some choice
of preferred coordinates is naturally involved. Different pseudo-tensors exist in the
literature, for example, those introduced by Einstein, Papapetrou, Bergmann, Lan-
dau and Lifshitz, Mgller, or Weinberg (e.g. see references in [25]).

As an alternative to the pseudo-tensor approach, there also exist attempts in the
literature aiming at constructing truly tensorial energy—momentum quantities. How-
ever they also involve the introduction of some additional structure, either in the
form of a background object or by fixing a gauge in some given formulation of
General Relativity (cf. comments on the tetrad formalism approach in [85]).

1.2.1 Nonlocal Character of the Gravitational Energy

As illustrated above, crucial conceptual and practical caveats are involved in the as-
sociation of energy and angular momentum with the gravitational field. For these
reasons, one might legitimately consider gravitational energy and angular momen-
tum in General Relativity as intrinsically meaningless notions in generic situations,
in such a way that the effort to derive explicit general local expressions actually rep-
resents an ill-defined problem (cf. remarks in [73] referring to the quest for a local
expression of energy in General Relativity). Having said this and after accepting the
nonexistence of a local (point-like) notion of energy density for the gravitational
field, one may also consider gravitational energy—momentum and angular momen-
tum as notions intrinsically associated with extended domains of the spacetime and
then look for restricted settings or appropriate limits where they can be properly
defined.

In fact, making a sense of the energy and angular momentum for the grav-
itational field in given regions of spacetime is extremely important in different
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contexts of gravitational physics, as it can be illustrated with examples coming from
mathematical relativity, black hole physics, lines of research in Quantum Gravity,
or relativistic astrophysics. From a structural point of view, having a well-defined
mass positivity result is crucial for the internal consistency of the theory, as well as
for the discussion of the solutions stability. Moreover, the possibility of introduc-
ing appropriate positive-definite (energy) quantities is often a key step in different
developments in mathematical relativity, in particular when using variational prin-
ciples. In the study of the physical picture of black holes, appropriate notions of
mass and angular momentum are employed. In particular, they play a key role in
the formulation of black hole thermodynamics (e.g., [88]), a cornerstone in differ-
ent approaches to Quantum Gravity. In the context of relativistic astrophysics and
numerical relativity, the study of relativistic binary mergers, gravitational collapse,
and the associated generation/propagation of gravitational radiation also requires
appropriate notions of energy and angular momentum (see e.g., [64] for a further
discussion on the intersection between numerical and mathematical relativity).

Once the nonlocal nature of the gravitational energy—momentum and angular
momentum is realized, the conceptual challenge is translated into the manner of
determining the appropriate physical parameters associated with the gravitational
field in an extended region of spacetime. An unambiguous answer has been given
in the case of the total mass of an isolated system. However, the situation is much
less clear in the case of extended but finite spacetime domains. In a broad sense, ex-
isting attempts either enforce some additional structure that restricts the study to an
appropriate subset of the solution space of General Relativity, or alternatively they
look for a genuinely geometric characterization aiming at fulfilling some expected
physical requirements. In this article we present an overview of some of the relevant
existing attempts and illustrate the kind of additional structures they involve. We do
not aim here at an exhaustive review of the subject, but rather we intend to provide
an introduction to the topic for nonexperts. In this sense we follow essentially the
expositions in [43,79,85,87] and refer the reader interested in further developments
to the existing literature, in particular to the excellent and comprehensive review by
Szabados [85].

1.3 Notation

Before proceeding further, we set the notation, some of whose elements have al-
ready been anticipated above. The signature of spacetime (M, g,.,) is chosen to
be diag[ — 1, 1, 1, 1] and Greek letters are used for spacetime indices in {0, 1,2, 3}.
We denote the Levi-Civita connection by V,, and the volume element by % =
=8 dx° Adx' A dx* A dx?. We make G = ¢ = 1 throughout.

1.3.1 3+ 1 Decompositions

In our presentation of the subject, 341 foliations of spacetime (M, g, ) by space-
like 3-slices {X;} will play an important role. Given a height-function ¢, the
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time-like unit normal to X; will be denoted by n* and the 3+1 decomposition of
the evolution vector field by t* = Nn* + B, where N is the lapse function and
B* is the shift vector. The induced metric on the space-like 3-slice X; is expressed
as Yuv = guv + nyny, with D, the associated Levi—Civita connection and volume
element * = /ydx' A dx? Adx3, so that %, = n%%g0p. The extrinsic curva-
ture of (X, yuv) in (M, guv) is defined as K, = —%Lﬁny,w = —yY."V,n,. The
3 + 1 decomposition of the (matter) stress—energy tensor, in terms of an Eulerian
observer n** in rest with respect to the foliation { X}, is

Ty = Enyny + punyy + Sy, (12)
where the matter energy and momentum densities are given by E = Ty,nn"
and p, = =T,,n"y* e respectively, whereas the matter stress tensor is Sy, =

Tpoy?,v? - Latin indices running in {1, 2, 3} will be employed in expressions only
involving objects intrinsic to space-like X slices.

1.3.2 Closed 2-Surfaces

Closed 2-surfaces S, namely topological spheres in our discussion, will also be
relevant in the following. The normal bundle 71S can be spanned by a time-like
unit vector field n** and a space-like unit vector field s*, which we choose to satisfy
the orthogonality condition n*s,, = 0. When considering S as embedded in a space-
like 3-surface X', n* can be identified with the time-like normal to X and s* with the
normal to S tangent to X. In the generic case, n** and s* can be defined up to a boost
transformation: n’* = cosh(n)n* + sinh(n)s* and s’* = sinh(n)n* + cosh(n)s*,
with 7 a real parameter. Alternatively, one can span T;-S at p € S in terms of the
null normals defined by the intersection between the normal plane to S and the light-
cone at the spacetime point p. The directions defined by the outgoing € and the
ingoing k* null normals (satisfying k*£,, = —1) are uniquely determined, though
it remains a boost-normalization freedom: £'* = f - £*, k' = %'k”. The induced
metric on S is given by: ¢ = guv + kpby + Luky = guv +npny — S8, =
Yuv — SuSy, the latter expression applying when S is embedded in (X, y,,). The
Levi-Civita connection associated with g,,,, will be denoted by 2D, and the volume
element by % = . /gdx' A dx?, that is, %, = n”s®*%ps,. When integrating
tensors on S with components normal to the sphere, it is convenient to express the
volume element as dSy,, = (Syny —nySy) ﬁdzx (this is just a convenient manner
of reexpressing %, for integrating over S after a contraction with the appropriate
tensor; cf., e.g., Eq. 13).

The second fundamental tensor of (S, quv) in (M, guy) is defined as KXY, :=

q°1,9° ,Vpq® 5> that can be expressed as K, = n"‘@,(ﬁ,) + s“@,(fg = k"‘@,(fg +

o @,(ﬁ,), where the deformation tensor @,3”3 associated with a vector v* normal to S

is defined as @Sﬂ = ¢°,,94° ,Vpvo. We set a specific notation for the cases corre-
sponding to s* and n*, namely, H,,, := @,(f,z , the extrinsic curvature of (S, q,.v)

inside a 3-slice (X, y,v), and L, := —@,(an).
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Information about the extrinsic curvature of (S, g,v) in (M, g,,) is completed
by the normal fundamental forms associated with normal vectors v*. In particular,
we define the 1-form £2 ,(f) := k?q° Vo l,. This form is not invariant under a boost

7
transformation, and transforms as .Q,(f) = .Q,(f) +2D wInf in the notation above.
Other normal fundamental forms can be defined in terms of normals k*, n*, and
s, but they are all related up to total derivatives.

2 Spacetimes with Killing Vectors: Komar Quantities

As commented above, some additional structure is needed to introduce meaning-
ful notions of gravitational energy and angular momentum. Let us first consider
spacetimes admitting isometries. This represents the most straightforward gener-
alization of the definition of physical parameters as conserved quantities under
existing symmetries. Requiring the presence of Killing vectors represents our first
example of the enforcement of an additional structure on the considered spacetime.

Given a Killing vector field k# in the spacetime (M, g,,) and S a space-like
closed 2-surface, let us define the Komar quantity [67] kx as

1
= —— @ VFK" dS,, 1
ki = o fé ds, (13)

(see previous section for the notation d.S,,, for the volume element on S). Let us
consider S as embedded in a space-like 3-slice X' and let us take a second closed
2-surface &’ such that either S’ is completely contained in S or vice versa, and let
us denote by V' the region in X' contained between S and S’. The previously defined
Komar quantity kx is then conserved in the sense that its value does not depend on
the chosen 2-surface as long as no matter is present in the intermediate region V

1 ,
k¢ = 2/ (Tuv - zTgw) ik Yy dx ki (14)
14

where T = T, g"".

Remark 1. Two important points must be stressed: (a) the definition of kx is geo-
metric and therefore coordinate independent, and (b) kg is associated with a closed
2-surface with no need to refer to any particular embedding in a 3-slice X' (in the
discussion above the latter has been only introduced for pedagogical reasons).

2.1 Komar Mass

Stationary spacetimes admit a time-like Killing vector field k. The associated con-
served Komar quantity is known as the Komar mass

1
Mg = ——@Q V*k¥dS,,. 15
‘ sﬁé . (15)
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This represents our first notion of mass in General Relativity. It is instructive to write
the Komar mass in terms of 3 + 1 quantities. Given a 3-slicing { X} and choosing
the evolution vector t* = Nn* + " to coincide with the time-like Killing sym-
metry, we find

1 . .
Mg = o (s"DiN — K;js'B’) /g d*x. (16)
T Js

2.2 Komar Angular Momentum

Let us consider now an axisymmetric spacetime, where the axial Killing vector is
denoted by ¢*. That is, ¢* is a space-like Killing vector whose action on M has
compact orbits, two stationary points (the poles), and is normalized so that its natural
affine parameter takes values in [0, 27r). The Komar angular momentum is defined as

Ji : VAGY dS,.,. (17)

- 167 St

Note (apart from the sign choice) the factor 1/2 with respect to the Komar quan-
tity ¢k, known as the Komar anomalous factor (it can be explained in the context
of a bimetric formalism by writing the conserved quantities in terms of an Einstein
energy—-momentum flux density that can be expressed as the sum of half the Komar
contribution plus a second term: in the angular momentum case this second piece
vanishes, whereas for the mass case it equals half the Komar term; cf. [65]). Adopt-
ing a 3-slicing adapted to axisymmetry, that is, n*¢,, = 0, we have:

1 o 1
Jx=—@ Kijs'¢’ d2=—31§9“>ﬂ d?x. 18
Kgngéfsqﬁﬂxgnsmﬂx (18)

3 Total Mass of Isolated Systems in General Relativity

3.1 Asymptotic Flatness Characterization of Isolated Systems

The characterization of an isolated system in General Relativity aims at capturing
the idea that spacetime becomes flat when we move sufficiently far from the system,
so that spacetime approaches that of Minkowski. However, the very notion of far
away becomes problematic due to the absence of an a priori background spacetime.
In addition, we must consider different kinds of infinities, since we can move away
from the system in space-like and also in null directions. Different strategies exist
in the literature for the formalization of this asymptotic flatness idea, and not all
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of them are mathematically equivalent. Traditional approaches attempt to specify
the adequate falloff conditions of the curvature in appropriate coordinate systems at
infinity. These approaches have the advantage of embodying the weakest versions
of asymptotic flatness. We will illustrate their use in the discussion of spatial infin-
ity in Section 3.2. However, the use of coordinate expressions in this strategy also
introduces the need of verifying the intrinsic nature of the obtained results, some-
thing that it is not always straightforward. For this reason, a geometric manner of
describing asymptotic flatness is also desirable, without relying on specific coor-
dinates. This has led to the conformal compactification picture, where infinity is
brought to a finite distance by an appropriate spacetime conformal transformation.
More concretely, one works with an unphysical spacetime (M, &uv) with boundary,
such that the physical spacetime (M, g,,,,) is conformally equivalent to the interior
of (M, &uv), thatis, &, = 2%g . Infinity is captured by the boundary dM and is
characterized by the vanishing of the conformal factor, £2 = 0. The whole picture is
inspired in the structure of the conformal compactification of Minkowski spacetime.
The conformal boundary is the union of different pieces, which are classified accord-
ing to the metric type of the geodesics reaching their points. This defines (past and
future) null infinity .#*, spatial infinity i°, and (past and future) time-like infinity
i T, that is, OM = #¥Ui%Ui*. The conformal spacetime is represented in the so-
called Carter—Penrose diagram. Falloff conditions for the characterization of asymp-
totic flatness are substituted by differentiability conditions on the fields at null and
spatial infinity (isolated systems do not require flatness conditions on time-like in-
finity). Null infinity was introduced in the conformal picture by Penrose [77,78], the
discussion of asymptotic flatness at spatial infinity was developed by Geroch [39],
and a unified treatment was presented in [5, 8] (see also [11,56]). We will briefly
illustrate the different approaches to asymptotic flatness in the following sections,
but we refer the reader to the existing bibliography (e.g., [37,87]) for further details.

3.2 Asymptotic Euclidean Slices

The following two sections are devoted to the discussion of conserved quantities
at spatial infinity, but they also illustrate the coordinate-based approach to asymp-
totic flatness. A slice ¥ endowed with a space-like 3-metric y;; is asymptotically
Euclidean (flat), if there exists a Riemannian background metric f;; such that:

(1) fij is flat, except possibly on a compact domain D of X.
(i) There exists a coordinate system (x') = (x,y,z) such that outside D,
fij = diag(1,1,1) (Cartesian-type coordinates) and the variable r :=

VX2 4+ y2 + 72 can take arbitrarily large values on X.
(iii) When r — 400

- dyij -
vij = fiy + 007, ax_’i =007,

_ 0K;i _
Kij = 0(r™2), Ble] =0@r7). (19)



Mass and Angular Momentum in General Relativity 97

Given an asymptotically flat spacetime foliated by asymptotically Euclidean slices
{ X}, spatial infinity is defined by r — 400 and denoted as i°.

3.2.1 Asymptotic Symmetries at Spatial Infinity

As commented in the discussion of the Komar quantities, the existence of
symmetries provides a natural manner of defining physical parameters as con-
served quantities. In the context of spatial infinity, the spacetime diffeomorphisms
preserving the asymptotic Euclidean structure (19) are referred to as asymptotic
symmetries. Asymptotic symmetries close a Lie group. Since the spacetime is
asymptotically flat, one would expect this group to be isomorphic to the Poincaré
group. However, the set of diffeomorphisms (x*) = (¢, x') — (x'*) = (¢/,x"")
preserving conditions (19) is given by

X = AR X 4 M0, ) + 00, (20)

where A%, is a Lorentz matrix and the ¢*’s are four functions of the angles
(0, ) related to coordinates (x’) = (x,y,z) by the standard spherical formu-
las: x = rsinfcos¢, y =rsinfsing,z=r cos 0. This group indeed contains the
Poincaré symmetry, but it is actually much larger due to the presence of angle-
dependent translations. The latter are known as supertranslations and are defined by
c"(0, @) # const and A", = 8", in the group representation (20). The corresponding
abstract infinite-dimensional symmetry preserving the structure of spatial infinity
(Spi) is referred to as the Spi group [5,8]. The existence of this (infinite-dimensional)
Lie structure of asymptotic symmetries has implications in the definition of a global
physical mass, linear, and angular momentum at spatial infinity (see below).

3.3 ADM Quantities

Hamiltonian techniques are particularly powerful for the systematic study of phys-
ical parameters, considered as conserved quantities under symmetries acting as
canonical transformations in the solution (phase) space of a theory. In this sense,
the Hamiltonian formulation of General Relativity provides a natural framework for
the discussion of global quantities at spatial infinity. This was the original approach
adopted by Arnowitt, Deser, and Misner in [4] and we outline here the basic steps.
First, a variational problem for the class of spacetimes we are considering must
be set. For a correct formulation we need to specify: (a) the dynamical fields we
are varying, (b) the domain V over which these fields are varied together with the
prescribed value of their variations at the boundary 0V, and (c) the action functional
S compatible with the field equations. As integration domain V we consider the
region bounded by two space-like 3-slices X, and X, and an outer time-like tube
B. X;, and X, can be seen as part of a 3-slicing {X;} with metric and extrinsic
curvature given by (y;;, K i), whereas B has ( Xuv, PHY) as induced metric and
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extrinsic curvature. That is, x,, = guv — uutty and Py, = —y,°Vou,, where ut is
the unit space-like normal to B. The dynamical field whose variation we consider is
the spacetime metric g,,,, under boundary conditions §g,., |3, = 0 (note that we im-
pose nothing on variations of the derivatives of g,,). The appropriate gravitational
Einstein—Hilbert action then reads (cf., e.g., [79]; the discussion has a straightfor-
ward extension to incorporate matter)

1

= oo 4R4/_d4x+— / (K — Ko)/y d>x

+ (K — Ko)/yd>x +/(P —Po)v—xd3x}, 21
i B

where K and P are the traces of the extrinsic curvatures of the hypersurfaces Xy,
and B, respectively, as embedded in (M, g,,,). The subindex O corresponds to their
extrinsic curvatures as embedded in (M, n,,,). The boundary term guarantees the
well-posedness of the variational principle, that is, the functional differentiability of
the action and the recovery of the correct Einstein field equation, under the assumed
boundary conditions for the dynamical fields.

Making use of the 3 4 1 fields decompositions, and considering the intersections
S; := B N X; between space-like 3-slices Xy and the time-like hypersurface B, we
can express the action (21) as

1 2 o
§S=— {/ N (CR+Ki;j K7 — K?) Jy d°x
167[ 1 Et

255 (H — Ho) /g d*x} dt (22)
St

where H and H, denote the trace of the extrinsic curvature of the 2-surface S; as
embedded in (X%, y;;) and (X}, f;;), respectively. The Lagrangian density L can be
read from the form of the action (22). The 3-metric y;; plays the role of the dynam-
ical variable and the dependence of L on y;; follows from the explicit expression of
the extrinsic curvature K;; in terms of the lapse and the shift, that is,

1 .
Kij = 537 (DB + v DiB* = y). 23)
In particular no derivatives of N and B’ appear in (22), indicating that the lapse
function and the shift vector are not dynamical variables. The Hamiltonian descrip-
tion is obtained by performing a Legendre transformation from variables (y;;, yi;)

to canonical ones (y;;, 7"/ ), where

. 3L 1
Vi=_— = K'). 24
i 3]'/1']' 167'[\/—( ) ( )
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The Hamiltonian density H is then given by
H=r"y;—L, (25)

and the Hamiltonian follows from an integration over a 3-slice, resulting in (cf.
[43,79] for details)

1

H=——
167

{—/ (NCo +2B'Ci) \Jy d*x
Py

—zgé [N(H — Ho) — B (Kij — Kyij))s' | Jgd?xy . (26)
where

Co:=°>R+ K*—K;; K",
Ci = D;K’ - D;K. 27)

Functionals Cy and C; vanish on solutions of the Einstein equation (in vacuum).
More specifically, equations Cy = 0 and C; = 0, respectively, represent the Hamilto-
nian and momentum constraints of General Relativity, corresponding to the contrac-
tion of the Einstein equation (5) with n*. From a geometric point of view, they are
referred to as the Gauss—Codazzi relations and represent conditions for the embed-
ding of (X%, yi;) as a submanifold of a spacetime (M, g,,,»,) with vanishing n*G,,,.
The evaluation of the gravitational Hamiltonian (26) on solutions to the Einstein
equation yields
1

Hiotwion = —2— P [N(H — Ho) — B (Kij — Kyij)s'] /g d*x. (28)
St

Remark 2. Note that in the absence of boundaries the gravitational Hamiltonian
vanishes on physical solutions. This is a feature of diffeomorphism invariant theo-
ries [58] and reflects the fact that the Hamiltonian, considered as the generator of a
canonical transformation, does not move points in the solution space of the theory.
In other words, it is a generator of gauge transformations, something consistent with
the interpretation of the Hamiltonian as the generator of diffeomorphisms. Note also
that the situation changes in the presence of boundaries, where diffeomorphisms not
preserving boundary conditions do not correspond to gauge transformations, indi-
cating the presence of residual degrees of freedom (this is of relevance, for instance,
in certain aspects of the quantum theory).

3.3.1 ADM Energy

We focus on solutions corresponding to isolated systems and consider 3-slices X
that are asymptotically Euclidean in the sense of conditions (19) (we refer the reader
to [1] for a discussion of the total energy in cosmological asymptotically Anti-de
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Sitter spacetimes and to [34] for its discussion in higher curvature gravity theories).
We choose the lapse and the shift so that the evolution vector t# is associated with
some asymptotically inertial observer for which N = 1 and g7 = 0 at spatial
infinity. In particular, this flow vector t# generates asymptotic time translations that,
in this asymptotically flat context, constitute actual (asymptotic) symmetries. Con-
served quantities under time translations have the physical meaning of an energy.
In the present case, the conserved quantity is referred to as the ADM energy. The
latter is obtained from expression (28) by making N = 1 and 8/ = 0 and taking
the limit to spatial infinity, namely » — oo in the well-defined sense of Section 3.2.
That is,

Eapm := LS lim (H — Ho)/q d*x. (29)

87 S(t.r—00) JS;

This ADM energy represents the total energy contained in the slice X;. Using the
explicit expression of the extrinsic curvature in terms of metric components, the
ADM energy can be written as

1 . . .
Exon = 1= tim & [Dyy =DM |5 vadix. o
Y 8([,r—>oo) S;

where D; stands for the connection associated with the metric f;; and, consistently
with notation in Section 1.3, s corresponds to the unit normal to S; tangent to X,
and oriented toward the exterior of S; (note that when r — oo the normalization
with respect to y;; and f;; are equivalent). In particular, if we use the Cartesian-like
coordinates employed in (19) we recover the standard form (see, e.g., [87])

o Wij _0ii\ i =02
E =— 1 — — =) d<x. 31
ADM = T S(t.rIToo) ﬁt (ax-’ oxi )3 Vqdx (31

Remark 3. We note that asymptotic flatness conditions (19) guarantee the finite
value of the integral since the O(r?) part of the measure /g d*x is compensated
by the O(r~2) parts of dy;;/dx/ and dy;; /dx". It is very important to point out that
finiteness of the ADM energy relies on the subtraction of the reference value Hy
in Eq. 29.

Conformal Decomposition Expression of the ADM Energy

A useful expression for the ADM energy in certain formulations of the Einstein
equation is given in terms of a conformal decomposition of the 3-metric

vij = ¥4 (32)

Choosing the representative y;; of the conformal class by the unimodular condition
det(y;;) = det(fi;) = 1, conditions (19) translate into
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v=1+00" X _ow
axk
~ -1 8J/l/ -2
Yij = fij + 0(r™), k= = 0(r™7), (33)

for the conformal factor and the conformal metric. Then it follows [43]

1
E =—— 1 'DlI/——'Dj d? 34
ADM 27 se) rliloo) . ( ; VU) Jad2x. (34)

Note that whereas in the time-symmetric (K, = 0) conformally flat case the
Komar mass is given in terms of the monopolar term in the asymptotic expansion of
the (adapted) lapse N [cf. Eq. 16], the ADM energy is given by the monopolar term
in v (the latter holds more generally under a vanishing Dirac-like gauge condition
on D/ )71']').

Example 1 (Newtonian Limit). As an application of expression (34) we check that
the ADM energy recovers the standard result in the Newtonian limit. For this we
assume that the gravitational field is weak and static. In this setting it is always
possible to find a coordinate system (x*) = (x® = ct, x) such that the metric com-
ponents take the form

—dt?* = gupdxtdx” = —(14+2®) dt> + (1 —29) f;; dx'dx’ (35)

where again f;; is the flat Euclidean metric in the 3-dimensional slice and @ is
the Newtonian gravitational potential, solution of the Poisson equation A® = 4mp
where p is the mass density (we recall that we use units in which the Newton’s
gravitational constant G and the light velocity ¢ are unity). Then, using ¥ = (1 —
20)/4 1 — %@, Eq. 34 translates into

1 , 1
E = — lim $S'D;® Jgdix = —/ AD  f d3x 36
ADM = 7 S([,r1—>oo) D s D NZi i I, f (36)

where in the second step we have assumed that X, has the topology of R? and have
applied the Gauss—Ostrogradsky theorem (with A = D;D"). Using now that @ is a
solution of the Poisson equation, we can write

Expm = /z pvfd3x, 37

and we recover the standard expression for the total mass of the system at the
Newtonian limit (as it will be seen in next section, in a non-boosted slice like this,
mass is directly given by the energy expression).
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3.3.2 ADM 4-Momentum and ADM Mass
ADM Linear Momentum

Linear momentum corresponds to the conserved quantity associated with an invari-
ance under spatial translations. In the asymptotically flat case, the ADM momentum
is associated with space translations preserving the falloff conditions (19) expressed
in terms of the Cartesian-type coordinates (x'). Given one of such coordinate sys-
tems, the three vectors (0;);e¢1,2,3) represent asymptotic symmetries generating
asymptotic spatial translations that correspond to a choice N=0 and ,Béaj) = 5;
in the evolution vector #. Substituting these values for the lapse and shift in the
Hamiltonian expression evaluated on solutions (28), we obtain the conserved quan-
tity under the infinitesimal translation 0; :

P, := — lim Kix — Kyix) s*.Jq d?x. 38
i S Strsoo) S[( ik Vzk) \/E ( )

Remark 4. Asymptotic falloff conditions (19) guarantee the finiteness of expression
(38) for P;.

The ADM momentum associated with the hypersurface X, is defined as the linear
form (P;) = (P1, P2, P3). Its components actually transform as those of a linear
form under changes of Cartesian coordinates (x’) — (x’'), which asymptotically
correspond to a rotation and/or a translation. For discussing transformations under
the full Poincaré group, we must introduce the ADM 4-momentum defined as

(P:DM) = (—EADM,Pl,Pz,Pg,). (39)

Under a coordinate change (x*) = (1,x') — (x’*) = (¢/,x’") which preserves
the asymptotic conditions (19), that is, any coordinate change of the form (20),
components P;}DM transform under the vector linear representation of the Lorentz

group
JADM _ , .1 ADM

PIAPM = (A1), pADM, (40)

as first shown by Arnowitt, Deser, and Misner in [4]. Therefore (P;}DM) can be

seen as a linear form acting on vectors at spatial infinity i® and is called the ADM
4-momentum.

ADM Mass

Having introduced the ADM 4-momentum, its Minkowskian length provides a no-
tion of mass. The ADM mass is therefore defined as

M2y = —PPMPiom: Maom = \/ Expy — Pi Pl 41)
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Remark 5. In the literature, references are found where the term ADM mass actually
refers to this length of the ADM 4-momentum and other references where it refers
to its time component that we have named here as the ADM energy. These differ-
ences somehow reflect traditional usages in Special Relativity where the term mass
is sometimes reserved to refer to the Poincaré invariant (rest-mass) quantity, and
in other occasions is used to denote the boost-dependent time component of the
energy—momentum.

The ADM mass is a time independent quantity. Time evolution is generated by the
Hamiltonian in expression (26). The time variation of a given quantity F' defined
on the phase space is expressed as the sum of its Poisson bracket with the Hamilto-
nian (accounting for the implicit time dependence through the time variation of the
phase space variables) and the partial derivative of F' with respect to time. Since in
expression (26) there is no explicit time dependence, constancy of the ADM mass
follows:

d
M =0. 42
; apm (42)

As a consequence of this, the ADM mass is a property of the whole (asymptotically
flat) spacetime.

Remark 6 (Relation Between ADM and Komar Masses). Komar mass is defined
only in the presence of a time-like Killing vector k* (more generally, cf. [71] for
an early critical account of its physical properties). However, in the asymptotically
flat case we can discuss the relation between the ADM mass and the Komar mass
associated with an asymptotic inertial observer. Though the relation is not straight-
forward from explicit expressions (18) and (30), it can be shown [11, 14] that for
any foliation {¥;} such that the associated unit normal n* coincides with the time-
like Killing vector k* at infinity (i.e., N — 1 and B/ — 0) we have

My = Mapwm. (43)

As a practical application, this relation has been used as a quasi-equilibrium con-
dition in the construction of initial data for compact objects in quasi-circular orbits
(e.g., [46]).

Positivity of the ADM Mass

One of the most important results in General Relativity is the proof of the positivity
of the ADM mass under appropriate energy conditions for the matter energy—
momentum tensor. This is important first on conceptual grounds, since it represents
a crucial test of the internal consistency of the theory. A violation of this result would
evidence an essential instability of the solutions of the theory. It is also relevant on
a practical level, since this theorem (and/or related results) pervades the everyday
practice of (mathematical) relativists.
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The theorem states that, under the dominant energy condition, the ADM mass
cannot be negative, that is, Mapm > 0. Moreover, Mapm = O if and only if the
spacetime is Minkowski. This result was first obtained by Schoen and Yau [81, 82]
and then recovered using spinorial techniques by Witten [92] (see in this sense [33]
for a previous related mass positivity result in supergravity).

The dominant energy condition essentially states that the local energy measured
by a given observer is always positive, and that the flow of energy associated with
this observer cannot travel faster than light. More precisely, given a future-directed
time-like vector v*, this condition states that the vector —7#,v" is a future-oriented
causal vector. Vector —T#,v¥ represents the energy—momentum 4-current density
as seen by the observer associated with v, in an analogous decomposition to that in
Eq. 12. From the dominant energy condition it follows E := T},,v*v” > 0, that is,
the local density cannot be negative (weak energy condition) and, more generally,

E>JPiP,.

3.3.3 ADM Angular Momentum

Pushing forward the strategy followed for defining the ADM mass and linear
momentum, one would attempt to introduce total angular momentum as the con-
served quantity associated with rotations at spatial infinity. More specifically, in the
Cartesian-type coordinates used for characterizing asymptotically Euclidean slices
(19), infinitesimal generators (¢;);e{1,2,3; for rotations around the three spatial
axes are

¢x = =20y, +y0;, ¢y = —x0,+ 205, ¢, = —y0x + X0y, (44)

which constitute Killing symmetries of the asymptotically flat metric. When using
the associated lapse functions and shift vectors in the Hamiltonian expression (28),
namely, N = 0 and ﬂé o) = (¢;)", the following three quantities result

1 .
Ji = — lim (Kjk — Kyje) (i) s*Jgd?x,  ie{1,2,3}. 45)
8 S(t.r—>oo) Sy

However, the interpretation of J; as the components of an angular momentum faces
two problems:

1. First, asymptotic falloff conditions (19) are not sufficient to guarantee the finite-
ness of expressions (45).

2. Second, in contrast with the linear momentum case, the quantity (J;) = (Jq,
Ja, J3) does not transform appropriately under transformations (20) preserving
(19). This can be tracked to the existence of supertranslations. In particular, the
so-defined angular-momentum vector (J;) depends non-covariantly on the par-
ticular coordinates we have chosen.
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For this reason, it is not appropriate to refer to an ADM angular momentum
in the same sense that we use the ADM term for mass and linear momentum
quantities. A manner of removing the above-commented ambiguities consists in
identifying an appropriate subclass of Cartesian-type coordinates where, first, the
Ji components are finite and, second, they transform as the components of a lin-
ear form. Among the different strategies proposed in the literature, we comment
here on the one proposed by York [94] in terms of further conditions on the con-
formal metric y;; introduced in Eq. 32 and the trace of the extrinsic curvature K.
Namely,

ay_, =003, K=0072), (46)

dax/
representing asymptotic gauge conditions. That is, they actually impose restric-
tions on the choice of coordinates but not on the geometric properties of space-
time at spatial infinity. First condition in Eq. 46 is known as the quasi-isotropic
gauge, whereas the second one is referred to as the asymprotic maximal gauge.

Remark 7. Note that, in contrast with the total angular momentum defined at spatial
infinity, no ambiguity shows up in the definition of the Komar angular momentum
in Eq. 17.

3.4 Bondi Energy and Linear Momentum

We could introduce Bondi (or Trautman—Bondi—Sachs) energy at null infinity fol-
lowing the same approach we have employed for the ADM energy, that is, by taking
the appropriate limit of Eq. 28 with N = 1 and 8/ = 0. In the present case, instead
of keeping ¢ constant and making r — oo as we did in Eq. 29, we should introduce
retarded and advanced time coordinates (respectively,u =t —r andv =t + r) and
consider the limit

Eps 1= —¢— _lim 9§(H Ho)/qd>x. (47)

8w Suv—>00)

The full discussion of this limit would require the introduction of the appropriate
falloff conditions for the metric components in a special class of coordinate sys-
tem adapted to null infinity (Bondi coordinates). This is in the spirit of the original
discussion on the energy flux of gravitational radiation from an isolated system by
Bondi, Van der Burg, and Metzner [18], and Sachs [80]. However, aiming at provid-
ing some flavor of the geometric approach to asymptotic flatness, we rather outline
here a discussion in the setting of the conformal compactification approach.



106 J.L. Jaramillo and E. Gourgoulhon

3.4.1 Null Infinity

A smooth spacetime (M, g) is asymptotically simple [76] (see e.g., also [37]) if
there exists another (unphysical) smooth Lorentz manifold (M, &) such that

(i) M is an open submanifold of M with (smooth) boundary IM.
(i) There is a smooth scalar field §2 on /\;l such that 2 > 0, g,,, = .ng,w on
M, and 2 =0, 9,2 # 0onIM.
(iii) Every null geodesic in M begins and ends on M.

An asymptotically simple spacetime is asymptotically flat (at null infinity) if, in ad-
dition, the Einstein vacuum equation is satisfied in a neighbourhood of dM (or the
energy—momentum decreases sufficiently fast in the matter case). In this case the
boundary dM consists, at least, of a null hypersurface with two connected compo-
nents .# = .#~U.#*, each one with topology S2 xR (note that in Minkowski d.M
also contains the points i®, ). Boundaries .# ~ and .# * represent past and future
null infinity, respectively.

3.4.2 Symmetries at Null Infinity

In order to characterize a vector £# in M as an infinitesimal asymptotic symme-
try at (future) null infinity .#*, we must assess the vanishing of L¢g,, as one
gets to . *. For this, we require first that £#, considered as a vector field in the
unphysical spacetime (i.e., under the immersion of M into M), can be smoothly
extended to .# 7. Then £* is characterized as an asymptotic symmetry by demand-
ing that £2?L¢ g,,» can also be smoothly extended to .# * and vanishes there, that is,

(%g,, + Vg, — 202760V, 0 g*Mv) —0. (48)

7+

Two vector fields &* and &* are considered to generate the same infinitesimal
asymptotic symmetry if their extensions to .# %1 coincide. The equivalence class
of such vector fields, which we will still denote by £#, generates the asymptotic
symmetry group at .# T This is known as the Bondi-Metzner-Sachs (BMS) group
and is universal in the sense that it is same for every asymptotically flat space-
time. The BMS group is infinite-dimensional, as it was the case of the Spi group
at spatial infinity. It does not only contain the Poincaré group, but actually is a
semi-direct product of the Lorentz group and the infinite-dimensional group of
angle dependent supertranslations (see details in, e.g., [87]). The key point for
the present discussion is that it possesses a unique canonical set of asymptotic
4-translations characterized as the only 4-parameter subgroup of the supertransla-
tions that is a normal subgroup of the BMS group. This leads us to the Bondi—Sachs
4-momentum.
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3.4.3 Bondi-Sachs 4-Momentum

As mentioned above, the original introduction of the Bondi energy was based in
the identification of certain expansion coefficients in the line element of radiative
spacetimes in adapted (Bondi) coordinates [18]. A Hamiltonian analysis, counter-
part of the approach adopted in Section 3.3 for introducing the ADM mass, can be
found in [89]. Here we rather follow a construction based on the Komar mass ex-
pression. Though Eq. 13 only defines a conserved quantity for a Killing vector k#,
the vector fields £ (a € {0, 1,2, 3}) corresponding to the 4-translations at .# + get
closer to an infinitesimal symmetry as one approaches .#*. Therefore, one can ex-
pect that a Komar-like expression makes sense for a given cross section S, of .# T,
This is indeed the case and the evaluation of the integral does not depend on how we
get to S,. However, the integral does depend on the representative £ in the class
of vectors corresponding to the asymptotic symmetry. This is cured by imposing a
divergence-free condition on £ [41]. Bondi—Sachs 4-momentum at S, C .# 7 is
then defined as

1
PBS = —— | VHEY V. EF =0. 4
a 87 (SLSI,) S SadSMV’ nSa 0 ( 9)

Alternatively, ambiguities in the Komar integral can be solved by dropping the con-
dition on the divergence and adding a term @V, £, to the surface integral. When
o = 1 the resulting integral is called the linkage [91]. The discussion of Bondi—
Sachs angular momentum is more delicate. We refer the reader to the discussion in
Section 3.2.4 of [85].

Bondi Energy and Positivity of Gravitational Radiation Energy

Bondi energy Egs (the zero component of the Bondi—Sachs 4-momentum) is a de-
creasing function of the retarded time. More concretely, Bondi energy satisfies a

loss equation
dE
L —/ F Jq d*x, (50)
du Sy

where F' > 0 can be expressed in terms of the squares of the so-called news func-
tions. In [11] it is shown that if the news tensor satisfies the appropriate conditions,
then Bondi mass coincides initially with the ADM mass (see also [56]). Bondi en-
ergy is interpreted as the remaining of the ADM energy in the process of energy
extraction by gravitational radiation. As for the ADM mass, a positivity result holds
for the Bondi mass [61, 83]. These properties constitute the underlying concep-
tual/structural justification of our understanding of energy radiation by gravitational
waves: gravitational radiation carries positive energy away from isolated radiating
systems, and the total radiated energy cannot be bigger than the original total ADM
energy.
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4 Notions of Mass for Bounded Regions: Quasi-Local Masses

As commented in Section 1.2, the convenience of associating energy—momentum
with the gravitational field in given regions of the spacetime is manifest in very
different contexts of gravity physics. More specifically, mathematical and numeri-
cal General Relativity or approaches to Quantum Gravity provide examples where
we need to associate such an energy—momentum with a finite region of spacetime.
This can be either motivated by the need to define appropriate physical/astrophysical
quantities, or by the convenience of finding quasi-local quantities with certain de-
sirable mathematical properties (e.g., positivity, monotonicity, etc.) in the study of a
specific problem.

There exist many different approaches for introducing quasi-local prescrip-
tions for the mass and angular momentum. Some of them can be seen as guasi-
localizations of successful notions for the physical parameters of the total system,
such as the ADM mass, whereas other attempts constitute genuine ab initio method-
ological constructions, mainly based on Lagrangian or Hamiltonian approaches.
An important drawback of most of them in the context of the present article is
that, typically, they involve constructions that are difficult to capture in short math-
ematical definitions without losing the underlying physical/geometrical insights.
An excellent and comprehensive review is reference [85] by Szabados.

4.1 Ingredients in the Quasi-Local Constructions

First, the relevant bounded spacetime domain must be identified. Typically, these
are compact space-like domains D with a boundary given by a closed 2-surface S.
Explicit expressions, such as relevant associated integrals, are formulated in terms
of either the (3-dimensional) domain D itself or on its boundary S. In particu-
lar, conserved-current strategies permit to pass from the 3-volume integral to a
conserved-charge-like 2-surface integral. In other cases, 2-surface integrals are
a consequence of the need of including boundary terms for having a correct
variational formulation (as it was the case in the Hamiltonian formulation of
Section 3.3).

We have already presented an example of quasi-local quantity in Section 2,
namely the Komar quantities. Since symmetries will be absent in the generic
case, an important ingredient in most quasi-local constructions is the prescrip-
tion of some vector field that plays the role that infinitesimal symmetries had
played in case of being present. In connection with this, one usually needs to
introduce some background structure that can be interpreted as a kind of gauge
choice.

Finally, different plausibility criteria for the assessment of the proposed quasi-
local expressions (e.g., positivity, monotonicity, recovery of known limits, etc.),
need to be considered (see [85]).
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4.2 Some Relevant Quasi-Local Masses

4.2.1 Round Spheres: Misner—Sharp Energy

In some special situations, as it is the case of isolated systems above and some
exact solutions, there is agreement on the form of the gravitational field energy—
momentum. Another interesting case is that of spherically symmetric spacetimes,
where the rotation group SO(3) acts transitively as an isometry. Orbits under this
rotation group are round spheres S. Then, using the areal radius r4 as a coordi-
nate (4w ri = A), an appropriate notion of mass/energy was given by Misner and
Sharp [72]

1
E(S) := grj Rypo €t %P7, (51)

where %,, = n?s%%,qu, (cf. Section 1.3) is the volume element on S. This
expression is related to the so-called Kodama vector K#, which can be defined
in spherically symmetric spacetimes and such that V, (G*"K,)=0. The current
SH =GHY K, is thus conserved and, taking D as a solid ball of radius r4, the flux
of S# through the round boundary dD actually equals the change in time of the
mass expression (51). Misner—Sharp proposal is considered as the standard form of
quasi-local mass for round spheres.

4.2.2 Brown-York Energy

The rationale of the approach in Ref. [23] to quasi-local energy strongly relies on
the well-posedness of a variational problem for the gravitational action. The adopted
variational formulation is essentially the one outlined in Section 3.3 (where the dis-
cussion was in fact based in the treatment in [79] adapted from [23]). However, if
the main interest is placed in the expressions of quasi-local parameters and not in
the details of the symplectic geometry of the system phase space, a full Hamiltonian
analysis does not need to be undertaken and one can rather follow a Hamilton—
Jacobi one. The latter starts from action (21) defined on the spacetime domain V.
We recall that the boundary 0V is given by two space-like hypersurfaces X and X
and a time-like tube B, such that the 2-spheres S; are the intersections between X;
and B. The metric and extrinsic curvatures on X; are given by y,,, and K*¥, whereas
those on B3 are denoted by y,, and P*”. A Hamilton—-Jacobi principal function can
then be introduced by evaluating the action S on classical trajectories. An arbitrary
function S° of the data on the boundaries can be added to S [it is the responsible
of the reference terms with subindex 0 in expression (21)]. The principal function is
given by Sc1 := (S — §°) | and Hamilton—Jacobi equations are obtained from its
variation with respect to the data at the final slice X. One of the Hamilton—Jacobi
equations leads to the definition of a surface stress—energy—momentum tensor as

2 §Sq 1
== S = AP = PP = (Pog™ = P} (52)
A/ wv
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This tensor satisfies a conservation-like equation with a source given in terms of the
matter energy—momentum tensor 7#Y. This motivates the definition of the charge
0 (&) associated with a vector £# as

0s(E") = gg £,77n, /G dx, 53)

whose change along the tube 5 is given by a matter flux. This expression is analo-
gous to Eq. 1 in the matter case (here S C B and n* is the time-like unit normal to
S and tangent to B).

Using the 2 + 1 decomposition induced by a 3 + 1 space-like slicing {X;}, we
can decompose the tensor t#¥ as we did for the matter energy—momentum tensor
T*V in Eq. 12. Writing explicitly the time-like components, it results

1
= W =_——(H-H",
& nunyT 87r( )
, 1
Ju = —quonpt™? = S dnvSp (Ky"? — K"P)|S". (54)

Expressing the vector £# in the 341 decomposition §* = Ent +§& ﬁ and considering
a 2-surface S lying in a slice of { X}, we have

05 = b &rnovi ds = (6o —L7p) VA d*r. (59

The Brown—York energy is then [cf. with the ADM mass expression (41)]
Epy(S,n*) ;= Qs(n*) = —% é(H — Hy)/q d*x. (56)
Note that this expression explicitly depends on the manner in which § is inserted in

some space-like 3-slice. In this sense, it corresponds to an energy (depending on a
boost) rather than a mass.

Kijowski, Epp, Liu-Yau, and Kijowski-Liu-Yau Expressions
We briefly comment on some expressions that can be related to the Brown—York

energy. Studying more general boundary conditions than the ones in [23], Kijowski
proposed the following quasi-local expression for the mass [66]

1 Ho)? — (H? — L?
iy i 1P )

2
— 7
Tom Ho Va dix, (57)

where H = H;,,q"" and L =L,,q"" are the traces of the extrinsic curvatures
of S with respect to unit orthogonal space-like s* and time-like n* vectors, that
is, n**s, = 0 (cf. notation in Section 1.3). Apart from the choice of the back-
ground terms Hy, this expression only depends on S, and not in the manner of
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embedding it into some space-like hypersurface. Using a different set of bound-
ary conditions, another quasi-local quantity was introduced by Kijowski (referred
to as a free energy). The same quantity was later derived by Liu and Yau, using
a different approach [69]. We will refer to the resulting quasi-local energy as the
Kijowski-Liu-Yau energy, having the form

Exiy i= Sigg (HO _VH?_ LZ). (58)
T Js

On the other hand, aiming at removing the dependence of Brown—York energy on
the space-like hypersurface, Epp [36] proposed the following boost-invariant ex-
pression

Ep = %92 <\/(H0)2 — (L% —VH? - LZ). (59)

Note that Brown—York energy can be seen as a gravitational field version of the
quasi-local matter energy (6), whereas Epp’s expression rather corresponds to the
matter mass (7). For further recent work along this approach to quasi-local mass,
see [74,90].

4.2.3 Hawking, Geroch, and Hayward Energies
Hawking Energy

Given a topological sphere S, its Hawking energy is defined as [49]

[A(S
Eu(S) = % (1 + % 312 9+9_) Jq d*x, (60)

where 04 = q’“’@ffg and 0_ = g*¥ @,(Lkv) are the expansions associated with out-
going and ingoing null normals (cf. notation in Section 1.3). It can be motivated by
understanding the mass surrounded by the 2-sphere S as an estimate of the bending
of ingoing at outgoing light rays from S. An average, boost-independent measure of
this convergence-divergence behaviour of light rays is given by 565 04+6_%. Then,
from the Ansatz A + B 555 64+ 6_2%, the constants A and B are fixed from round
spheres in Minkowski and from the horizon sections in Schwarzschild spacetime.
Hawking energy depends only on the surface S and not on any particular embed-
ding of it in a space-like hypersurface. In the spherically symmetric case it recovers
the standard Misner—Sharp energy (51). For apparent horizons, or more generally
for marginally trapped surfaces, it reduces to the irreducible mass accounting for
the energy that cannot be extracted from a black hole by a Penrose process and that
is given entirely in terms of the area. Hawking energy does not satisfy a positivity
criterion, since it can be negative even in Minkowski spacetime. However, for large
spheres approaching null infinity, Ey(S) recovers Bondi—Sachs energy, whereas for
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spheres approaching spatial infinity it tends to the ADM energy. Though it is not
monotonic in the generic case, monotonicity can be proved for sequences of spheres
obtained from appropriate geometric flows. This has a direct interest for the exten-
sion of Huisken & Ilmanen proof [62] of the Riemannian Penrose inequality to the
general case.

Geroch Energy

For a surface S embedded in a space-like hypersurface X', Geroch energy [40] is

defined as
A(S) 52 2
E = — R — H d“x 61
o= 1 T h ) Va (61)

where H is again the trace of the extrinsic curvature of S inside X'. Geroch energy
is never larger than Hawking energy, but it can be proved that it also tends to the
ADM mass for spheres approaching spatial infinity.

The relevance of Geroch energy lies on its key role in the first proof of the
Riemannian Penrose, by Huisken & Ilmanen [62] (see also Section 5.1). In par-
ticular, use is made of the monotonicity properties of Eg under an inverse mean
curvature flow in X

Hayward Energy

Some generalizations of Hawking energy exist. A vanishing expression for flat
spacetimes can be obtained by considering the modified expression

EL(S) = ,/A(S ( +—$69+9_——o oﬂv)fdz (62)

where the shears U/w and o, are the traceless parts of @,(fv) and @Lkv), respectively.
Ej, still asymptotes to the ADM energy at spatial infinity, but does not recover
Bondi—Sachs energy at null infinity (but rather Newman—Unti one; cf. references
in [85]). Related to this modified Hawking energy, Hayward has proposed [55] an-
other quasi-local energy expression by taking into account the anholonomicity form

§2,, one of the normal fundamental 1-forms introduced in Section 1.3

Eay(S) = ,/fllgg ( 95 9+9_—-a ot —2Q m) Jq d*x. (63)

Though the divergence-free part of 2, can be related to angular momentum (see
below), this 1-form is a gauge-dependent object changing by a total differential
under a boost transformation. Therefore, some natural gauge for fixing the boost
freedom is needed.
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4.2.4 Bartnik Mass

Bartnik quasi-local mass is an example of quasi-localization of a global quantity,
in particular the ADM mass. In very rough terms, the idea in Bartnik’s construction
consists in defining the mass of a compact space-like 3-domain D as the ADM mass
of that asymptotically Euclidean slice X' that contains D without any other source of
energy. The strategy to address this absence of further energy is to consider all plau-
sible extensions of D into Euclidean slices, calculate the ADM mass for all them,
and then consider the infimum of this set of ADM masses. In more precise terms, let
us consider a compact, connected 3-hypersurface D in spacetime, with boundary S
and induced metric y;;. Bartnik’s construction actually focuses on time-symmetric
K;; = 0 domains D. Let us also assume that a dominant energy condition (though
the original formulation in [13] makes use of a weak-energy-constraint condition)
is satisfied. In a time-symmetric context this amounts to the positivity of the Ricci
scalar, 3R > 0. One can then define ‘P(D) as the set of Euclidean time-symmetric
initial data sets (X, y;;) satisfying the dominant energy condition, with a single
asymptotic end, finite ADM mass Mapm(2'), not containing horizons (minimal sur-
faces in this context) and extending D through its boundary S. Then, Bartnik’s mass
[13] is defined as

Mg(D) := inf{Mxpm(X), such that ¥ € P(D)}. (64)

The no-horizon condition is needed to avoid extensions (X, y;;) with arbitrarily
small ADM mass. There is also a spacetime version of Bartnik’s construction, not
relying on an initial data set on D but only on the geometry of 2-surfaces S. Let us
define P(S) as the set of globally hyperbolic spacetimes (M, g,,,,) satisfying the
dominant energy condition, admitting an asymptotically Euclidean Cauchy hyper-
surface X' with finite ADM mass, not presenting an event horizon and such that S
is embedded (i.e., both its intrinsic and extrinsic geometry) in (M, g,,,). Then, one
defines

Mg(S) := inf {Mapm(M), such that M € P(S)}. (65)

The comparison between Mp(D) and Mp(dD) is not straightforward, due to is-
sues regarding the horizon characterization. From the positivity of the ADM mass it
follows the nonnegativity of the Bartnik mass Mg(D). In fact, Mg(D) = O charac-
terizes D as locally flat. From the definition (64) it also follows the monotonicity of
Mg(D),i.e.if D; C D, then Mg(D1) < Mg(D>). Bartnik mass tends to the ADM
mass, as domains D tend to Euclidean slices (the proof makes use of the Hawking
energy introduced above). Another interesting feature, consequence of the proof of
the Riemannian Penrose conjecture [62], is that Bartnik mass reduces to the stan-
dard form E(S) in Eq. 51 for round spheres. However, the explicit calculation of the
Bartnik mass is problematic. An approach to its practical computability is provided
by Bartnik’s conjecture stating that the infimum in Eq. 64 is actually a minimum
realized by an element in 7P(D) characterized by its stationarity outside D. Further
developments of these ideas have been proposed by Bray (cf. [22]).
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Before concluding this subsection, we mention the explicit construction in [93] of
quantum analogs for some of the previous quasi-local gravitational energies (specifi-
cally for Brown—York, Liu-Yau, Hawking, and Gero